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Abstract

The relationship between managed pollination and production outcomes is important in theory
and practice. In this paper we estimate semi-parametric response functions between yield and
profits and honey bee colonies per acre in the US apple sector. Our results suggest an optimal
honey bee stocking density of around 2 and 4 colonies per acre for Eastern and Western states,
respectively. Shape restriction tests are consistent with a concave relationship and diminish-
ing returns. We also find that Western apple farmers receive a larger return from the marginal
colony, and that yield in Eastern states may be concave in natural forest cover.
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1 Introduction

In economics generally and particularly in applied work, bridging theory and empirical work can
be both challenging and important (Hood and Koopmans, 1970; Varian, 1992; Rust, 2010; Timmins
and Schlenker, 2009). Take, for example, the importance of the shape of economic relationships,
an issue recognized as early as Slutsky (1915). Particular relationships are often posited to exist
in theory, but in practice there may be empirical challenges associated with knowing whether
the shapes of economic relationships posited by theory exist in practice (Chetverikov, Santos,
and Shaikh, 2018; Matzkin, 1994). A better understanding of the empirical shape of economic
relationships would provide opportunities to test theory and offer practical guidance to decision-
makers.

A tangible setting to consider these fundamental tensions is in production economics, partic-
ularly as regards input decisions and their relationships to production and profit outcomes (Cobb
and Douglas, 1928; Tintner, 1944; Heady and Dillon, 1961; Just and Pope, 1979; Jorgenson, 1986;
Chambers, 1988; Griliches and Mairesse, 1999; Ray, Chambers, and Kumbhakar, 2022; Chavas,
2025). For example, from a theory perspective, diminishing returns, reflected by concavity in pro-
duction inputs, are a standard economic relationship predicted by theory. Nevertheless, compelling
empirical evidence for such relationships can be difficult to present convincingly for a variety of
reasons (Mundlak, 1961; Olley and Pakes, 1996; Levinsohn and Petrin, 2003; Ackerberg, Caves,
and Frazer, 2015). In the absence of empirical support for such relationships, economics research
may offer little tangible guidance to practitioners (e.g., optimal input use levels), and therefore have
limited applicability and relevance to decision-makers. These tensions have an important history
in agricultural economics, where efforts to test theory and offer practical guidance have yielded
important advances that help explain behavioral anomalies (Wuepper et al., 2023; Just and Messer,
forthcoming).

In this paper, we study these ideas in the important production setting of pollination-dependent
agriculture. Pollination, provided mainly by bees, is an essential service that contributes to the

yield and quality of most globally produced crops (Klein et al., 2007). Farmers of pollination-



dependent crops grow much of the world’s nutritious and high-value fruits, nuts, and vegetables;
and many use managed pollination services as a strategy for pollination (Wilcox et al., 2025a).!
The most common market transaction between managed pollination service providers and crop
producers in the US is the rental of domesticated honey bee colonies during the bloom period.?
Farmer pollination choices are critical as they impact farm-level outcomes like yield and fruit
quality (Roubik, 2002; Garibaldi et al., 2013; Park et al., 2016; Russo et al., 2017; Danforth,
Minckley, and Neff, 2019), local pollination resources within and beyond the farm-gate (Kennedy
et al., 2013; Park et al., 2015; Grab et al., 2018), and market-level outcomes through shifts in the
supply and demand of both pollination resources and agricultural commodities (Rucker, Thurman,
and Burgett, 2012; Goodrich, Williams, and Goodhue, 2019).

Given how critical farmer pollination choices are for the production of pollination-dependent
crops, knowledge of the shape of the relationship between yields and profits and managed pollina-
tion use is of interest to theory and practice. Theoretically, knowing whether and to what extent
yields and profits are concave with respect to managed pollination use enables one to ascertain
whether there are diminishing returns to managed pollination use, whether there are decreasing
returns to scale, the existence of global maxima and local maxima, the steepness of the respective
curve, and the magnitude of the implied marginal response. Wilcox et al. (2025b) show that, for
most reasonable values of the parameters, the production function for pollination-dependent crops
is weakly concave in managed pollination use; and moreover that other relationships, including
the price elasticity of managed pollination use and the importance of the scale of production to
pollination choices, may depend on how concave production is with respect to managed pollina-
tion use. Thus, demonstrating diminishing returns to the use of managed pollination would not
only be noteworthy by itself, but would also help elucidate other phenomena including managed

pollination demand elasticities and the importance of production scale to managed pollination use.

ICrops that require or benefit greatly from insect pollination include almonds, coffee, apples, avocados, cherries,
peaches, blueberries, among many others.

2 Additional market-based options for managed pollination services include: the purchase of so-called “buckets of
bees” for the bloom period (e.g. single containers of cultivated bumble bees, which do not live past a single season);
as well as bloom season rental of mason bees or blue orchard bees (Ward, Whyte, and James, 2010).



In practice, knowing whether and to what extent yields and profits are concave with respect to
managed pollination use enables one to potentially recover optimal stocking densities, determine
if there are global or local optima, and assess if crop producers seem to be operating above or
below optimal levels. There is very little empirical evidence for what the optimal use of pollination
might look like for particular production sectors (Rollin and Garibaldi, 2019; Ramirez-Mejia et al.,
2024), and also a dearth of evidence about the extent to which crop production is pollination limited
(Reilly et al., 2020). The relationship between agricultural outcomes and pollinator availability is
also an important public policy issue given ongoing concerns over colony collapse disorder (CCD)
and declines of wild pollinators (Rucker, Thurman, and Burgett, 2019; Grab et al., 2019). These
relationships are likely also important for crop insurance policies, which may stipulate a minimum
colony count as a condition for payout, despite the fact that such thresholds often lack empirical
justification (e.g., see current guidance regarding claim losses related to pollination for almonds
in United States Department of AgricultureRisk Management Agency (2008)). In the absence of
empirical efforts to estimate these relationships, the returns to pollination input use are difficult to
estimate and the potential to apply basic theory to inform these decisions remains unrealized.

