
Organic Farming, Soil Health, and Farmer Perceptions:

A Dynamic Structural Econometric Model

Michael A. Meneses, Miguel I. Gómez, David R. Just,
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Abstract

New insights from soil science show that the use of pesticides can be harmful to beneficial soil
microbes that improve agricultural yields. Farmers may not be fully aware of soil microbiomes,
however, and as a consequence, may not be making optimal decisions about pesticide use and
organic farming adoption. In this paper, we develop and estimate a dynamic structural econometric
model to examine whether farmers are aware of and account for soil microbiomes and the feedback
between pesticides, soil health, pest resistance, and crop yields when making their decisions about
pesticide use and organic farming adoption. Empirical results show that farmers are acting as
if the clean soil stock has very little effect on crop yields, when in fact it increases yields. Our
structural estimates allow us to simulate a number of key outcomes of interest, including pesticide
use and farmer welfare under counterfactual scenarios in which farmers’ beliefs about soil-microbe
based ecosystem services are brought in line with findings from plant and soil sciences. We find
that informing farmers about soil microbiomes decreases pesticide use, increases organic adoption,
and increases mean farmer welfare in both the short and long run.
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1 Introduction

Soil microbes benefit agricultural production and improve agricultural yields by enhancing crop

nutrient use, stress tolerance, and pest resistance (Singh et al., 2016; Lori et al., 2017; Yadav et al.,

2017; Yibeltie and Sahile, 2018; Blundell et al., 2020; Kalam et al., 2020; Verma et al., 2020; Righini

et al., 2022; Thiebaut et al., 2022). New insights from soil science show that the use of synthetic

pesticides and fertilizers can be harmful to these beneficial soil microbes (Li et al., 2022; Blundell

et al., 2020; Dash et al., 2017; Lori et al., 2017; Newman et al., 2016; Kalia and Gosal, 2011; Lo,

2010; Hussain et al., 2009). Thus, while using pesticides and fertilizers may have the initial effect

of increasing crop yields, over time these synthetic compounds exert an indirect negative effect on

crop yields through their negative effects on soil health. In contrast, organic farming and other

production regimes like regenerative agriculture that reduce dependence on synthetic compounds

enhance microbial health and, thus, may lead to higher yields in the long run. These insights have

important implications for a farmer’s optimal strategy regarding synthetic compound use and organic

farming adoption (Meneses et al., 2024).

Farmers may not be fully aware of soil microbiomes and the feedback between synthetic compounds,

soil health, pest resistance, and crop yields, however, and as a consequence, may not be making

optimal decisions about synthetic compound use and organic farming adoption. Previous theoretical

research by Meneses et al. (2024) has shown that not being informed about soil bacteria could

change behavior in a way that leads farmers to adopt sub-optimal, and even detrimental management

practices. Previous experimental analysis by Murphy et al. (2020) has shown that farmers in developing

countries usually do not have sufficient information about their soil nutrient levels to make profit-

maximizing decisions about fertilizer usage; and that there can be potentially large net benefits to

providing farmers with soil information.

In this paper, we develop and estimate a dynamic structural econometric model to examine

whether farmers are aware of and account for soil microbiomes and the feedback between pesticides,

soil health, pest resistance, and crop yields when making their decisions about pesticide use and

organic farming adoption. To do so, we first empirically document the insights from soil science

that the use of pesticides may increase contemporaneous yields; and also that, over time, not using

pesticides increases yields.

Next, in order to understand the beliefs and perceptions of rice farmers that underlie and rationalize

their pesticide use decisions, we develop and estimate a dynamic structural econometric model. The

structural parameters we estimate include parameters measuring any misperceptions farmers may

have about how enhancing microbial health may affect yields. Our structural parameter estimates

therefore enable us to infer farmers’ current understanding of the interrelations between soil microbes,

pesticides, and crop yields.

Our structural estimates also allow us to simulate a number of key outcomes of interest, including

pesticide use and farmer welfare under counterfactual scenarios in which farmers’ beliefs about soil-
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microbe based ecosystem services are brought in line with findings from plant and soil sciences. In

particular, we run counterfactual simulations to compare a base simulation of actual behavior under

farmer misperception, with a counterfactual simulation of optimal behavior under full information.

Empirical results show that farmers are acting as if the clean soil stock has very little effect on

crop yields, when in fact it increases yields. Results of counterfactual simulations show that informing

farmers about soil microbiomes and the feedback between pesticides, soil health, pest resistance, and

crop yields will decrease pesticide use and increase organic adoption, will increase farmers’ net present

value (PDV of the entire stream of per-period profits) in the long run, and increases increase farmers’

net present value on average in the short run.

2 Literature Review

Our paper builds on several strands of literature. First, our paper builds on the literature on the

relationship between pesticide use and farm production and profit. Chambers, Karagiannis, and

Tzouvelekas (2010) shows pesticide use as increasing returns to quasi-fixed factors of production

like capital and land. In contrast, Jacquet, Butault, and Guichard (2011) use a mathematical

programming model to determine whether pesticide use can be reduced without affecting farmer

income and find that a up to a 30 percent reduction is possible.

Second, our paper builds on the literature on soil health. Sexton, Lei, and Zilberman (2007)

acknowledge the effect that pesticide use can have on soil health through its impact on soil microbiomes.

Kalia and Gosal (2011) also document the damaging effects that the application of pesticides in

conventional farming has on soil microorganisms that benefit plant productivity. Jaenicke and

Lengnick (1999) estimate a soil-quality index consistent with the notion of technical efficiency. van

Kooten, Weisensel, and Chinthammit (1990) use a dynamic model that explicitly includes soil quality

in the grower’s utility function and the trade-off between soil quality (which may decline due to

erosion) and net returns. Meneses et al. (2024) develop a dynamic bioeconomic model of a farmer’s

decisions regarding the use of synthetic compounds (e.g., synthetic fertilizers and pesticides) and

the transition from conventional to organic management, accounting for the interrelationships among

synthetic compound use, soil health, and crop yields.

Our paper also builds on the literature on dynamic structural econometric modeling. The seminal

dynamic structural econometric model developed by Rust (1987, 1988) has been adapted for many

applications, including bus engine replacement (Rust, 1987), nuclear power plant shutdown (Rothwell

and Rust, 1997), water management (Timmins, 2002), agricultural land use (Scott, 2013), agricultural

disease control (Carroll et al., 2024a), durable goods (Gowrisankaran and Rysman, 2012; Rapson,

2014), wind turbine shutdowns and upgrades (Cook and Lin Lawell, 2020), copper mining (Aguirregabiria

and Luengo, 2016), supply chain externalities (Carroll et al., 2024b), environmental regulations

(Blundell, Gowrisankaran, and Langer, 2020), technology adoption (Oliva et al., 2020), agricultural

groundwater management (Sears, Lin Lawell, and Walter, 2024; Sears et al., 2024b,a), the adoption
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of rooftop solar photovoltaics (Feger, Pavanini, and Radulescu, 2020; Langer and Lemoine, 2018),

vehicle scrappage programs (Li, Liu, and Wei, 2022), agricultural productivity (Carroll et al., 2019),

organ transplant decisions (Agarwal et al., 2021), consumer stockpiling (Ching and Osborne, 2020),

pest management (Yeh, Gómez, and Lin Lawell, 2024), forests (Araujo, Costa, and Sant’Anna, 2020;

Wu et al., 2024), grapes (Sambucci, Lin Lawell, and Lybbert, 2024), and vehicle ownership and usage

(Gillingham et al., 2021).

3 Empirical Application

3.1 Rice Farmers in California

For the empirical application, we wanted to consider a crop for which a farmer who was fully informed

about soil microbiomes and the feedback between pesticides, soil health, pest resistance, and crop

yields would plausibly adopt a pesticide use and organic adoption strategy that greatly differs from

that of farmer who was unaware of soil microbes.

We found documentation suggesting that a pesticide commonly used by rice growers, thiobencarb

(a pre-emergence herbicide used to control grasses, sedge, and broadleaf weeds around rice crops)

may be fairly harmful to certain nitrogen-fixing cyanobacteria that help maintain soil fertility and

support crop yields (Dash et al., 2017).

As consequence, a rice farmer who is knowledgeable about soil microbes and the interactions

between pesticide use, soil health, and crop yields may invest in and maintain a non-zero amount of

clean soil stock, while one who is unaware of soil microbes may not.

