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1 Introduction

Ethanol has attracted considerable policy attention as an environmentally-friendly alternative to

imported oil; as a substitute, additive, oxygenate, and/or octane booster for gasoline (Irwin and

Good, 2017); and as a way to boost farm profits and improve rural livelihoods. In the United

States, several government policies that actively promote ethanol production have coincided with a

boom in the construction of corn-ethanol plants, known as the second US ethanol boom, that began

in the mid-1990s and hit full-stride by the early 2000s.1 First, the Clean Air Act Amendments of

1990 mandates the use of oxygenates, which include ethanol, in gasoline. The subsequent phase

out and ban of the oxygenate methyl tertiary-butyl ether (MTBE) as a gasoline additive beginning

in the late 1990s further increased the demand for ethanol. Second, the Renewable Fuel Standard

(RFS) mandates a minimum volume of ethanol be blended into gasoline; the initial RFS (RFS1)

was created under the Energy Policy Act of 2005, and a more stringent version (RFS2) was created

under the Energy Independence and Security Act of 2007 (EPA, 2021; Lade and Lin Lawell, 2021).

Third, many states have offered tax credits to ethanol producers (Cotti and Skidmore, 2010). These

federal and state policies have coincided with increases in petroleum prices that made ethanol more

competitive as an energy substitute for gasoline (Gallagher, 2009).

In this paper, we analyze the effects of government policy on the decisions of ethanol-

producing firms to invest in building new ethanol plants in the Midwestern United States during

the second US ethanol boom. The decision to invest in building an ethanol plant is a dynamic

decision that may be affected by economic factors and government policies. In a static model of

investment, the statically optimal investment rule is to invest if the payoff from investing is positive.

When investments are irreversible and there is uncertainty over the future payoff from investment,

however, the statically optimal investment rule is not dynamically optimal. In particular, when

the payoff from investing in building a new ethanol plant depends on uncertain market conditions

and government policies that vary stochastically over time, a potential investor holds an option to

invest that is lost when the irreversible investment is made. In order to make a dynamically optimal

decision, a potential investor would therefore need to account for the option value to waiting before

making this irreversible investment (Dixit and Pindyck, 1994).

Potential investors in ethanol plants face uncertain market conditions and government poli-

cies. The payoff from investing in building a new ethanol plant depends on market conditions such

as the feedstock price that vary stochastically over time. Commodity markets occasionally exhibit

broadly based massive booms and busts; at the core of these cycles is a set of contemporaneous

supply and demand surprises that coincide with low inventories and that are magnified by macroe-

conomic shocks and policy responses (Carter, Rausser and Smith, 2011). Market volatility can

induce periods of boom and bust in the ethanol industry, causing episodes of bankruptcy and re-

duced capital investment (Hochman, Sexton and Zilberman, 2008). In addition, potential investors

1The first US ethanol boom stemmed from the desire for more energy self-sufficiency in the aftermath of the oil
embargoes in 1973 and 1979, and led to the construction of 153 new plants by 1985 (DOE, 2008). For a more detailed
discussion of the first and second US ethanol boom, see Lin Lawell (2017).
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in ethanol plants face policy uncertainty as well, including uncertainty regarding the possibility,

timing, longevity, credibility, and/or extent of government policies that may support or promote

ethanol (Miao, Hennessy and Babcock, 2012; Lade, Lin Lawell and Smith, 2018a; Clancy and

Moschini, 2018; Markel, Sims and English, 2018; Lade, Lin Lawell and Smith, 2018b). Owing to

uncertain market conditions and government policies, there is an option value to waiting before

investing in building an ethanol plant that makes the decision dynamic rather than static (Dixit

and Pindyck, 1994).

The dynamic decision-making problem faced by a potential ethanol investor is even more

complicated when the investment payoff may be affected not only by market conditions and gov-

ernment policies, but also by the existence of nearby plants. There are two main channels through

which existing ethanol plants may affect ethanol plant investment decisions. The first is a negative

competition effect: if there is more than one ethanol plant located in the same region, these plants

may compete in the local feedstock input market and/or in the local fuel ethanol output market.

The second is a positive agglomeration effect: existing plants in a region may have developed trans-

portation and marketing infrastructure and/or an educated work force from which entering plants

can benefit (Lambert et al., 2008; Lin Lawell, 2017; Thome and Lin Lawell, 2022).