We focus in particular on apple production. Apples are a widely produced and consumed
commodity around the world. Pollination is an important input for apple production (Ramirez
and Davenport, 2013; Wilcox et al., 2025a). Apples are not considered a honey-producing crop
(Rucker, Thurman, and Burgett, 2012), as apple blossoms yield little or no honey (Cheung, 1973),
and this translates into higher pollination rental fees for apple farmers to mitigate against the fact
that beekeepers do not gain forage resources to produce palatable honey from pollinating apples
(Rucker, Thurman, and Burgett, 2012).

For our study of the relationship between production outcomes and use of managed pollination,
we employ semi-parametric optimal binscatter developed by Cattaneo et al. (2024) applied to farm-
level data on apple farmers in the US to estimate response functions relating yield and profits to
honey bee colonies per acre. We interpret our results as semi-parametric marginal product and

marginal value product curves, respectively. We also apply semi-parametric methods developed



by Cattaneo et al. (2024) to estimate the respective first and second derivatives, which enables us
to identify global and local maxima of yield and profits where the first derivative is zero and the
second derivative is negative; and to test for the parametric form of the response function and for
shape restrictions (i.e., monotonicity, concavity, and convexity). For robustness, we also estimate
fixed effects regression models and employ second-order polynomials in honey bee colonies per
acre and other covariates.

Our empirical results provide strong evidence for at least local concavity in these relationships.
We use estimated first derivatives to locate local optima for honey bee colony density, which we
find is around 2 and 4 colonies rented per acre for Eastern and Western states, respectively. We
further find that apple farmers in Western states get a larger return to the marginal honey bee
colony rented than apple farmers in Eastern states, and that yield in Eastern states may be concave
in natural forest cover. Results of formal hypothesis tests regarding the parametric form of the
response function and shape restrictions are consistent with the visual observation of concavity
and diminishing returns to managed pollination use.

Our empirical application to apple farmers in the US builds on the majority of directly related
economics literature, which has focused heavily on beekeepers, almond growers, and the West
Coast of the US (Baylis, Lichtenberg, and Lichtenberg, 2021). Indeed, since the seminal work by
Meade (1952), who uses the example of an apple farmer and a beekeeper to model and analyze
externalities, and the subsequent examination of this fable of the bees through the lens of pricing
and contractual arrangements in the beekeeping industry by Cheung (1973), little direct focus
appears to have been placed on the setting of apple production and pollination.> Moreover, to

the best of our knowledge, there are no directly comparable empirical contributions to ours in the

3Economic analyses of pollination resources and pollination-dependent sectors include advances in understanding
the value provided by pollination resources to society (Penn, Hu, and Penn, 2019; Lippert, Feuerbacher, and Narjes,
2021), the state and nature of pollination service markets (Willett and French, 1991; Rucker, Thurman, and Burgett,
2012; Goodrich, Williams, and Goodhue, 2019; Fei et al., 2021), the impacts of CCD on beekeepers and pollination
markets (Champetier, Sumner, and Wilen, 2015; Rucker, Thurman, and Burgett, 2019), the use of beekeeping for
poverty alleviation (Albers and Robinson, 201 1) and decision-making by pollination-dependent farmers (Ferrier et al.,
2018; Simpson, 2019; Wu and Atallah, 2019; Wilcox et al., 2025b). The majority of directly related economics
literature has focused heavily on beekeepers, almond growers, and the West Coast of the US; and there is a paucity of
theoretical and empirical work focused on farmers (Baylis, Lichtenberg, and Lichtenberg, 2021).



economics literature or related entomology or ecology literatures.*

The remainder of our paper proceeds as follows. Section 2 describes our empirical setting.
Section 3 describes our semi-parametric optimal binscatter methods. Section 4 presents the results
of our empirical analysis of the relationship between yield, profit, and managed pollination use.

We discuss and conclude in Section 5.

2 Empirical Setting

2.1 Background on Apple Production and Crop Pollination Metrics

Apples are a widely produced and consumed commodity around the world with high economic
and cultural value.” Pollination is an important input for apple production (Wilcox et al., 2025a),
and pollination rental fees tend to be higher for apple farmers since beekeepers do not gain for-
age resources to produce palatable honey from pollinating apples (Rucker, Thurman, and Burgett,
2012). Apples are also unique from a pollination perspective as wild pollinators have been shown
to be much more effective at inducing fruit set than honey bees are, with potentially important im-
plications for fruit quality and price received (Blitzer et al., 2016; Russo et al., 2017).% This may
be particularly important for farmers as high quality fruit receives a much better price on average
compared to lower quality fruit which is often sold for processing (e.g., apple sauce and other
products). A complexity in mapping pollination efficacy to yield, at least with modern approaches
to apple production, is that farmers commonly engage in thinning (typically with a chemical agent)

immediately after fruit set to encourage the plant to drop poorly pollinated fruit early and thus in-

“For example, although many studies from ecologists have studied various measures of pollinator presence and
measures of production in great detail (e.g. Roubik 2002; Park et al. 2016; Blitzer et al. 2016; Reilly et al. 2020),
no work to our knowledge has measured these variables outside of small-scale experiments, nor have they combined
such observations with the realized production behavior of the farmers from whose land they are collecting data. An
example in the setting of apple and pear production in Argentina comes from Geslin et al. (2017).

>Today, China leads the world in global apple production with the US a fairly distant second (authors’ calculations,
FAOSTAT). Among states in the US, apple production is highest in Washington followed by New York.

SFruit set is the biological process in which flowers become fruit and potential fruit size is determined (Mid Valley
Agricultural Services, 2006). When seed formation is complete and well-distributed, the fruit is considered to be more
appealing (e.g., consistent shape and fruit quantity/quality), which generally means a higher price is received by the
farmer.



crease investment in remaining fruit. Some prior work has also suggested that apple production
may be pollination limited in some parts of the US (Reilly et al., 2020).