We focus in particular on rice farmers in California. California is the second largest rice-producing

state behind Arkansas, producing about $900 million in production value per year (Smith, 2023).

Most California rice is medium-grain japonica rice, which is used in Asian and Mediterranean dishes

such as sushi, paella, and risotto (Smith, 2023), and the majority of California rice is grown in

the Sacramento Valley, where hot days, cool nights, and clay soil that retains moisture create ideal

conditions for growing japonica rice (USA Rice, 2020).

3.2 National Organic Program

In the United States, the National Organic Program (NOP), which is directed by the U.S. Department

of Agriculture (USDA) Agricultural Marketing Service (AMS) and became effective on February 20,

2001, oversees and enforces the integrity of the rigorous USDA organic standards and the accreditation

of organic certifiers (USDA Agricultural Marketing Service, 2000b; Organic Produce Network, 2022).

Organic is one of the most heavily regulated and closely monitored food systems in the U.S. Any

product labeled as organic must be USDA certified (Organic Produce Network, 2022). The National

Organic Program establishes national standards for the production and handling of organically

produced products, including a National List of substances approved for and prohibited from use
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in organic production and handling; as well as requirements for labeling products as organic and

containing organic ingredients (USDA Agricultural Marketing Service, 2000b).

The organic production and handling requirements of the National Organic Program include the

requirement that the field or farm parcel must have had no prohibited substances applied to it for a

period of 3 years immediately preceding harvest of the crop (USDA Agricultural Marketing Service,

2000a).

3.3 Data

We use farmer-field-level pesticide use data from the California Department of Pesticide Regulation

(DPR) Pesticide Use Reporting (PUR) database (California Department of Pesticide Regulation [CA

DPR], 2024). This data includes information about whether unapproved (or prohibited) pesticides

were applied on a given farmer-field in a given year. Thus, in this paper we use the terms ’unapproved

pesticide’, ’synthetic pesticide’, and ’pesticide’ synonymously.

For crop yield data, we use county-level rice yield data from the U.S. Department of Agriculture

(USDA) National Agricultural Statistics Service (NASS) Quick Stats (U.S. Department of Agriculture

[USDA], 2024).

For price data, we obtain data on conventional and organic rice prices from the USDA NASS

Organic Production Survey (U.S. Department of Agriculture [USDA], 2007, 2012, 2017), the USDA

NASS Certified Organic Survey (U.S. Department of Agriculture [USDA], 2023), the University of

California Rice Research and Information Center (UC Rice Research and Information Center, 2023),

and the University of California at Davis Cost and Return Studies (Espino et al., 2021). From these

sources, we obtain annual data on conventional and organic rice prices for 10 years (2005, 2008-2012,

2014-2016, and 2019). We convert prices to real prices in 2010 USD using the consumer price index

from the Federal Reserve Bank of Minneapolis (Federal Reserve Bank of Minneapolis, 2024). Figure 1

plots the annual real conventional rice price. Figure 2 plots the real organic price premium
Porg−Pcon

Porg
,

as calculated using the real conventional price Pcon and the real organic price Porg.
1

We focus on farmer-fields in the CA DPR PUR data set that plant rice at least once during the 10

years for which we have conventional and organic rice price data. There are 17,695 such farmer-fields

that plant rice, comprising 2,101 farmers2 and spanning 15 counties. These 15 counties are: Butte,

Colusa, Fresno, Glenn, Lassen, Merced, Placer, Sacramento, San Joaquin, Solano, Stanislaus, Sutter,

Tehama, Yolo, and Yuba. In the annual farmer-field-level panel data set we use for our dynamic

structural econometric model, which spans the 10 years for which we have conventional and organic

1As explained in more detail in Section 6, the horizontal grey lines in the figures indicate the cutoffs used to discretize
our price variables for use in our dynamic structural econometric model.

2There are 2,101 unique grower ID’s. This grower ID variable is as close as we can get to observing the unique farmers,
though the identifier is not perfect. The California Department of Pesticide Regulation (DPR) does not guarantee that
2,101 unique grower IDs means that 2,101 unique farmers appear in the data. This is because farmers can be assigned
new ID’s if a county ag commissioner decides to do so, or loses track of old ID numbers, and old ID numbers can in
theory be reassigned to new farmers once the previous farmer retires. In the conversations we have had with employees
at California’s county commissioners offices though, they indicated that cases like this are rare, and not the norm.
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rice prices (2005, 2008-2012, 2014-2016, and 2019), there are 67,230 farmer-field-year observations.

Among the farmer-fields that plant rice at least once during the 10 years of the annual farmer-

field-level panel data set we use for our dynamic structural econometric model, in any given year that

farmer-field may or may not plant rice, and may or may not use an (unapproved) pesticide. Thus,

the possible actions ait for each rice farmer-field in each year are: (1) plant rice and use pesticide

(ait = RC), (2) plant rice and do not use pesticide that year (ait = RN), (3) do not plant rice that

year and use pesticide that year (ait = OC), and (4) do not plant rice and do not use pesticide that

year (ait = ON). Table 1 presents the distribution of ait in the data.

We also include as a state variable the clean soil stock kit as measured by the number of previous

consecutive years the farmer has not used any (unapproved) pesticide. In particular, the clean soil

stock kit is equal to 0 if the rice farmer used an unapproved synthetic pesticide the previous year,

1 if the rice farmer did not use an unapproved synthetic pesticide the previous year but used an

unapproved synthetic pesticide two years ago, 2 if the rice farmer did not use an unapproved synthetic

pesticide the previous two years but used an unapproved synthetic pesticide three years ago, and 3 if

the rice farmer did not use an unapproved synthetic pesticide for the previous three years but used

an unapproved synthetic pesticide four years ago, and so on. Table 2 presents summary statistics for

the clean soil stock kit in the data; Table 3 presents the distribution of the clean soil stock kit in the

data.
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Figure 1: Real Conventional Rice Price

Note: Horizontal dashed grey line indicates cutoff used to discretize real conventional rice price.

Data Sources: USDA NASS Organic Production Survey (U.S. Department of Agriculture [USDA],
2007, 2012, 2017), USDA NASS Certified Organic Survey (U.S. Department of Agriculture [USDA],
2023), University of California Rice Research and Information Center (UC Rice Research and
Information Center, 2023), and University of California at Davis Cost and Return Studies (Espino
et al., 2021). We convert prices to real prices in 2010 USD using the consumer price index from the
Federal Reserve Bank of Minneapolis (Federal Reserve Bank of Minneapolis, 2024).
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Figure 2: Real Organic Rice Price Premium

Notes: The real organic price premium is given by
Porg−Pcon

Porg
, where Pcon is the real conventional price

and Porg is the real organic price. Horizontal dashed grey lines indicate cutoffs used to discretize real
organic rice price premium.

Data Sources: USDA NASS Organic Production Survey (U.S. Department of Agriculture [USDA],
2007, 2012, 2017), USDA NASS Certified Organic Survey (U.S. Department of Agriculture [USDA],
2023), University of California Rice Research and Information Center (UC Rice Research and
Information Center, 2023), and University of California at Davis Cost and Return Studies (Espino
et al., 2021). We convert prices to real prices in 2010 USD using the consumer price index from the
Federal Reserve Bank of Minneapolis (Federal Reserve Bank of Minneapolis, 2024).
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Table 1: Distribution of Action ait

Action ait Frequency Percent

ait = RC Plant rice and use pesticide that year 61,890 92.06

ait = RN Plant rice and do not use pesticide that year 1,355 2.02

ait = OC Do not plant rice that year and use pesticide that year 3,931 5.85

ait = ON Do not plant rice and do not use pesticide that year 54 0.08

Notes: Each observation is a farmer-field-year. There are 67,230 farmer-field-year observations. There are 17,695 farmer-
fields in the data set, comprising 2,101 farmers and spanning 15 counties. By ’pesticide’, we mean ’unapproved synthetic
pesticide’.

Data Source: CA DPR PUR (California Department of Pesticide Regulation [CA DPR], 2024).
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Table 2: Summary Statistics for Clean Soil Stock kit

Mean Std. Dev. Min Max # Obs

# Previous consecutive years no pesticide was used 0.3619 1.3736 0 26 67,230

Notes: Each observation is a farmer-field-year. There are 67,230 farmer-field-year observations. There are 17,695 farmer-fields in the
data set, comprising 2,101 farmers and spanning 15 counties. By ’pesticide’, we mean ’unapproved synthetic pesticide’.