Due to potential competition effects and agglomeration effects, the presence of existing

ethanol plants may affect the payoff from investing in an ethanol plant. Because the investment

decisions of other potential investors affect the future values of state variables and the future payoff

from investing in a new ethanol plant, potential ethanol investors must anticipate the investment

strategies of other potential investors in order to make a dynamically optimal decision. As a

consequence, a potential ethanol investor’s investment decision depends on its conjecture about

competitors’ behavior. Uncertainty over whether a plant might be constructed and start production

nearby is another reason there is an option value to waiting before investing that makes the decision

dynamic rather than static (Dixit and Pindyck, 1994).

To analyze the effects of government policy on the decision to invest in building a new

ethanol plant, we estimate a structural econometric model of the ethanol plant investment timing

game. We use the estimated parameters from the structural model to simulate counterfactual policy

scenarios to explore the policy factors driving industry growth and location, and to disentangle the

impacts of state and national policies on the timing and location of investment in the industry.

A better understanding of the effects of government policy on the decisions of ethanol-

producing firms to invest in building new ethanol plants is important for two main reasons. First,

the promotion of expanded ethanol production is an objective of several federal and state policies

in the US, and, particularly for a nascent renewable energy industry such as the ethanol industry

at the onset of the second US ethanol boom, expanding production generally entails investment in

new plants. A second reason why the timing and location of investment in new ethanol plants mat-

ters is that there are high transportation costs in both the feedstock and ethanol markets (Thome

and Lin Lawell, 2022). Feedstock is approximately 70% of the cost of producing corn-ethanol, and

transportation costs for the bulky grains constitute a significant share (Whittington, 2006). Fuel
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ethanol transportation is more difficult, and thus is more expensive, than gasoline transportation

because ethanol can easily absorb water during the transportation process, ethanol has corrosive

properties, ethanol vapor is flammable at a wider range of concentrations than gasoline, and ethanol

fires cannot be put out with water (Jaehne, 2008; Truant, 2011). The number and spatial distribu-

tion of new ethanol plants therefore has important implications for the development of the ethanol

industry.

There are several advantages to using a structural approach to analyzing the decision to

invest in building a new ethanol plant. First, our structural model explicitly models the dynamic

investment decision, including the continuation value to waiting. A potential investor invests if

the payoff from investment, which we define as the expected present discounted value of the entire

stream of net benefits from investing in an ethanol plant, exceeds the discounted continuation value

to waiting, which captures the option value to waiting. The option value to waiting before investing

in building an ethanol plant arises from uncertainty regarding market conditions, government poli-

cies, and whether another plant might be constructed nearby. A second advantage of our structural

model is that we are able to estimate the effect of each state variable on the payoff from investing

in an ethanol plant. While the parameters in reduced-form models are confounded by continuation

values, we model the structural relationship between the continuation value to waiting and the

payoff from investment, which enables us to estimate parameters in the payoff from investing in

building an new ethanol plant, including parameters measuring the effects of government policy.2 A

third advantage of a structural model is that the parameter estimates from the structural model can

be used to simulate counterfactual scenarios. We use the estimated parameters from the structural

model to run counterfactual simulations to explore the policy factors driving industry growth and

location, and to disentangle the impacts of state and national policies on the timing and location

of investment in the industry.

In our dynamic structural model, government policies affect the decision-making problem

faced by a potential investor through several channels. First, government policies affect the payoff

from investing in an ethanol plant. Second, expectations and uncertainty about future values of

2The entry and location determinants identified in previous reduced-form models of ethanol plant entry and
location decisions (Goetz, 1997; Sarmiento, Wilson and Dahl, 2012; Lambert et al., 2008; Haddad, Taylor and
Owusu, 2010; Cotti and Skidmore, 2010; Thome and Lin Lawell, 2022) provide a starting point for our analysis as
far as identifying potentially important state variables to include in our structural model. The previous literature
on ethanol investment also includes studies that analyze the viability of ethanol plants (Whims, 2002; Gallagher et
al., 2006; Eidman, 2007; Ellinger, 2007; Richardson et al., 2007; Richardson, Lemmer and Outlaw, 2007; Gallagher,
Shapouri and Brubaker, 2007; Dal-Mas et al., 2011; Jouvet, Le Cadre and Orset, 2012; Markel, Sims and English,
2018), the most profitable plant size under different market conditions (Gallagher, Brubaker and Shapouri, 2005;
Gallagher, Shapouri and Brubaker, 2007; Khoshnoud, 2012), ethanol plant investment option values (Schmit, Luo
and Tauer, 2009; Gonzalez, Karali and Wetzstein, 2012), and the effects of government policies (Babcock, 2011;
Babcock, 2013; Herath Mudiyanselage, Lin and Yi, 2013; Bielen, Newell and Pizer, 2018; Ghoddusi, 2017; Yi and
Lin Lawell, 2025a; Yi and Lin Lawell, 2025b; Yi, Lin Lawell and Thome, 2025). A related literature examines the
Renewable Fuel Standard (de Gorter and Just, 2009; Lapan and Moschini, 2012; Holland et al., 2014; Chen et al.,
2014; Lade and Lin Lawell, 2015; Wu and Langpap, 2015; Skolrud et al., 2016; Lemoine, 2016; Moschini, Lapan and
Kim, 2017; Just, 2017; Skolrud and Galinato, 2017; Korting and Just, 2017; Lade, Lin Lawell and Smith, 2018a;
Korting, de Gorter and Just, 2019; Lade, Lin Lawell and Smith, 2018b; Ifft, Rajagopal and Weldzuis, 2019; Irwin,
McCormack and Stock, 2020; Landry and Bento, 2020; Afkhami and Ghoddusi, 2020; Lade and Lin Lawell, 2021;
Wardle and Akhundjanov, 2025).
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government policies affect a potential investor’s decision because they affect the expected payoffs