Apple production is entirely dependent on insects for pollination services as the majority of
commercial cultivars are self-sterile and require a compatible pollinizer variety (Ramirez and Dav-
enport, 2013). Efforts to define optimal pollinator densities have used a range of empirical ap-
proaches from the scale of pollen transfer to individual flower in a single visit (Park et al., 2016) up
to the scale of whole orchards (Rollin and Garibaldi, 2019). Studies assessing pollinator efficiency
among apples’ diverse set of wild and managed visitors have utilized measures of average pollen
deposition rates per taxa, which is then weighted by the average abundance of that taxa, to define
estimates of pollinator importance (Park et al., 2016). However, these estimates have rarely been
scaled up to estimate the number of bees required to set a high-quality crop. Studies focused on
managed honey bees more frequently utilize experiments comparing production outcomes across
varying stocking densities to estimate optimal stocking densities. Yet these experiments often yield
inconsistent or difficult-to-generalize recommendations — particularly when changes in hive den-
sity do not directly correspond to changes in visitation rates, or when different studies focus on
different production metrics such as fruit set, weight, shape, or seed number (Rollin and Garibaldi,
2019).

Apples have traditionally been grown in orchards with tall (6-8 meters), widely spaced (80-100
trees per hectare), and very long-lived trees (30-50 years or more). In recent decades, production
strategies have started shifting towards more modern approaches where apples are grown in high
density plantings on trellis systems, with shorter trees and very small spacings between rows and
individual trees (Robinson et al., 2007, 2013). These high density systems bear little resemblance
to the orchards of the past, with hopes of increasing yields and lowering labor costs. Some rec-
ommendations put optimal tree height at around 3-4 meters, orchard rows at 3-4 meters apart, and
trees spaced within rows at as little as 0.7 meters, resulting in tree densities of 2-3,000 trees per

hectare or more at the high end (Robinson et al., 2013).



2.2 Data

For our empirical analysis, we leverage rich, farm-level data from the 2007 USDA Agricultural
Resource Management Survey (USDA-ARMS), which is designed to be nationally representative
as well as representative at the level of a state. The USDA National Agricultural Statistics Service
(USDA-NASS) imposes stringent conditions and restrictions on the use of its USDA-ARMS data,
including strict security measures, data confidentiality, and the required use of provided replication
weights. Qualified researchers at US universities or Government agencies can submit a formal
request to the USDA Economic Research Service (ERS) and USDA-NASS to have access granted
to USDA-ARMS data for specific research projects (USDA Economic Research Service (ERS),
2022). We accessed the USDA-ARMS data via the NORC Data Enclave.

The 2007 USDA-ARMS provides rich farm-level data from apple farmers across 207 coun-
ties and in seven US states, including: California (CA), Michigan (MI), New York (NY), North
Carolina (NC), Oregon (OR), Pennsylvania (PA), and Washington (WA). The USDA-ARMS is
designed to be nationally representative as well as representative at the level of a state. Useful data
comes from the Phase III and Phase II surveys. Phase III covers operation-level data on land, pro-
duction, and financial information. Phase II provides rich production data for a random operation
and a random block of apples within the selected operation. Data at the random apple block level
includes all the main aspects of production, including input use, costs, yield, and honey bee rental
data for the 2007 production year (roughly March-November). There are 1057 farmers who have
sufficient responses for our research, which comprises the vast majority of the farmers sampled;
Figure A.1 in the Appendix shows their distribution by state. The West Coast states in our data
set are California, Oregon, and Washington. The Midwest and East Coast states in our data set
(which we refer to collectively as the ‘Eastern’ states) are Michigan, New York, North Carolina,
and Pennsylvania.

To derive relevant data on weather covariates that might affect yield, and collect credible proxy
measures for landscape influence and local pollinator habitat (the closest proxy available for wild

pollinator stocks), we merge the 2007 USDA-ARMS data with publicly available data on weather



from PRISM (Daly et al., 2008) and remotely sensed measures of land cover from the USDA Crop-
land Data Layer (CDL) (Boryan et al., 2011). We use the closest’ and most reliable coverage year
from the CDL for each state to construct a county-level mask of apple and tree-crop producing
regions within each county. Using the resulting boundaries within each county for apple-specific
and/or tree-crop-specific regions, as well as the county boundaries themselves, we further use the
CDL to construct a variety of variables to characterize land cover heterogeneity, and also credi-
ble measures of pollinator habitat quality (Martins, Gonzalez, and Lechowicz, 2015; Park et al.,
2015), including the proportion of land area in natural forest cover and the proportion of land area
in natural open cover. We define natural open cover as the proportion of apple-specific and/or
tree-crop-specific areas within a county in any of the following cover types: clover, wildflowers,
shrubland, herbaceous wetlands, developed open space, and wetlands. We also employ the tree-
crop-specific regions and county boundaries to gather monthly precipitation and temperature data
from PRISM spanning January-November of the 2007 production (Daly et al., 2008).

Although the 2007 USDA-ARMS requested information on apple output prices, response rates
for respective questions were very low. Thus, for apple output price, we use the state-level total
utilized production price from USDA-NASS, which is a weighted average of fresh market and
processed prices. We use the state-level apple price to derive revenue estimates and approximate

profits at the random apple block level.

7 Apples are difficult to identify with high accuracy, as are tree crops, therefore classification error in annual CDL
layers induce potential for measurement error. Since tree crops are long-lived, there are unlikely to be large year-
to-year changes in cover. Therefore we adopted the following rule to construct apple- and tree-crop specific spatial
masks and gather other land cover information within county domains, and county-specific apple and tree-crop spatial
domains: use the CDL crop mask data for the timepoint closest to 2007 as possible, but if the closest year to 2007
had low cover for apples and tree-crops, use the next closest year of the CDL that had substantially higher cover for
apples and/or tree crops. The logic here is that if ARMS data imply that apple growers are present within a county,
yet the CDL does not pick up apples or tree-crops, the closest year to 2007 that shows at least some spatial footprint
for these crops is likely a more accurate spatial mapping of this agricultural activity than another year that might be
closer to 2007. Since we cannot resolve sampled farm locations in space, these boundaries are designed to reflect
the average conditions that apple growers face in their respective counties. Crops that are included in our tree crop
definition include: apples, cherries, peaches, other tree crops, pears, prunes, plums, nectarines, and apricots; citrus and
nut crops were excluded.