Data Source: CA DPR PUR (California Department of Pesticide Regulation [CA DPR], 2024).
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Table 3: Distribution of Clean Soil Stock kit

Clean Soil Stock kit Frequency Percent

0 55,973 83.26
1 7,452 11.08
2 1,508 2.24
3 912 1.36
4 317 0.47
5 204 0.30
6 152 0.23
7 125 0.19
8 97 0.14
9 80 0.12
10 67 0.10
11 62 0.09
12 63 0.09
13 48 0.07
14 42 0.06
15 34 0.05
16 23 0.03
17 16 0.02
18 19 0.02
19 11 0.02
20 9 0.01
21 5 0.01
22 5 0.01
23 4 0.01
24 1 0.00
25 0 0.00
26 1 0.00

Notes: Clean soil stock kit is measured by the number of previous consecutive years the farmer has
not used any unapproved synthetic pesticide. Each observation is a farmer-field-year. There are
67,230 farmer-field-year observations. There are 17,695 farmer-fields in the data set, comprising
2,101 farmers and spanning 15 counties.

Data Source: CA DPR PUR (California Department of Pesticide Regulation [CA DPR], 2024).
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4 Production Function

We first estimate a production function in order to empirically assess whether soil microbes do indeed

matter for rice. Our production function also serves as an input into our dynamic structural model.

The production function ln q(·) for the log of rice yield yit is given by:

ln yit = ln q(cit, kit;α) = α0 + αccit + αkkit, (1)

where yit is the rice yield in hundredweights (CWT); cit is a dummy variable for farmer i using an

unapproved synthetic pesticide in year t; and kit is the clean soil stock as measured by the number of

previous consecutive years the farmer has not used any unapproved synthetic pesticide. In particular,

the clean soil stock kit is equal to 0 if the rice farmer used an unapproved synthetic pesticide the

previous year, 1 if the rice farmer did not use an unapproved synthetic pesticide the previous year but

used an unapproved synthetic pesticide two years ago, 2 if the rice farmer did not use an unapproved

synthetic pesticide the previous two years but used an unapproved synthetic pesticide three years

ago, and 3 if the rice farmer did not use an unapproved synthetic pesticide for the previous three

years but used an unapproved synthetic pesticide four years ago, and so on.

Since yield data is only available at the county level, not the farmer-field level, we estimate the

production function using county averages, where each observation is a county-year in which data on

rice yield per farmer-yield growing rice data is available. In particular, we regress log rice yield per

farmer-field growing rice in a county-year on the fraction of farmer-fields growing rice in a county-

year who applied an unapproved synthetic pesticide that year and the average over farmer-fields

growing rice in a county-year of the number of previous consecutive years the farmer has not used

any unapproved synthetic pesticide. Because the variables in the regression reflect means rather than

individual observations, the appropriate method of estimation is analytically weighted least squares

(Davidson and MacKinnon, 2004), where the weight is the number of farmer-fields in the county-year.

We therefore use inverse variance weights that weight counties with more farmers more heavily.

We estimate two types of specifications of our production function. ’Misperception’ specifications

do not account for soil microbes, and therefore do not include any regressor relating to the clean soil

stock kit. ’Full Information’ specifications account for soil microbes, and therefore include a regressor

relating the clean soil stock kit, the average over farmer-fields growing rice in a county-year of the

number of previous consecutive years the farmer has not used any unapproved synthetic pesticide.

Summary statistics for the annual county-level variables we use to estimate our production function

are presented in Table 5. We use data from 1990-2019. We start in 1990 since reporting was not

mandatory in 1989. There are 15 counties with data for at least one year over 1990-2019. The county-

level yield variable reports rice yields in hundredweights (CWT). In North America, 1 hundredweight

equals 100 pounds (U.S. Department of Agriculture [USDA], 1992).

Results for our true ’Full Information’ production function estimation are in Table 5. As expected,

αc is significant and positive in the ’Full Information’ specifications, which means that, in actuality,
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when accounting for soil microbes, the contemporaneous use of an unapproved synthetic pesticide has

a positive effect on yield that year. In addition, consistent with recent insights from soil science that

show the important of soil microbes and a clean soil stock, αk is significant and positive in the ’Full

Information’ specifications, which means that yields are higher the more previous consecutive years

the farmer has not used any unapproved synthetic pesticide.

Results for our ’Misperception’ production function estimation are in Table 6. As expected, in

the ’Misperception’ specifications, αc is significant and positive, which means that farmers who do

not account for soil microbes perceive that using an unapproved synthetic pesticide that year has a

positive effect on yield.
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Table 4: Summary Statistics for Production Function Estimation, 1990-2019

Mean Std. Dev. Min Max # Obs

Number of farmer-fields growing rice in county-year 553.50 591.91 1 2,522 325

Rice yield (CWT) per farmer-field growing rice in county-year 6,731 3,661 1,145 53,000 325

Fraction of farmer-fields growing rice in county-year who
applied pesticide that year

0.9580 0.1269 0 1 325

Average over farmer-fields growing rice in county-year of
# previous consecutive years no pesticide was used

0.3116 0.9024 0 10.2500 325

Notes: Each observation is a county-year. We use data from 1990-2019. There are 15 counties with data for at least one year over
1990-2019. In North America, 1 hundredweight equals 100 pounds (U.S. Department of Agriculture [USDA], 1992). By ’pesticide’, we
mean ’unapproved synthetic pesticide’.

Data Sources: CA DPR PUR (California Department of Pesticide Regulation [CA DPR], 2024), USDA NASS Quick Stats (U.S.
Department of Agriculture [USDA], 2024).
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Table 5: True ’Full Information’ Production Function

Dependent variable is: Log of rice yield (CWT)

Parameter Regressor (1) (2)

αc Use pesticide 3.757∗∗∗ 4.032∗∗∗

(0.503) (0.444)
αk # Previous consecutive years no pesticide was used 0.400∗∗∗ 0.367∗∗∗

(0.0675) (0.0541)
α0 Constant 4.983∗∗∗ 4.280∗∗∗

(0.496) (0.469)

County Fixed Effects N Y

# Observations 325 325
# Counties 15 15
R-squared 0.185 0.521

Notes: Standard errors in parentheses. Each observation is a county-year. We use data from 1990-2019.
Inverse variance weights that weight counties with more farmers more heavily are used. By ’pesticide’,
we mean ’unapproved synthetic pesticide’. Since yield data is only available at the county level, not the
farmer-field level, we estimate the production function using county averages, where each observation is a
county-year in which data on rice yield per farmer-yield growing rice data is available. In particular, we
regress log rice yield per farmer-field growing rice in a county-year on the fraction of farmer-fields growing
rice in a county-year who applied an unapproved synthetic pesticide that year and the average over farmer-
fields growing rice in a county-year of the number of previous consecutive years no unapproved synthetic
pesticide was used. ’Full Information’ specifications account for soil microbes, and therefore include as a
regressor the average over farmer-fields growing rice in a county-year of the number of previous consecutive
years no unapproved synthetic pesticide was used. In North America, 1 hundredweight equals 100 pounds
(U.S. Department of Agriculture [USDA], 1992). Significance codes: *** p<0.001, ** p<0.01, * p<0.05
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Table 6: ’Misperception’ Production Function

Dependent variable is: Log of rice yield (CWT)

Parameter Regressor (1) (2)

αc Use pesticide 3.012∗∗∗ 3.473∗∗∗

(0.513) (0.467)
α0 Constant 5.789∗∗∗ 4.885∗∗∗

(0.502) (0.493)

County Fixed Effects N Y

# Observations 325 325
# Counties 15 15
R-squared 0.097 0.449

Notes: Standard errors in parentheses. Each observation is a county-year. We use data from 1990-2019.
Inverse variance weights that weight counties with more farmers more heavily are used. By ’pesticide’,
we mean ’unapproved synthetic pesticide’. Since yield data is only available at the county level, not the
farmer-field level, we estimate the production function using county averages, where each observation is
a county-year in which data on rice yield per farmer-yield growing rice data is available. In particular,
for the ’Misperception’ specifications, which do not account for soil microbes, we regress log rice yield per
farmer-field growing rice in a county-year on the fraction of farmer-fields growing rice in a county-year
who applied an unapproved synthetic pesticide that year. In North America, 1 hundredweight equals 100
pounds (U.S. Department of Agriculture [USDA], 1992). Significance codes: *** p<0.001, ** p<0.01, *
p<0.05
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5 Dynamic Structural Model

To understand the beliefs and perceptions of rice farmers that underlie and rationalize their pesticide

use decisions as revealed in the data, we develop and estimate a dynamic structural econometric

model.