from investing in the future and therefore the option value to waiting; this channel is captured

in the continuation value to waiting. Third, government policies affect the evolution of economic

factors, which include the ethanol price and the availability and cost of corn, and therefore the

expected payoffs from investing in the future; this channel is captured in the transition densities

for the economic factors and affects the continuation value to waiting. Fourth, government policies

affect the decisions of other potential investors, which affect the expected payoffs from investing in

the future and are again captured in the continuation value to waiting.

According to our results, government policies, particularly the ban on the use of the oxy-

genate MTBE as a gasoline additive at the state level, and the 2007 Renewable Fuel Standard

(RFS2) at the federal level, have significant effects on ethanol investment payoffs and decisions.

The intensity of corn production at the county level and private information shocks have significant

effects on ethanol investment payoffs and decisions as well. We use the estimated structural param-

eters to simulate counterfactual policy scenarios to disentangle the impacts of state and national

policies on the timing and location of investment in the industry. We find that, of the policies

analyzed, the MTBE ban and the RFS2 led to most of the ethanol plant investment during this

time period.

The balance of our paper proceeds as follows. We present our structural econometric model

in Section 2. We describe our data in Section 3. We present our results in Section 4. We run our

counterfactual simulations in Section 5. Section 6 discusses our results and concludes.

2 Dynamic Structural Econometric Model

2.1 Ethanol Plant Investment Timing Game

We model the dynamic and strategic decision faced by a potential investor (or entrant)3 i ∈
{1, ..., nkt} of whether to invest in building an ethanol plant in county k in year t. Iikt is an

indicator of whether potential investor i invests in building a new ethanol plant in county k in

year t. Investment in an ethanol plant is irreversible and, in each year t and each county k, all

investment decisions by all nkt potential investors in county k in year t are made simultaneously.

The publicly observable state of county k in year t is given by Ωkt = (Nkt, Gkt, Xkt), a

vector of discrete and finite-valued state variables that are observed by all the potential investors in

county k as well as by the econometrician. Nkt is a dummy variable for whether there is an existing

plant in the county; Gkt describes the policy environment; and Xkt are economic factors. The state

variables Ωkt = (Nkt, Gkt, Xkt) describe the current environment and summarize the direct effect

of the past on the current environment.

The state variables in Gkt describe the policy environment faced by the corn-ethanol in-

dustry. State and federal policies can affect the expected payoff from investing in building a new

3Because we are modeling the decision to invest in building a new ethanol plant, we use the terms ’investor’ and
’entrant’ interchangeably.
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ethanol plant through the cost of inputs, expected revenues, and building costs. At the federal

level, we include indicators for the two versions of the Renewable Fuel Standard (RFS1 and RFS2),

which are implemented as blending mandates. At the state level, we include the year the MTBE

ban was implemented; MTBE was a popular oxygenate used to meet environmental regulations

and also to boost octane level, and ethanol is a substitute for MTBE. We also include state-level

tax credits for ethanol producers.

From the perspective of potential investors, the evolution of these government policies over

time and their exact timing were uncertain and could not have been perfectly anticipated. We

therefore model future values of these policies as uncertain from the point of view of potential

investors in any given year of our period of study in our dynamic structural model. In particular,

we assume that these government policies evolve as a finite state first-order Markov processGk,t+1
iid∼

FG(·|Ωkt), and that a potential investor’s expectations of future values of these government policies

depend on current values of these policies and on current values of other state variables, including

economic factors Xkt. We use empirical probabilities to estimate a potential investor’s (conditional)

expectation of future values of these policies, conditional on current values of these policies and on

current values of other state variables.