2.3 Patterns and Relationships in Raw Data

At an aggregate level, our data reveal significant features and structural differences in the apple
production sector that are well known to industry veterans. One prominent stylized fact in the
data is that there are notable differences between production strategies and outcomes between
apple farmers in West Coast states (California, Oregon, and Washington), and apple farmers in
Midwest and East Coast states (Michigan, New York, North Carolina, and Pennsylvania — which
we refer to collectively as the ‘Eastern’ states) — differences that reportedly have much to do with
the higher volume of production that comes from Washington State, and the higher prevalence
of plant diseases that farmers in Eastern states face, which are associated with higher moisture
(Kahlke, 2019; Biltonen, 2020). In Tables A.1-A.5 in the Appendix, we present summary statistics
of our data to highlight average values for a number of dimensions across all states, West Coast
states, and Eastern states; and test for differences in means between Western and Eastern states.
The tables show that, on average, Western operations are larger, more recently established, are
more likely to rent honey bees, are more intensively farmed (more trees per acre), use more labor
inputs, have more natural open cover, achieve higher yields, and are also more profitable ($7,220
per acre versus $3,880 per acre for Eastern states on average); while Eastern operations face higher
honey bee rental costs,® have slightly more natural forest cover, and use honey bee colonies more
intensively (more colonies per acre).

Another prominent feature in the data is that while the majority of farmers rented honey bees
(64% of Eastern farmers, 81% of Western farmers in 2007), not all farmers rented honey bees.
Not renting honey bees (or not using managed pollination) is a notable strategy as it suggests that
farmers may be relying on local wild pollination stocks.” Our data suggests that apple farmers in
Eastern states, who have slightly more natural forest cover on average, may be more likely to rely

on local wild pollination stocks.

8Wilcox et al. (2025a) show that these patterns in honey bee rental costs have remained consistent to the present
day and even become accentuated in that honey bee rental costs have increased markedly in real terms for growers in
Eastern states compared to growers in Western states.

9 Although other strategies are possible, such as locating next to an apiary, the more likely scenario is that wild
pollinators are the primary source of pollination for apple farmers who do not rent honey bees.



To delve deeper into these aggregate differences, in the Appendix we construct a range of
nested boxplots that showcase variation by state in honey bee rental quantity and costs (Figure
A.2), and farm and orchard characteristics (Figure A.3). Most growers rent between 1 to 4 colonies
per acre, though the median seems to be closer to 1-2 colonies per acre.

In Figures A.4 and A.5 in the Appendix, we see very interesting variation in production out-
comes, costs, revenues, and profits, not only by state, but also within states by whether or not a
farmer rents honey bees. Growers who rent honey bees have higher median production, and a
higher interquartile-range of production. This is particularly the case for total output in bushels per
acre and fresh market production, but less so for processed yield.!” The same observation can be
made for revenues and profits per acre. Although this simple observation is provocative, it is only
an association as it may well be the case the farmers who rent bees are farming more intensely
than farmers who do not rent bees, or some other unobserved factor may account for this structural
difference. We examine the extent to which there is genuinely a marginal gain from renting honey

bees or not in our study of yields, profits and honey bee use.

3 Methods

To study how yield and profits vary with managed pollination use, we rely on optimal binscatter

estimators from Cattaneo et al. (2024) to estimate the following semi-parametric function:
Yiset = U (xisct) + W;sct’y—}_ Eiscr (1

using the following p-th order polynomial, g-times continuously differentiable, covariate-adjusted

least-squares extended binscatter estimator:

10The distinction between fresh market yield and processed yield is fruit quality and point of sale. Fresh market
production is sold for sale in outlets like grocery stores (e.g., a box or bag of whole apples), and generally receives a
higher per unit price because the fruit is more evenly shaped and appealing to consumers. In contrast, processed yields
are sold to firms that process apples for products like apple juice, apple sauce, etc. and farmers receive lower prices
for this output because fruit is of lower quality.

10
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where y;s 1s either block-level profits or yield per acre for farmer i in state s, county c¢ in year t;
Xise: 18 the number of honey bee colonies per acre employed for pollination at the random apple
block level for farmer i in state s, county ¢ in year f; [ (xis) is some unknown function of xjs;
p is the polynomial order used; v is the desired derivative to be approximated; g is the level of
smoothness imposed across bins; wis¢ is a vector of covariates, which include measures of pro-
duction scale (trees per acre, trees per acre squared, average age of trees, and average age of trees
squared), remotely sensed land cover measures to proxy for wild bee habitat and landscape hetero-
geneity (natural forest cover, natural forest cover squared, natural open cover, natural open cover
squared),!! labor inputs (pruning/thinning hours, harvesting hours, land prep and machine hours,
pest scouting hours, and full time hours), and monthly average temperature and precipitation over
January-September (the months leading into the main harvest period); and where in some specifi-
cations we expand the model to also include state dummies for state fixed effects. The condition
g < p requires that a least squares p-th order polynomial is constructed in each bin, v refers to
the derivative of interest, and lA)SIV) reflects a spline basis to approximate ,LL(V) () (B-splines are em-
ployed). The goal is to recover the unknown function pt(x;s ), which in our case is the functional
relationship between outcome (profits or yield) y;s; and honey bee colonies per acre X;;.

We rely on semi-parametric methods developed by Cattaneo et al. (2024) in order to estimate
response functions p(xjs;), plot them with confidence bands, and estimate the respective first
and second derivatives. With estimation of the first derivative we can identify global and local
maxima of yield and profits where the first derivative is zero and the second derivative is negative.

Finally, we apply formal t-tests developed by Cattaneo et al. (2024) for the parametric form of the

T As described in more detail in Section 2.2, our natural open cover variable is the proportion of land area in natural
open cover, and our natural forest cover variable is the proportion of land area in natural forest cover. We define natural
open cover as the proportion of apple-specific and/or tree-crop-specific areas within a county in any of the following
cover types: clover, wildflowers, shrubland, herbaceous wetlands, developed open space, and wetlands.