The vector of structural parameters θ we estimate include parameters that measure any farmer

misperception of how the use of pesticides and the stock of clean soil affect yield; and parameters

in the cost function. Our structural parameter estimates therefore enable us to infer California rice

farmers’ current understanding of the interrelations between soil microbes, pesticides, and crop yields.

Each year t, each rice farmer i chooses an action ait ∈ A. The possible actions for each rice

farmer in each year are (1) planting rice and using pesticide (ait = RC), (2) planting rice and not

using pesticide that year (ait = RN), (3) not planting rice that year and using pesticide that year

(ait = OC), and (4) not planting rice and not using pesticide that year (ait = ON). Table 1 presents

the distribution of ait in the data.

The per-period payoff u(·) to a farmer from choosing action ait at time t depends on the values of

the state variables sit at time t. The state variables sit at time t include the (discretized) conventional

rice price Pcon,t, the (discretized) organic rice price Porg,t, and the clean soil stock kit as measured by

the number of previous consecutive years the farmer has not used pesticide.

In particular, the clean soil stock kit is equal to 0 if the rice farmer used pesticide the previous

year, 1 if the rice farmer did not use pesticide the previous year but used pesticide two years ago, 2

if the rice farmer did not use pesticide the previous two years but used pesticide three years ago, and

3 if the rice farmer did not use pesticide for the previous three years but used pesticide four years

ago, and so on. Table 2 presents summary statistics for the clean soil stock kit in the data; Table 3

presents the distribution of the clean soil stock kit in the data. For the structural model, we cap kit

at 15. In other words, if the rice farmer did not use pesticide for the previous 15 years or more, then

kit = 15. When cit = 0, the yield as given by the first-stage production function in Specification (1)

from Table 5 when kit = 14 and kit = 15 is 39,458.31 CWT and 58,864.88 CWT, respectively, which

is below and above the maximum yield in the data of 53,000 CWT (Table ). Thus, we cap kit at

kit = 15 so that when a farmer choose not to use pesticide for many years, the yield does not continue

to increase indefinitely far beyond the range of yield in the data.

The farmer’s perceived yield (or quantity) q̆(cit, sit; θ) from planting rice is given by:

q̆(cit, sit; θ) = exp (ln q(cit, kit; α̂) + γccit + γkkit) , (2)

where cit is a dummy variable for farmer i using pesticide in year t, kit is the clean soil stock defined

above, q(cit, kit; α̂) is the estimated yield as given from the production function estimated in the

first stage (given by Specification (1) from Table 5), and α̂ are the production function parameter

estimates from the first-stage production function estimation in Specification (1) from Table 5. For
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our structural model, yield (or quantity) and perceived yield are in units of 1 million pounds.3

The structural parameters θ to be estimated include γc, which measures any misperception of how

the use of pesticide cit affects log yield; and γk, which measures any misperception of how the clean

soil stock kit affects log yield.

We use the term ’misperception in yield’ to describe the difference between the perceived yield

(or quantity) q̆(·) that rationalizes the data and the estimated ’true’ yield q(·). This ’misperception

in yield’ can encapsulate any of a number of reasons why the yield q̆(·) that rationalizes the decisions
made by farmers as revealed in the data may differ from the estimated ’true’ yield q(·), including
farmers not being fully aware of soil microbes and their interactions with pesticide use and yields,

farmers being uncertain about soil microbes and their interactions, and farmers behaving suboptimally.

Our structural parameters γc and γk capture the portion of this ’misperception in yield’ that can be

explained by the use of pesticide cit and the clean soil stock kit, respectively. Thus, the ’misperceptions’

that the structural parameters γ = (γc, γk) measure broadly encompasses a broad set of possible

phenonema, including misperception, misunderstanding, lack of information, and uncertainty.

The structural parameters γc and γk are identified from variation in the use of pesticide cit, the

clean soil stock kit, and organic adoption among farmers who plant rice, and variation in the use of

pesticide cit and the clean soil stock kit between farmers who do and do not plant rice.

We assume the cost of planting rice is given by the following rice production cost function

cost(c, q; θ):

cost(cit, q̆it; θ) = κccit + κ1q̆it + κcqcitq̆it + κ2q̆
2
it + κcq2citq̆

2
it, (3)

where the cost parameters κ = (κc, κ1, κcq, κ2, κcq2) are among the structural parameters to be

estimated.

If farmer i plants rice and uses pesticide in year t (ait = RC), then that farmer is necessarily a

conventional farmer and his deterministic payoff is given by:

u0(ait = RC, sit; θ) = Pcon,t · q̆(cit, sit; θ)− cost(cit, q̆(cit, sit; θ); θ). (4)

If farmer i plants rice and does not use pesticide in year t (ait = RN), then that farmer might

be either a conventional or organic farmer, depending on whether the farmer also did not use an

unapproved chemical input in any of the previous three years, and his deterministic payoff is given

by:

3While our county-level yield data and the yield that is logged for the dependent variable in our production function
estimation both have yield in hundredweights (CWT), or 100 pounds;(U.S. Department of Agriculture [USDA], 1992),
for our dynamic structural model, we divide yield and perceived yield by 10,000 in our structural model. Thus, for our
dynamic structural model, yield (or quantity) is in units of 1 million pounds.
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u0(ait = RN, sit; θ) = (1−1{kit ≥ 3})·Pcon,tq̆(cit, sit; θ)+1{kit ≥ 3}·Porg,tq̆(cit, sit; θ)−cost(cit, q̆(cit, sit; θ); θ),

(5)

where 1{kit ≥ 3} is a dummy variable for the farmer not using pesticide in any of the previous three

years.

So that we can identify the parameters in the per-period payoff, we normalize the deterministic

payoff for a farmer who does not planting rice and uses pesticide (ait = OC) to be 0:

u0(ait = OC, sit, θ) = 0. (6)

To allow the per-period payoff to possibly differ when the farmer did not plant rice and also did

not use pesticide, the deterministic per-period payoff for not planting rice that year and not using

pesticide (ait = ON) is set equal to a parameter ν to be estimated:

u0(ait = ON, sit, θ) = ν. (7)

In addition to the state variables sit, the per-period payoff u(·) to a farmer from choosing action

ait at time t also depends on the choice-specific shock ϵit(ait) at time t. There is a choice-specific

shock ϵit(ait) associated with each possible action ait ∈ A. The vector of choice-specific shocks

ϵit ≡ {ϵit(ait)|ait ∈ A} is observed by farmer i at time t, before farmer i makes his time-t action

choice, but is never observed by the econometrician.

The per-period payoff to a farmer from choosing action ait at time t is given by:

u(ait, sit, ϵit, θ) = u0(ait, sit, θ) + ϵit(ait), (8)

where u0(·) is the deterministic component of the per-period payoff.

The structural parameters to be estimated are θ = (γ, κ, ν), where γ are misperception parameters,

κ are cost parameters, and ν is the deterministic payoff when a farmer does not plant rice and does

not use pesticide (this is relative to a deterministic payoff of 0 when a farmer does not plant rice and

uses pesticide).

We assume the state variables evolve as a finite state first-order Markov process, with a transition

density given by Pr(st+1, ϵt+1|st, at, ϵt, θ). Since the conventional and organic rice price variables we

use are discretized annual averages, we assume that the crop and pesticide use decisions of any one

farmer would not have a large enough effect to influence crop prices, and therefore that the distribution

of discretized annual conventional and organic rice prices next period does not depend on any single

grower’s decisions this period; we therefore model rice prices as evolving exogenously. For the clean

soil stock kit as measured by the number of previous consecutive years the farmer has not used any

unapproved synthetic pesticide, the number of previous consecutive years the farmer has not used

any unapproved synthetic pesticide evolves deterministically as a function of this period’s value of
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the clean soil stock kit and this period’s pesticide use decision.