11



response function and for shape restrictions on the first and second derivatives (i.e., monotonicity,
concavity, and convexity). For robustness, we also estimate fixed effects regression models and
employ second-order polynomials in honey bee colonies per acre and other covariates.

Cattaneo et al. (2024) are the first to formalize the ad-hoc binscatter approaches that have long
been in use and they offer a number of innovations to improve upon prior practice,!? including:
formalization within the framework of semi-linear least squares approximations (since (x) is non-
linear, Frisch-Waugh logic is not applicable); data-driven selection of the number and placement
of bins (using a data-driven rule of thumb approach, or integrated mean squared error (IMSE)
criteria); smoothness restrictions using splines (between bins); smooth confidence bands; estima-
tion of response function derivatives; and parametric (e.g., concavity) and shape restriction (e.g.,
monotonicity) t-tests.!3

We use data-driven rule of thumb bin selection and provide results for both quantile-spaced and
equally-spaced bins. Compelling arguments can be made for quantile-spaced bins perhaps being
preferable. In our setting, equally spaced bins produced more distinct value per bin, and therefore
have some appealing properties, as one element of the methods of Cattaneo et al. (2024) that
drives the data-driven approach is having sufficient degrees of freedom in regards to the number
of distinct values within bins. Integrated mean squared error (IMSE)-based bin selection rules
also have appealing properties over rule of thumb data-driven selection as potentially being more
adaptable, but they also have a higher bar for the number of distinct values within bins. For these
reasons, we opt for the data-driven rule of thumb approach and provide results for both quantile-
and equally-spaced bins for robustness.

At present, these methods are not adapted to address endogeneity beyond controlling for fixed
effects and covariate adjustment. In our setting, honey bee colonies rented per acre is arguably
exogenous to yield and profit, since honey bees are rented during the bloom period, several months

before yield and profits are realized. Thus, while farmers may base their honey bee rental decisions

12Common approaches have involved binning the regressor of interest to some ad-hoc number of bins, and then
plotting the mean of the response variable of interest within bins, while also applying residualization in the Frisch-
Waugh sense.

BImplementation software for R is known as bingsreg.

12



on expected yield and profits, their choice of honey bee colonies rented per acre is uncorrelated
with realized yield and profits and unobserved shocks to yield and profits, and therefore uncorre-
lated with the error term. Honey bee colonies per acre is also likely exogenous to yield and profits
because farmers are unable to precisely control insect pollination. Beyond placement of pallets
of colonies around orchards, little can be done to ensure honey bees pollinate crops as desired.
Indeed, any effort to directly engage with bees can result in significant harm from bee stings (a
reality clearly demonstrated by beekeepers’ extensive use of protective clothing and implements
to prevent injury when working with their colonies). Moreover, rented honey bees may end up
foraging outside of the locations they are brought to pollinate crops. For example, findings from
McArt et al. (2017) suggest that honey bees utilized for apple pollination in New York may con-
duct a significant amount of foraging in non-crop areas. Since farmers have limited control over
these potentially dangerous insects, they are unable to precisely control insect pollination. There
are therefore good reasons to view insect pollination as an exogenous process on some level, and
therefore that honey bee colonies rented per acre is uncorrelated with realized yield and profits
and unobserved shocks to yield and profits, and therefore uncorrelated with the error term. Hence,
omitted variable bias may be the larger issue and we employ a highly relevant set of controls in
Wisct (including monthly weather variation, farm labor, landscape cover measures, and farm scale
measures) and state fixed effects to mitigate this concern and control for as many factors as possible
that may affect honey bee colonies rented per acre as well as yield and profit.

Although some amount of bias may be present in our estimations, in our view, the novelty of
the opportunity to make any estimation of the functional relationship between realized farm-level
production outcomes and managed pollination outweighs concerns of bias — particularly given the
innovative tools provided by Cattaneo et al. (2024) and the novel data we collect. To assess the
stability of the relationships between colonies per acre and production outcomes, we also assess

these relationships using standard fixed effects regressions models that employ second-order poly-
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nomials in honey bee colonies per acre and other covariates.'*

4 Results

Figures 1 and 2 show estimated response curves for block-level yield (bushels/acre) and profits
($/acre), respectively, as semi-parametric functions of honey bee colonies per acre, from applying
optimal binscatter with quantile-spaced bins. Each figure presents results for the pooled sample of
all states, and for the Eastern and Western states subsamples, and range from including no covari-
ate adjustment, to covariate adjustment, to covariate-adjustment with state dummies. Therefore,
column 3 in each figure reflects the greatest degree of controls and fixed effects. Each figure also
includes a trimmed scatter between y;; (yield or profits) and x;s;, honey bees colonies rented per
acre, which excludes the 99th centile as it can make a tremendous difference in the legibility of the
figure. Results for parametric tests and shape restriction tests are provided in Tables A.6 and A.7 in
the Appendix. Table 1 presents results for fixed effects regressions of yield. Supplementary results
are provided in the Appendix for fixed effects regressions of profits (Table A.8), and alternative
versions of Figures 1 and 2 that use equally spaced bins (Figures A.6 and A.7).

The main takeaway from these empirical results are as follows. First, as is apparent in results
using either quantile-spaced bins (Figures 1 and 2), equally spaced bins (Figures A.6 and A.7),
or fixed effects regression models (Tables 1 and A.8), yield and profits are concave in honey bee
colonies per acre. For both yield and profits, the optimal number of honey bee colonies per acre
is approximately 3 to 4 for the pooled sample of all states, around 2 honey bee colonies per acre
for Eastern states, and around 4 honey bee colonies per acre for Western states. We also see that
the marginal returns for Western states for 1 additional colony per acre tends to be larger than for
Eastern states.

Second, formal parametric tests shown in Table A.6 for the pooled sample reject hypotheses

“We have explored a two-stage least squares set-up, using prior year pollination prices and/or the shift-share in-
strument employed in Wilcox et al. (2025b), as plausible instruments for honey bee colonies per acre. Unfortunately,
none of these instruments predict colonies per acre with sufficient strength to make associated tests useful.
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that the response function for yield is constant or linear in honey bee colonies per acre, but gener-
ally do not reject that the function is non-linear (quadratic or cubic). Third, in Table A.7 we see
that for the pooled sample, a monotonically decreasing (non-positive) function for yield is rejected,
and convexity is sometimes rejected, but a monotonically increasing function (non-negative) is not
rejected, and concavity is not rejected.!> Respective tests focused on the subsamples of Western
and Eastern states yield qualitatively similar results, particularly in the Western states.

A variety of additional noteworthy findings are apparent from respective fixed effects regres-
sions of yield (Table 1) and profits (Table A.8). First, results from fixed effects regressions show
that yield and profits are concave in honey bee colonies, and these relationships are highly statisti-
cally significant and economically meaningful in the pooled sample as well as in the Western states
subsample and the Eastern states subsample.

Second, in terms of relationships between yields and profits and measures of production scale,
we find that yields and profits are increasing in trees per acre in the Eastern states and concave in
trees per acre in the full sample, but trees per acre do not have a statistically significant effect on
yields or profits in the Western states. For both yields and profits, the relationship with age of trees
exhibits concavity and significance, more so than that with trees per acre.

To further explore the relationship between yield and trees per acre, Figure 3 shows the es-
timated response curve for block-level yield (bushels/acre) as a semi-parametric function of the
number of trees per acre, from applying optimal binscatter with quantile-spaced bins. Over the
range and distribution of trees per acre in our data, most values of which are less than 600 trees per
acre, yield is weakly increasing and concave in trees per acre.

Third, for labor input variables, labor prep and machine hours increase both yields and profits.
Yields also increase with harvesting hours. While pest scouting hours increase yield in both the
East and West, and increase profits in the East, they decrease profits in the West. Pruning/thinning
hours decrease yields and tend to decrease profits as well.

Fourth, we find that both yields and profits decrease with natural open cover in the Eastern

ISResults are similar when profits are the outcome of interest.
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states. It is possible that areas with more natural open cover (and hence less vegetative structure)
may have lower wild pollinator stocks suitable for apple pollination. Alternatively, areas with more
open natural cover may support apple pests.

Fifth, although the coefficients on the natural forest cover terms are not statistically significant,
our results suggest a possible concave relationship between yield and natural forest cover in East-
ern states. This is noteworthy given existing evidence for natural forests in some contexts being
sources of wild pollinator stocks which may enhance apple yield and fruit quality (Park et al.,
2015; Kammerer et al., 2016; Urban-Mead et al., 2023). To explore the durability of this finding,
we run additional fixed effects regression models for the Eastern states with alternative measures
of natural forest cover that reflect buffers of 1000 and 3000 meters around apple production areas
within counties observed in the 2007 USDA-ARMS, and find that the concave relationship holds,
albeit generally without statistical significance (Table A.9 in the Appendix). We also estimate op-
timal binscatter curves focused on yield and natural forest cover (Figure 4), which provide further
suggestive evidence that yield may be concave in natural forest cover for Eastern states.

Finally, weather covariates exhibit a variety of logical relationships with profits and yield that
are worthy of deeper analysis in subsequent research. For example, a wet May is negative and sig-
nificant for yield, which may reflect conditions that result in poor fruit set (i.e., adequate pollination
inducing fruit set is difficult in rainy conditions) as is a warm January (which can prematurely bring
trees out of dormancy). Nevertheless, since we only have a cross-section to work with for yield
and profits, we expect our weather-related findings are not capturing the full range of relationships

with weather shocks.

5 Discussion and Conclusion

Pollination-dependent agriculture is critical to food security and welfare around the world, as well
as the value chains that these production sectors underpin (Schmit et al., 2018). Knowledge of the

shape of the relationship between yields and profits and managed pollination use is therefore of
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interest to theory and practice.

Using semi-parametric optimal binscatter developed by Cattaneo et al. (2024) applied to farm-
level data on apple farmers in the US to estimate response functions relating yield and profits to
honey bee colonies per acre, we find that yield and profits are concave in managed pollination use.
Our estimated response curves also suggest that farmers in Western states experience a greater
return to the marginal honey bee colony than farmers in Eastern states.

The methods that we employ from Cattaneo et al. (2024) permit us to estimate first and second
derivatives of underlying response functions, which in turn allow us to estimate optimal honey bee
stocking densities for yield and profits. For both yield and profits, the optimal number of honey bee
colonies per acre is approximately 3 to 4 for the pooled sample of all states, around 2 honey bee
colonies per acre for Eastern states, and around 4 honey bee colonies per acre for Western states.

In contrast, according to Wilcox et al. (2025a), who calculate actual stocking densities among
those who rented honey bees in 2007-2008 as the total colonies deployed divided by the number of
bearing apple acres at the block level, the actual stocking densities for apple growers is 1.87 honey
bee colonies per acre on average at the national level, and 1.65 colonies per acre on average in
Western states, both of which are lower than the respective optimal stocking densities for the pooled
sample of all states and for Western states, respectively, suggested by our empirical analysis. For
Eastern states, Wilcox et al. (2025a) calculate actual stocking densities to be 2.22 colonies per acre
on average in 2007-2008; and 1.48 colonies per acre on average among those who rented bees in
the 2022 Northeast Apple Grower Survey, a non-representative survey designed and implemented
among apple farmers in the Northeastern US, which includes responses from 21 apple growers in
New York and 1 apple grower in Connecticut, and which focuses on the 2019-2021 production

years — both of which are more in line with the optimal stocking densities for Eastern states.'6

16The block-specific data used by Wilcox et al. (20252) to calculate actual stocking densities show much higher
stocking densities than aggregate statistics from the USDA Cost of Pollination survey suggest. For example, the
implied stocking density (ratio of colonies used to paid pollinated acres) in 2017 for Region 1 (Northeast) and Region
5 (Northwest) are 0.51 and 0.93 colonies per acres, respectively. Similarly, the implied stocking density (ratio of
colonies used to paid pollinated acres) for apple growers in 2015 is 0.70 colonies per acre (Ferrier et al., 2018).
Reasons for the discrepancy between estimated stocking densities at the regional versus block level are not precisely
known, but may reflect that regional estimates do not account for block-specific variation (Wilcox et al., 2025a).
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Thus, our results suggest that Eastern farmers may be closer to being at optimal levels of managed
pollination use than farmers in Western states, and that apple farmers in Western states may have
lower stocking densities on average than may be optimal.