We make the following conditional independence assumption on the transition density:

Pr(st+1, ϵt+1|st, at, ϵt, θ) = Pr(ϵt+1|st+1, θ) Pr(st+1|st, at, θ). (9)

We also assume that the choice-specific shocks are distributed multivariate extreme value. A

standard assumption in many dynamic structural models, our conditional independence assumption

implies that, conditional on the current state variables sit and the current action ait chosen by the

farmer, the evolution of the observed state variables sit does not depend on the particular realization

of the idiosyncratic shocks ϵit to the payoffs of individual farmers from each possible crop and pesticide

use choice. For the clean soil stock kit as measured by the number of previous consecutive years the

farmer has not used any unapproved synthetic pesticide, the conditional independence assumption

makes sense since the number of previous consecutive years the farmer has not used any unapproved

synthetic pesticide evolves deterministically as a function of this period’s value of the clean soil stock

kit and this period’s action. For the conventional and organic rice prices, which are stochastic, since

there are many growers in California and no grower has a significant market share, it is reasonable

to assume that shocks to any particular individual grower are unlikely to affect what the discretized

annual rice prices are at the aggregate level for all growers.

Under the assumptions that the state variables and the choice-specific shocks ϵit are conditionally

independent and that the choice-specific shocks ϵit are distributed multivariate extreme value, the

farmer’s value function, which gives the present discounted value of the grower’s entire stream of

per-period payoffs at the optimum, is given by the following infinite-horizon Bellman equation:

V (sit, ϵit, θ) = max
ait∈A

u0(ait, sit, θ) + ϵit(ait) + βV c(sit, ait, θ), (10)

where V c(·) is the continuation value, which is the expected value of the value function next period

conditional on the state variables and action this period:

V c(sit, ait, θ) = E[V (sit, ϵit, θ)|sit, ait] (11)

and where β is the annual discount factor. The choice probability is given by:

Pr(ait|sit, θ) =
exp (u0(ait, sit, θ) + βV c(sit, ait, θ))∑

ãit∈A exp (u0(ãit, sit, θ) + βV c(sit, ãit, θ))
. (12)

After obtaining the model predictions for the choice probabilities as functions of the state variables

and the unknown parameters θ, we estimate the parameters θ using the nested fixed point maximum

likelihood estimation technique developed by Rust (1987, 1988). The likelihood function is a function

of the choice probabilities, and therefore a function of the continuation value V c(·). For each guess

of the parameters θ, we solve for the continuation value V c(·) by solving for a fixed point, and use

the continuation value to solve for the choice probabilities, which we then plug into the likelihood
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function. From Blackwell’s Theorem, the fixed point is unique. An inner fixed point algorithm to

compute the continuation value V c(·) is nested within an outer optimization algorithm to find the

maximizing value of the parameters θ via maximum likelihood estimation (MLE).

Identification of the parameters θ comes from the differences between per-period payoffs across

different action choices, which in infinite horizon dynamic discrete choice models are identified when

the discount factor β and the distribution of the choice-specific shocks ϵit are fixed (Abbring, 2010;

Magnac and Thesmar, 2002; Rust, 1994). We set our annual discount factor to β = 0.9. In particular,

the parameters θ in our model are identified because we normalize the deterministic payoff u0(ait =

OC, sit, θ) for a farmer who does not planting rice and uses unapproved chemical input to be 0; as

a consequence, the parameters do not cancel out in the differences between per-period payoffs across

different action choices and are therefore identified.

Standard errors are formed by a nonparametric bootstrap. Farmer-fields are randomly drawn

from the data set with replacement to generate 100 independent panels each with the same number

of farmer-fields as in the original data set. The structural model is run on each of the new panels.

The standard errors are then formed by taking the standard deviation of the parameter estimates

from each of the panels.

6 Transition Density for Prices

We use two state variables for price: the real conventional price Pcon; and the real organic price

premium
Porg−Pcon

Porg
.

Since the conventional and organic rice price variables we use are discretized annual averages, we

assume that the crop and pesticide use decisions of any one farmer would not have a large enough effect

to influence crop prices, and therefore that the distribution of the discretized annual conventional rice

price and organic rcie price premium next period does not depend on any single grower’s decisions

this period; we therefore model rice prices as evolving exogenously. Moreover, we assume that the

real conventional price and the real organic price premium are each independent and identically

distributed with no serial correlation. Furthermore, since we are now using the real organic price

premium instead of the real organic price, we assume that the real conventional price and the real

organic price premium are distributed independently of one another. We assume no serial correlation

for the real conventional price and the real organic price premium both because it appears to be a

reasonable approximation given the time series behavior of these variables (see Figures 1 and 2), and

also due to data limitations: our annual price data only provides a very limited amount of consecutive

observations to credibly estimate a first-order Markov transition matrix for prices.4

4Since we only have price data for 10 years of data (2005, 2008-2012, 2014-2016, 2019), we only have 10 observations
for estimating the transition density for prices. Since we do not have price data for 2006-2007, if we try to estimate
a first-order Markov transition density for prices, we cannot really use information from the 2005 prices either, so any
first-order Markov transition density we estimate essentially does not include any information for prices for the years
2005-2007. Similarly, since we do not have price data for 2017-2018, if we try to estimate a first-order Markov transition
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When discretizing our price variables, we choose the bins for the variables so that we do not have

any price tuples that we do not observe in the data. Having tuples we do not observe in the data leads

to issues including losing variation/information, which impedes our ability to identify parameters.

We bin our prices such that we do not have any price-bin tuples that we do not observe in the data.

Having tuples we do not observe in the data leads to issues including losing variation/information,

which impedes our ability to identify parameters .

We discretize the real conventional price Pcon into 2 bins, ’low’ and ’high’, where a real conventional

price less than $19.50 is in the ’low’ bin, and a real conventional price greater than or equal to $19.50
is in the ’high’ bin. Figure 1 plots the annual real conventional rice price, along with a horizontal

dashed grey line indicating the cutoff for the bins. For each discretized bin for conventional prices,

we use the average over all annual real conventional price values that fall in that bin for the value of

the real conventional price to use for that bin. In particular, real conventional prices in the ’low’ bin

are assigned a real conventional price value of $16.4604, and real conventional prices in the ’high’ bin

are assigned a real conventional price value of $23.3469.
For the distribution for the discretized real conventional price, we use the empirical distribution of

the discretized real conventional price. In other words, for each bin, we assume that the probability

that the real conventional price in any given year is in that bin is the fraction of years with real

price data that have real conventional price in that bin. The empirical distribution of discretized real

conventional price has Pr(Pcon = low) = 0.5 and Pr(Pcon = high) = 0.5.

We discretize the real organic price premium
Porg−Pcon

Porg
into 3 bins: ’low’, ’med’, and ’high’, where

a real organic price premium less than $0.50 is in the ’low’ bin; a real organic price premium greater

than or equal to $1 is in the ’high’ bin; and real organic price premia in between the 2 cutoffs are

in the ’med’ bin. Figure 2 plots the real organic price premium
Porg−Pcon

Porg
, along with horizontal

dashed grey lines indicating the cutoffs for the bins. For each discretized bin for the real organic price

premium, we use the average over all annual the real organic price premium values that fall in that

bin for the value of th real organic price premium to use for that bin. In particular, real organic price

premia in the ’low’ bin are assigned a real organic price premium value of $0.2178; real organic price

premia in the ’med’ bin are assigned a real organic price premium value of $0.6186; and real organic

price premia in the ’high’ bin are assigned a real organic price premium value of $1.2326.
For the distribution for the discretized real organic price premium, we use the empirical distribution

of the discretized real organic price premium. In other words, for each bin, we assume that the

probability that the real organic price premium in any given year is in that bin is the fraction of years

with real price data that have the real organic price premium in that bin. The empirical distribution

density for prices, we cannot really use information from the 2019 prices either, so any first-order Markov transition
density we estimate essentially does not include any information for prices for the years 2017-2019 either. Thus, if we
try to estimate a first-order Markov transition density for prices, we are essentially only using data and information
from the years 2008-2016 and not using the data and information we have for 2005 and 2019. We are also missing price
data for 2013, which further limits the amount of consecutive information we have to credibly estimate a first-order
Markov transition matrix for prices. Nevertheless, based on the time series plots for real conventional price and real
organic price premium, the assumption of no serial correlation seems reasonable.
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of discretized real organic price premium has Pr(
Porg−Pcon

Porg
= low) = 0.2, Pr(

Porg−Pcon

Porg
= med) = 0.6,

and Pr(
Porg−Pcon

Porg
= high) = 0.2.

7 Results

The structural parameter estimates are presented in Table 7.

Across all specifications, γk, which measures any misperception of how log yield is affected by

the clean soil stock kit, the number of previous consecutive years (up to 15 years) no unapproved

synthetic pesticide was used, is negative. Thus, farmers underestimate how the clean soil stock kit,

as me8asured by the number of previous consecutive years no unapproved synthetic pesticide was

used, affects yield. The net perceived effect of clean soil stock kit on log yield is given by the sum of

γk and the coefficient α̂k on the clean soil stock kit from our production function estimation. Given

α̂k = 0.400 from Specification (1) in Table 5 and γk = −0.285 across all specifications in Table 7, the

net perceived effect on log yield of the clean soil stock kit, the number of previous consecutive years

(up to 15 years) no unapproved synthetic pesticide was used, is 0.115, which is less than 30% of the

actual effect. In other words, farmers are acting as if the clean soil stock kit has very little effect on

rice crop yields, when in fact it increases yields.

Across all specifications in Table 7, γc, which measures any misperception of how the use of an

unapproved synthetic pesticide cit affects log yield, is negative. The net perceived effect of the use

of an unapproved synthetic pesticide cit on log yield is given by the sum of γc and the coefficient α̂c

on the use of an unapproved synthetic pesticide cit from our production function estimation. Given

α̂c = 3.757 from Specification (1) in Table 5 and γc ranges from -0.839 to -0.836 in Table 7, the net

perceived effect of the use of an unapproved synthetic pesticide cit on log yield ranges from 2.918 to

2.921. This is roughly similar to the coefficient on the use of an unapproved synthetic pesticide cit

in the ’Misperception’ specification of our production function in Specification (1) of Table 6, which

was 3.011.
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Table 7: Dynamic Structural Parameter Estimates

(1) (2) (3)

Parameters in the perceived yield q̆(·)
γc Misperception of how log yield is affected by pesticide use cit -0.839∗∗∗ -0.836∗∗∗ -0.836∗∗∗

(0.0118) (0.0139) (0.0136)
γk Misperception of how log yield is affected by clean soil stock kit -0.285∗∗∗ -0.285∗∗∗ -0.285∗∗∗

(0.0042) (0.0043) (0.0043)

Coefficients in rice production cost on:
κc Use pesticide cit -0.025∗∗∗ -0.042∗∗∗ -0.048∗∗∗

(0.0007) (0.0012) (0.0015)
κ1 Perceived yield q̆it 0.070∗∗∗ 0.065∗∗∗ 0.063∗∗∗

(0.0024) (0.0024) (0.0026)
κcq Perceived yield q̆it X Use pesticide cit 0.069∗∗∗ 0.067∗∗∗

(0.0022) (0.0023)
κ2 Perceived yield squared q̆2it 0.0863∗∗∗ 0.0846∗∗∗ 0.08543∗∗∗

(0.0011) (0.0012) (0.0014)
κcq2 Perceived yield squared q̆2it X Use pesticide cit 0.08535∗∗∗

(0.0014)

Other parameters
ν Deterministic payoff when farmer does not plant rice and does not use pesticide -10.00∗∗∗ -10.00∗∗∗ -10.00∗∗∗

(0.00000) (0.00000) (0.00001)

# Observations 67,230 67,230 67,230
# Farmer-fields 17,695 17,695 17,695
# Counties 15 15 15

Notes: Standard errors in parentheses. Each observation is a farmer-field-year. Clean soil stock kit is measured by the number of
previous consecutive years (up to 15 years) no unapproved synthetic pesticide was used. Significance codes: *** p<0.001, ** p<0.01,
* p<0.05
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8 Counterfactual Simulations

Our structural estimates allow us to simulate a number of key outcomes of interest, including pesticide

use and farmer welfare under counterfactual scenarios in which farmers’ beliefs about soil-microbe

based ecosystem services are brought in line with findings from plant and soil sciences. In particular,

we use the estimated parameters from our dynamic structural econometric model in Table 7 to

compare a base simulation of actual behavior under farmer misperception, with a counterfactual

simulation of optimal behavior under full information.

We first run a base simulation of actual behavior (’Misperception’), which uses the parameter

estimates from our dynamic structural econometric model in Table 7 for all the parameters. For each

farmer-field, we start from the actual value of the state (clean soil stock kit and prices) in the first

year for which we have data for that farmer-field, and then forward simulate actions and states for

each year from that year onwards to the final year of our data set (’short run’) and also to 10 years

past the the final year of our data set (’long run’). In particular, for each year of our simulation, we

draw the action ait for that year from the choice probabilities Pr(ait|sit, θ) evaluated at the state for

that year and at the estimated parameters θ̂. Based on that year’s action ait and clean soil stock

kit, we determine the clean soil stock ki,t+1 for next year. For the next year’s real conventional price

and real organic price premium, we draw from their respective distributions. After one simulation for

all farmer-years, we tabulate the actions ait and calculate summary statistics for clean soil stock kit,

the number of organic farmers, the mean of the true yield, the mean of the perceived yield, and the

PDV of the entire stream of true per-period payoffs (calculated using the true yield). We repeat the

simulation 100 times, and average over 100 simulations.

We next run a counterfactual simulation of optimal behavior (’Full Information’), in which we

set the misperception parameters γk and γc both to 0, and then use the parameter estimates from

our dynamic structural econometric model in Table 7 for all the remaining parameters. For each

farmer-field, we start from the actual value of the state (clean soil stock kit and prices) in the first

year for which we have data for that farmer-field, and then forward simulate actions and states for

each year from that year onwards to the final year of our data set (’short run’) and also to 10 years

past the the final year of our data set (’long run’). In particular, for each year of our simulation, we

draw the action ait for that year from the choice probabilities Pr(ait|sit, θ) evaluated at the state for

that year, γk = 0, γc = 0, and at the estimated parameters θ̂ for the remaining parameters. Based

on that year’s action ait and clean soil stock kit, we determine the clean soil stock ki,t+1 for next

year. For the next year’s real conventional price and real organic price premium, we draw from their

respective distributions. After one simulation for all farmer-years, we tabulate the actions ait and

calculate summary statistics for clean soil stock kit, the number of organic farmers, the mean of the

true yield, and the PDV of the entire stream of true per-period payoffs (calculated using the true

yield). We repeat the simulation 100 times, and average over 100 simulations.

The results for the short run are presented in Tables 8 and the results for the long run are presented
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in Table 9. In these tables, Specifications (1), (2), and (3) use parameter estimates from Specifications

(1), (2), and (3), respectively, of Table 7. We find that the PDV of the entire stream of per-period

payoffs is higher under full information than under misperception, both in the short run and the long

run, and the margin widens as we move into the long run. The negative value that we get for the PDV

of the entire stream of per-period payoffs under misperception is relative to the outside option when

the farmer does not plant rice but still uses synthetic pesticide, and is presumably therefore planting

another crop. This negative value therefore tells us that under misperception, they would have been

better off taking the outside option of not planting rice but still uses synthetic pesticide than growing

rice. Under full information, pesticide use is lower and organic adoption is higher, and this difference

is more pronounced in the long run. Under farmer misperception, less than 0.1 percent of farmer-

field-years produce organically in both the short and long run. In contrast, under full information, 55

to 58 percent of farmer-field-years produce organically in the short run, and 58 to 62 percent produce

organically in the long run. The minimum, mean, 75th percentile, 95th percentile, and maximum PDV

of the entire stream of per-period payoffs is higher under full information than under misperception

in both the short run and the long run. While the 5th percentile, 25th percentile, and median (50th

percentile) PDV of the entire stream of per-period payoffs are lower under full information than under

misperception in the short run, they are all higher under full information than under misperception

in the long run.