Adjusting production practices into modern trellis systems to increase the number of trees per
acre (many more trees per row) seems key to the advice that farmers get from pomologists. For
example, in their simulation analysis of the effect of tree density on profits (calculated as the net
present value over 20 years) using data from orchard systems trials in New York, Robinson et al.
(2013) estimate that optimal profit-maximizing number of trees per acre would be around 1,000
trees per acre. Using a replicated field trial compared 8 tree densities ranging from 598-5382
trees per hectare (approximately 242-2178 trees per acre), Robinson (2007) finds that tree density
had a highly significant negative effect on cumulative yield per tree, but had a highly significant
positive effect on yield per hectare. Using a 2-hectare replicated field trial in New York, LLordan
et al. (2019) find that a decrease in apple yield is especially critical for profitability at densities
greater than approximately 809 trees per acre; and that the best option for ‘Empire’, ‘MclIntosh’,
and ‘Gala’ apple cultivars was a conic tree shape and approximately 809, 1012, and 1214 trees per
acre, respectively, while the best option for ‘Fuji’ was a V tree shape at approximately 405 trees
per acre.

Over the range and distribution of trees per acre in our data, most values of which are less
than 600 trees per acre, we find in our empirical analysis using farm-level data that yield is weakly
increasing and concave in the number of trees per acre. Yields and profits are increasing in trees
per acre in the Eastern states and concave in trees per acre in the full sample, but trees per acre
do not have a statistically significant effect on yields or profits in the Western states. In terms of
measures of production scale, we find that for both yields and profits, the relationship with age of
trees exhibits concavity and significance, more so than that with trees per acre.

Our finding of significant regional differences in optimal managed pollination use levels, and
differing marginal returns per marginal colony, raise questions about the underlying factors in

these agro-ecological systems that produce these divergent scenarios. Indeed, it is plausible that
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sources of wild pollination stocks from forested regions, particularly in the Eastern states, may be
providing a significant pollination subsidy to apple farmers in these states, and this may in part
explain why apple farmers in Eastern states do not see larger marginal returns for the marginal
honey bee colony. This notion is in fact consistent with our finding that yield may be concave in
natural forest cover for Eastern states. Indeed, if this hypothesis could be more rigorously tested the
implications may be significant. For example, whether and how this correlates with Conservation
Reserve Program (CRP) Pollinator Habitat Initiative (CP-42) land (USDA Farm Service Agency,
2013) may help inform program design and sustainable pollination management. Credible ways
to measure the state of wild pollination stocks at the farm level, perhaps through combinations of
remote sensing and traditional field methods from entomology, could greatly enhance such research
endeavors and provide a much clearer picture as to whether pollination dependent sectors are over-
or under-supplied from a pollination perspective.

Moving forward, we suggest that fruitful research endeavors abound to replicate the kinds of
empirical work we have accomplished in this paper with more recent data and in other pollination-
dependent sectors around the world. This type of work seems to us, critical for bridging theory
and empirical work, and placing policy-making on better footing. Gaining a better understanding
of the shape of the relationship between yields and profits and managed pollination use would
better allow pollination-dependent farmers to manage pollination resources sustainably and to find
innovative ways to resolve pollination resource needs within bioeconomy value chains (Zilberman,

Lu, and Reardon, 2019).
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Figure 1: Optimal binscatter of yield on honey bee colonies per acre.

Notes: Optimal binscatter (following Cattaneo et al. 2024) of yield in bushels per acre on the
semi-parametric function p(x), where x is honey bee colonies per acre, which is defined as the
number of honey bee colonies rented divided by selected block size in acres. Each panel trims the
99% centile of the outcome variable and honey bee colonies per acre to reduce the influence of
extreme outliers that can dramatically affect the readability of the figure. Column 1 is the optimal
binscatter of yield on honey bee colonies per acre. Column 2 includes covariate-adjustment using
the same covariates employed in the fixed effects regression models in Table 1, with the exception
of the polynomial versions of some of these variables. Column 3 employs the same model in
Column 2 but includes state dummies. These estimations employ quantile-spaced, data-driven
rule of thumb bin selection, and cubic B-splines within and between bins. Confidence bands are
based on Huber-White robust standard errors. Optimal honey bee colonies per acre are plotted
where the estimated first derivative (in red) of the response function equals zero and the response
function is at a global (or local) maximum. Second derivatives are also plotted in dark blue.
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Figure 2: Optimal binscatter of profits on honey bee colonies per acre.
Notes: Optimal binscatter (following Cattaneo et al. 2024) of profits in dollars per acre on the
semi-parametric function p(x), where x is honey bee colonies per acre, which is defined as the

number of honey bee colonies rented divided by selected block size in acres. Each panel trims the

99% centile of the outcome variable and honey bee colonies per acre to reduce the influence of

extreme outliers that can dramatically affect the readability of the figure. Column 1 is the optimal

binscatter of yield on honey bee colonies per acre. Column 2 includes covariate-adjustment using
the same covariates employed in the fixed effects regression models in Table 1 and Table A.8 in

the Appendix, with the exception of the polynomial versions of some of these variables. Column
3 employs the same model in Column 2 but includes state dummies. These estimations employ
quantile-spaced, data-driven rule of thumb bin selection, and cubic B-splines within and between
bins. Confidence bands are based on Huber-White robust standard errors. Optimal honey bee
colonies per acre are plotted where the estimated first derivative (in red) of the response function
equals zero and the response function is at a global (or local) maximum. Second derivatives are

also plotted in dark blue.
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Table 1: Weighted fixed effects regressions of yield.

Dependent variable is block-level apple yield (bushels/acre)

&) (2 3)
Honey bee colonies per acre
honey bee colonies per acre 113.827*  151.587*** 72.599***
(19.814) (40.690) (21.606)
honey bee colonies per acre, squared -11.412%* -14.022** -6.266*
(3.166) (7.071) (3.231)
Measures of production scale
trees per acre 0.135 -0.189 0.681**
(0.142) (0.216) (0.316)
trees per acre, squared -0.0002* -0.00001 -0.001
(0.0001) (0.0002) (0.0005)
average age of trees 10.354*** 8.085** 16.431%**
(2.270) (3.384) (3.164)
average age of trees, squared -0.115% -0.079 -0.156***
(0.033) (0.048) (0.047)
Labor input variables
pruning/thinning hours -0.058** -0.037* -0.113*
(0.018) (0.022) (0.060)
harvesting hours 0.068*** 0.037* 0.109*
(0.014) (0.020) (0.056)
land prep and machine hours 0.237** 0.250* 0.566™*
(0.104) (0.130) (0.256)
pest scouting hours 0.140%* 0.139%* 0.627**
(0.040) (0.049) (0.285)
part-time and seasonal hours 0.002 -0.0005 -0.002
(0.011) (0.014) (0.052)
full-time hours 0.076™** 0.063** 0.048
(0.023) (0.028) (0.073)
Land cover variables
natural forest cover -206.976 -302.344 753.911
(185.996) (410.748) (725.909)
natural forest cover, squared 136.535 338.777 -1,023.746
(248.506) (737.830) (638.490)
natural open cover -155.258 -1,198.461 -3,358.664**
(523.749)  (1,313.433)  (1,689.764)
natural open cover, squared -617.708 337.864 6,979.986

(592.730)  (1,455.729)  (5,287.149)

Weather variables

Jan. average precipitation (mm) -39.953 7.821 -38.140
(29.698) (115.938) (45.761)
Jan. average temperature (C) -110.144™** -44.144 -205.052***
(33.321) (104.820) (75.385)
Feb. average precipitation (mm) 5.566 -70.791 190.787***
(14.415) (49.702) (44.533)
Feb. average temperature (C) 63.302 -123.693 141.195*
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(49.111) (173.119) (79.342)

Mar. average precipitation (mm) 16.192 47.274 -183.174**
(28.688) (115.939) (56.775)
Mar. average temperature (C) 21.030 68.415 145.733*
(50.696) (265.108) (75.717)
Apr. average precipitation (mm) 25.779 175.775 39.080
(29.619) (226.342) (32.462)
Apr. average temperature (C) 43.625 -170.414 -91.581
(62.759) (299.294) (85.800)
May average precipitation (mm) -102.598** -342.737 -51.362
(45.988) (270.795) (47.461)
May average temperature (C) -18.891 8.818 121.719
(59.173) (167.749) (103.157)
Jun. average precipitation (mm) -58.869* 292.158* -5.309
(34.875) (158.164) (35.290)
Jun. average temperature (C) -20.554 107.831 -29.398
(55.336) (201.115) (122.010)
Jul. average precipitation (mm) -90.059** -212.676 -77.793*
(35.390) (296.091) (37.383)
Jul. average temperature (C) 84.927 -219.324 92.001
(55.238) (241.996) (97.469)
Aug. average precipitation (mm) 19.343 S777.911 -12.973
(19.609) (538.103) (25.668)
Aug. average temperature (C) -76.167 19.837 -179.321*
(58.301) (146.328) (96.254)
Sep. average precipitation (mm) 130.882*** -59.591 98.825"*
(44.423) (190.032) (43.530)
Sep. average temperature (C) 19.746 294.640* 37.583
(63.689) (1723.387) (107.264)
State fixed effects Y Y Y
Sample All West East
Adjusted R? 0.311 0.326 0.352
# Observations 998 448 550

Notes: Table presents results from weighted fixed effects regressions of block-level yield in bushels per acre
regressed on honey bee colonies per acre, block characteristics, labor inputs, monthly average temperature and
precipitation (Jan-Sept), and remotely sensed land cover measures to proxy for wild bee habitat and landscape
heterogeneity. Specifications use observations from all states (‘All’), the Western states subsample (‘West’), and
the Eastern states subsample (‘East’), respectively. Huber-White robust standard errors are in parentheses. Signif-
icance codes: ***p < 0.01; **p < 0.05; *p < 0.1
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Figure 3: Optimal binscatter of yield on trees per acre.
Notes: Optimal binscatter (following Cattaneo et al. 2024) of yield in bushels per acre on the
semi-parametric function p(x), where x is number of trees per acre. Each panel trims the 99%
centile of the outcome variable and honey bee colonies per acre to reduce the influence of extreme
outliers that can dramatically affect the readability of the figure. Column 1 is the optimal
binscatter of yield on number of trees per acre. Column 2 includes covariate-adjustment using the
same covariates employed in the fixed effects regression models in Table 1, with the exception of
the polynomial versions of some of these variables. Column 3 employs the same model in
Column 2 but includes state dummies. These estimations employ quantile-spaced, data-driven
rule of thumb bin selection, and cubic B-splines within and between bins. Confidence bands are

based on Huber-White robust standard errors.
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Figure 4: Optimal binscatter of yield on natural forest cover.

Notes: Optimal binscatter (following Cattaneo et al. 2024) of yield in bushels per acre on the
semi-parametric function p(x), where x is the county-level proportion in natural forest cover.
Each panel trims the 99% centile of the outcome variable and honey bee colonies per acre to
reduce the influence of extreme outliers that can dramatically affect the readability of the figure.
Column 1 is the optimal binscatter of yield on natural forest cover. Column 2 includes
covariate-adjustment using the same covariates employed in the fixed effects regression models in
Table 1, with the exception of the polynomial versions of some of these variables. Column 3
employs the same model in Column 2 but includes state dummies. These estimations employ
quantile-spaced, data-driven rule of thumb bin selection, and cubic B-splines within and between
bins. Confidence bands are based on Huber-White robust standard errors.
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