25



Table 8: Counterfactual Simulations: Short Run

Misperception Full Information

(1) (2) (3) (1) (2) (3)

Distribution of ait (% of farmer-field-years)

ait = RC Plant rice and use pesticide that year 97.73 97.76 97.76 5.70 6.16 4.74
ait = RN Plant rice and do not use pesticide that year 1.61 1.59 1.59 94.31 93.84 95.26
ait = OC Do not plant rice that year and use pesticide that year 0.66 0.65 0.65 0.0000 0.0000 0.0000
ait = ON Do not plant rice and do not use pesticide that year 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Organic production (% of farmer-field-years) 0.06 0.06 0.06 56.11 54.57 58.14

Mean over farmer-field-years

kit Clean soil stock 0.049 0.049 0.049 4.149 3.845 4.365
qit Yield (million lbs) 0.80 0.80 0.80 1.65 2.34 1.62
q̆it Perceived yield (million lbs) 0.27 0.27 0.27

PDV of entire stream of per-period payoffs

Mean over farmer-fields ($) 73 73 50 144 128 136
(Std. Dev. in parentheses) (89) (89) (321) (231) (172) (234)

Min over farmer-fields ($) -1,322 -1,234 -6,708 -2 -3 -3
5th %-ile over farmer-fields ($) 17 17 14 1 1 1
25th %-ile over farmer-fields ($) 52 52 52 7 7 8
50th %-ile over farmer-fields ($) 72 72 71 19 19 19
75th %-ile over farmer-fields ($) 86 86 85 207 207 191
95th %-ile over farmer-fields ($) 100 99 99 329 322 350
Max over farmer-fields ($) 1,608 1,622 851 1,708 1,716 1,739

Total PDV of entire stream of per-period payoffs (million $) 1.84 1.85 1.28 3.63 3.25 3.44

Notes: Table presents averages over 100 simulations. The ’short run’ simulations simulate each farmer-field from the actual value of the state (clean
soil stock kit and prices) in the first year for which we have data for that farmer-field, to the final year of our data set, year 2019. The ’Misperception’
scenario is a base simulation of actual behavior, and uses the parameter estimates from our dynamic structural econometric model in Table 7 for all the
parameters; Specifications (1), (2), and (3) use parameter estimates from Specifications (1), (2), and (3), respectively, of Table 7. The ’Full Information’
scenario is a counterfactual simulation of optimal behavior, in which we set the misperception parameters γk and γc both to 0, and then use the parameter
estimates from our dynamic structural econometric model in Table 7 for all the remaining parameters; Specifications (1), (2), and (3) use parameter
estimates from Specifications (1), (2), and (3), respectively, of Table 7. The PDV of entire stream of per-period payoffs is relative to the per-period
payoff from the outside option of not planting rice and using pesticide that year (ait = OC), which is normalized to 0.
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Table 9: Counterfactual Simulations: Long Run

Misperception Full Information

(1) (2) (3) (1) (2) (3)

Distribution of ait (% of farmer-field-years)

ait = RC Plant rice and use pesticide that year 97.76 97.79 97.79 8.16 8.60 6.82
ait = RN Plant rice and do not use pesticide that year 1.58 1.56 1.56 91.84 91.40 93.18
ait = OC Do not plant rice that year and use pesticide that year 0.66 0.65 0.65 0.0000 0.0000 0.0000
ait = ON Do not plant rice and do not use pesticide that year 0.0000 0.0000 0.0000 0.0012 0.0013 0.0000

Organic production (% of farmer-field-years) 0.04 0.04 0.04 59.19 57.57 62.03

Mean over farmer-field-years

kit Clean soil stock 0.037 0.037 0.037 4.768 4.404 5.102
qit Yield (million lbs) 0.74 0.74 0.74 2.48 2.92 2.40
q̆it Perceived yield (million lbs) 0.27 0.27 0.27

PDV of entire stream of per-period payoffs

Mean over farmer-fields ($) 92 93 70 268 245 247
(Std. Dev. in parentheses) (88) (88) (321) (242) (145) (258)

Min over farmer-fields ($) -1,280 -1,192 -6,668 16 15 16
5th %-ile over farmer-fields ($) 67 67 67 178 277 29
25th %-ile over farmer-fields ($) 75 75 75 188 188 187
50th %-ile over farmer-fields ($) 86 86 85 208 208 193
75th %-ile over farmer-fields ($) 100 99 99 266 266 253
95th %-ile over farmer-fields ($) 115 114 114 405 384 442
Max over farmer-fields ($) 1,629 1,643 876 1,909 1,783 1,913

Total PDV of entire stream of per-period payoffs (million $) 2.34 2.35 1.77 6.77 6.20 6.27

Notes: Table presents averages over 100 simulations. The ’long run’ simulations simulate each farmer-field from the actual value of the state (clean soil
stock kit and prices) in the first year for which we have data for that farmer-field, to 10 years past the the final year of our data set (i.e., to year 2029).
The ’Misperception’ scenario is a base simulation of actual behavior, and uses the parameter estimates our dynamic structural econometric model in
Table 7 for all the parameters; Specifications (1), (2), and (3) use parameter estimates from Specifications (1), (2), and (3), respectively, of Table 7. The
’Full Information’ scenario is a counterfactual simulation of optimal behavior, in which we set the misperception parameters γk and γc both to 0, and
then use the parameter estimates from our dynamic structural econometric model in Table 7 for all the remaining parameters; Specifications (1), (2),
and (3) use parameter estimates from Specifications (1), (2), and (3), respectively, of Table 7. The PDV of entire stream of per-period payoffs is relative
to the per-period payoff from the outside option of not planting rice and using pesticide that year (ait = OC), which is normalized to 0.
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9 Conclusion

We develop and estimate a dynamic structural econometric model to examine whether farmers are

aware of and account for soil microbiomes and the feedback between pesticides, soil health, pest

resistance, and crop yields when making their decisions about pesticide use and organic farming

adoption.

We first empirically document the insights from soil science that the use of pesticides may increase

contemporaneous yields; and also that, over time, not using pesticides increases yields. Next, in order

to understand the beliefs and perceptions of rice farmers that underlie and rationalize their pesticide

use decisions as revealed in the data, we develop and estimate a dynamic structural econometric

model. The structural parameters we estimate include parameters measuring any misperceptions

farmers may have about how enhancing microbial health may affect yields. Empirical results show

that farmers are acting as if the clean soil stock has very little effect on rice crop yields, when in fact

it increases yields.

Our structural estimates allow us to simulate a number of key outcomes of interest, including

pesticide use and farmer welfare under counterfactual scenarios in which farmer’s beliefs about soil-

microbe based ecosystem services are brought in line with findings from plant and soil sciences.

We find that informing farmers about soil microbiomes and the feedback between pesticides, soil

health, pest resistance, and crop yields will decrease pesticide use and increase organic adoption, will

increase farmers’ net present value (PDV of the entire stream of per-period profits) in the long run,

and increases increase farmers’ net present value on average in the short run. These results have

important implications regarding the possible effects and benefits of extension programs targeting

farmers’ understanding of soil microbes.
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Meneses, M.A., C.L. Casteel, M.I. Gómez, D.R. Just, R. Kanbur, D.R. Lee, and C.Y.C. Lin Lawell.

2024. “Organic Farming Transitions: A Dynamic Bioeconomic Model.” Working paper, Cornell

University.

Murphy, D.M., D. Roobroeck, D.R. Lee, and J. Thies. 2020. “Underground Knowledge: Estimating

the Impacts of Soil Information Transfers Through Experimental Auctions.” American Journal of

Agricultural Economics 102:1468–1493.

Newman, M.M., N. Hoilett, N. Lorenz, R. Dick, M. Liles, C. Ramsier, and J. Kloepper. 2016.

“Glyphosate effects on soil rhizosphere-associated bacterial communities.” Science of the Total

Environment 543:155–160.

Oliva, P., B.K. Jack, S. Bell, E. Mettetal, and C. Severen. 2020. “Technology Adoption Under

Uncertainty: Take-Up and Subsequent Investment in Zambia.” Review of Economics and Statistics

102:617–632.

Organic Produce Network. 2022. “Organic Certification Requirements.” [Online]. Accessed

19 September 2022. URL: https://www.organicproducenetwork.com/article-education/6/

organic-certification-requirements-and-the-usda-organic-standards.

Rapson, D. 2014. “Durable Goods and Long-run Electricity Demand: Evidence from Air Conditioner

Purchase Behavior.” Journal of Environmental Economics and Management 68:141–160.

31

https://www.organicproducenetwork.com/article-education/6/organic-certification-requirements-and-the-usda-organic-standards
https://www.organicproducenetwork.com/article-education/6/organic-certification-requirements-and-the-usda-organic-standards


Righini, H., O. Francioso, A. Martel Quintana, and R. Roberti. 2022. “Cyanobacteria: A Natural

Source for Controlling Agricultural Plant Diseases Caused by Fungi and Oomycetes and Improving

Plant Growth.” Horticulturae 8.

Rothwell, G., and J. Rust. 1997. “On the Optimal Lifetime of Nuclear Power Plants.” Journal of

Business & Economic Statistics 15:195–208.

Rust, J. 1988. “Maximum Likelihood Estimation of Discrete Control Processes.” SIAM Journal on

Control and Optimization 26:1006–1024.

—. 1987. “Optimal Replacement of GMC Bus Engines: An Empirical Model of Harold Zurcher.”

Econometrica: Journal of the Econometric Society 55:999–1033.

—. 1994. “Structural Estimation of Markov Decision Processes.” In R. Engle and D. McFadden, eds.

Handbook of Econometrics. Amsterdam: North-Holland, vol. 4, pp. 3081–3143.

Sambucci, O., C.Y.C. Lin Lawell, and T.J. Lybbert. 2024. “Pesticide Spraying and Disease Forecasts:

A Dynamic Structural Econometric Model of Grape Growers in California.” Working paper, Cornell

University.

Scott, P.T. 2013. “Dynamic Discrete Choice Estimation of Agricultural Land Use.” Working Paper,

Available ¡http://www.ptscott.com¿.

Sears, L., C.Y.C. Lin Lawell, G. Torres, and M.T. Walter. 2024a. “Adjudicated Groundwater Property

Rights: A Structural Model of the Dynamic Game Among Groundwater Users in California.”

Working paper, Cornell University.

—. 2024b. “Moment-based Markov Equilibrium Estimation of High-Dimension Dynamic Games: An

Application to Groundwater Management in California.” Working paper, Cornell University.

Sears, L., C.Y.C. Lin Lawell, and M.T. Walter. 2024. “Groundwater under open access: A structural

model of the dynamic common pool extraction game.” Working paper, Cornell University.

Sexton, S.E., Z. Lei, and D. Zilberman. 2007. “The economics of pesticides and pest control.”

International Review of Environmental and Resource Economics 1:271–326.

Singh, J.S., A. Kumar, A.N. Rai, and D.P. Singh. 2016. “Cyanobacteria: A Precious Bio-resource in

Agriculture, Ecosystem, and Environmental Sustainability.” Frontiers in Microbiology 7.

Smith, A. 2023. “California Rice is Back.” Ag Data News, 23 Aug 2023. URL: https://agdatanews.

substack.com/p/california-rice-is-back.

Thiebaut, F., M. Urquiaga, A. Rosman, M. da Silva, and A. Hemerly. 2022. “The Impact of Non-

Nodulating Diazotrophic Bacteria in Agriculture: Understanding the Molecular Mechanisms That

Benefit Crops.” International Journal of Molecular Sciences 23:11301.

32

http://www.ptscott.com
https://agdatanews.substack.com/p/california-rice-is-back
https://agdatanews.substack.com/p/california-rice-is-back


Timmins, C. 2002. “Measuring the Dynamic Efficiency Costs of Regulators’ Preferences: Municipal

Water Utilities in the Arid West.” Econometrica 70:603–629.

UC Rice Research and Information Center. 2023. “Rice.” University of California at Davis. [Online].

Accessed 14 May 2023. URL: https://agronomy-rice.ucdavis.edu/.

U.S. Department of Agriculture [USDA]. 2023. “Certified organic survey.” National Agricultural

Statistics Service (NASS). [Online]. Accessed 14 May 2023. URL: https://www.nass.usda.gov/

Surveys/Guide_to_NASS_Surveys/Organic_Production/.

—. 2007. “Organic Production Survey.” National Agricultural Statistics Service (NASS). [Online].

Accessed 14 May 2023. URL: https://www.nass.usda.gov/Surveys/Guide_to_NASS_Surveys/

Organic_Production/.

—. 2012. “Organic Production Survey.” National Agricultural Statistics Service (NASS). [Online].

Accessed 14 May 2023. URL: https://www.nass.usda.gov/Surveys/Guide_to_NASS_Surveys/

Organic_Production/.

—. 2017. “Organic Production Survey.” National Agricultural Statistics Service (NASS). [Online].

Accessed 14 May 2023. URL: https://www.nass.usda.gov/Surveys/Guide_to_NASS_Surveys/

Organic_Production/.

—. 2024. “Quick Stats.” National Agricultural Statistics Service (NASS). [Online]. Accessed 3 June

2024. URL: https://www.nass.usda.gov/Data_and_Statistics/index.php.

—. 1992. “Weights, Measures, and Conversion Factors for Agricultural Commodities and Their

Products.” Economic Research Service in cooperation with the Agricultural Marketing Service, the

Agricultural Research Service, and the National Agricultural Statistics Service, U.S. Department

of Agriculture. Agricultural Handbook No. 697. URL: https://www.ers.usda.gov/webdocs/

publications/41880/33132_ah697_002.pdf?v=0.

USA Rice. 2020. “Where Rice Grows: California.” URL: https://www.usarice.com/thinkrice/

discover-us-rice/where-rice-grows/state/california.

USDA Agricultural Marketing Service. 2000a. “National Organic Program.” 7 CFR 205. 21 December

2000.A Rule by the Agriculture Department, and the Agricultural Marketing Service. URL: https:

//www.ecfr.gov/current/title-7/subtitle-B/chapter-I/subchapter-M/part-205.

—. 2000b. “National Organic Program: A Rule by the Agricultural Marketing Service on 12/21/2000.”

65 FR 80637. 21 December 2000. URL: https://www.federalregister.gov/documents/2000/

12/21/00-32257/national-organic-program.

33

https://agronomy-rice.ucdavis.edu/
https://www.nass.usda.gov/Surveys/Guide_to_NASS_Surveys/Organic_Production/
https://www.nass.usda.gov/Surveys/Guide_to_NASS_Surveys/Organic_Production/
https://www.nass.usda.gov/Surveys/Guide_to_NASS_Surveys/Organic_Production/
https://www.nass.usda.gov/Surveys/Guide_to_NASS_Surveys/Organic_Production/
https://www.nass.usda.gov/Surveys/Guide_to_NASS_Surveys/Organic_Production/
https://www.nass.usda.gov/Surveys/Guide_to_NASS_Surveys/Organic_Production/
https://www.nass.usda.gov/Surveys/Guide_to_NASS_Surveys/Organic_Production/
https://www.nass.usda.gov/Surveys/Guide_to_NASS_Surveys/Organic_Production/
https://www.nass.usda.gov/Data_and_Statistics/index.php
https://www.ers.usda.gov/webdocs/publications/41880/33132_ah697_002.pdf?v=0
https://www.ers.usda.gov/webdocs/publications/41880/33132_ah697_002.pdf?v=0
https://www.usarice.com/thinkrice/discover-us-rice/where-rice-grows/state/california
https://www.usarice.com/thinkrice/discover-us-rice/where-rice-grows/state/california
https://www.ecfr.gov/current/title-7/subtitle-B/chapter-I/subchapter-M/part-205
https://www.ecfr.gov/current/title-7/subtitle-B/chapter-I/subchapter-M/part-205
https://www.federalregister.gov/documents/2000/12/21/00-32257/national-organic-program
https://www.federalregister.gov/documents/2000/12/21/00-32257/national-organic-program


van Kooten, G.C., W.P. Weisensel, and D. Chinthammit. 1990. “Valuing Tradeoffs between Net

Returns and Stewardship Practices: The Case of Soil Conservation in Saskatchewan.” American

Journal of Agricultural Economics 72:104–113.

Verma, R., H. Annapragada, N. Katiyar, N. Shrutika, K. Das, and S. Murugesan. 2020.

“Chapter 4 - Rhizobium.” In N. Amaresan, M. Senthil Kumar, K. Annapurna, K. Kumar, and

A. Sankaranarayanan, eds. Beneficial Microbes in Agro-Ecology . Academic Press, pp. 37–54.

Wu, T., D.R. Just, C.Y.C. Lin Lawell, J. Zhao, Z. Fei, A. Ortiz-Bobea, and Q. Wei. 2024.

“Optimal forest management for interdependent products: A nested dynamic bioeconomic model

and application to bamboo.” Working paper, Cornell University.

Yadav, S., S. Rai, R. Rai, A. Shankar, S. Singh, and L.C. Rai. 2017. Cyanobacteria: Role in

Agriculture, Environmental Sustainability, Biotechnological Potential and Agroecological Impact ,

Singapore: Springer Singapore. pp. 257–277.
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