While we allow for uncertainty in the evolution and exact timing of government policies,

since we use empirical probabilities to estimate the transition density for government policies, our

empirical transition density rules out some policy scenarios that we never see in the data. For

example, for policies such as the MTBE ban and the RFS2 that, once implemented, are never

subsequently removed in any future year during the time period of our analysis, our empirical

transition density will show that, once that policy is in place, the probability of that policy being

in place again in the next year is 1, since in the data the empirical probability of that policy being

in place again the following year is 1. Similarly, since the RFS2 is never implemented prior to the

RFS1 in the data, our empirical transition density will show that the probability of the RFS2 being

in place next year when the RFS1 is not in place this year is 0. Likewise, since the RFS1 and the

RFS2 are never in place at the same time in the data, our empirical transition density will show

that the probability of the RFS1 and the RFS2 being in place at the same time is 0.

The state variables in Xkt include economic factors that affect the payoffs from investing

in building an ethanol plant. On the revenue side, we include ethanol price; gasoline price; and

proximity to cattle, which is a proxy for sales price of distillers’ dried grains with solubles (DDGS),

a co-product of corn-ethanol production that is used for animal feed.4 The gasoline price could have

a positive or negative impact on investment depending on whether ethanol is viewed as an energy

substitute for gasoline or as a gasoline additive (oxygenate and/or octane booster), respectively.

The vectorXkt of economic factors also includes state variables describing the cost of ethanol

production. One important factor is the availability and cost of corn, the primary feedstock in the

4The co-product market is becoming more significant due to lower prices for ethanol (Dhuyvetter, Kastens and
Boland, 2005). There is significant variability in participation in co-product markets (Perrin, Fretes and Sesmero,
2009). Participation is driven by mill type and plant age; wet mills (corn syrup) and dry mills (DDGS) produce
different co-products (DOE, 2008).
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region of focus and the largest variable cost in ethanol production (Kwiatkowski et al., 2006; Perrin,

Fretes and Sesmero, 2009); local availability is important because transportation is costly (USDA,

2007). We include the natural gas price because natural gas is a major energy source for milling

corn. We include a metro area indicator in order to capture proximity to market and transportation

costs.5

The vector Xkt of economic factors also includes soy price and whether there is existing

biodiesel production capacity in county k at the start of year t because biodiesel and ethanol plants

may compete indirectly in the feedstock market: while biodiesel production uses soy as a feedstock,

much of the Midwest can be planted to soy or corn.6

We model the future values of economic factors as uncertain from the point of view of

potential investors. In particular, we assume that the economic factors evolve as a finite state first-

order Markov process Xk,t+1
iid∼ FX(·|Ωkt), and that a potential investor’s expectations of future

values of economic factors depend on the current market conditions and on current values of other

state variables, including government policies Gkt. We use empirical probabilities to estimate a

potential investor’s (conditional) expectation of future values of economic factors, conditional on

current values of economic factors and on current values of other state variables.

As explained in more detail in Section 3, all of the government policies Gkt and almost all of

the economic factors Xkt in our data are measured at aggregate levels that include many counties k

and potential investors i. For example, all of the government policies Gkt are at either the state or

federal level. Similarly, corn prices and natural gas prices are at the state level. The only economic

factor measured at the county level in our data set that we use in our preferred specification is corn

intensity; in their reduced-form analysis of country-level ethanol plant entry decisions during the

second US ethanol boom, however, Thome and Lin Lawell (2022) cannot reject the exogeneity of

county-level corn intensity in any specification. We therefore assume that the government policies

Gkt and economic factors Xkt are exogenous from the point of view of an individual potential

investors and that an individual potential investor i’s investment decision in an individual county

k does not impact government policies Gkt or economic factors Xkt.

Although we assume that an individual potential investor’s investment decisions do not

impact government policies or economic factors, we allow government policies to affect the evolution

of economic factors, and economic factors to affect the evolution of government policy. In particular,

we assume that the economic factors evolve as a finite state first-order Markov process Xk,t+1
iid∼

FX(·|Ωkt), and that a potential investor’s expectations of future values of economic factors depend

on the current values of economic factors and on current values of other state variables, including

government policies. We similarly assume that the government policies evolve as a finite state first-

order Markov process Gk,t+1
iid∼ FG(·|Ωkt), and that a potential investor’s expectations of future

5The modeling of transportation infrastructure investment decisions, which affect transportation costs and may
be endogenous at the county level, and which have been studied elsewhere (Fatal et al., 2012), is beyond the scope of
this paper. In lieu of explicitly modeling transportation costs, we include a metro area indicator in order to capture
proximity to market and transportation costs.

6We describe our data in more detail in Section 3.

6



values of the government policies depend on current values of these policies and on current values

of other state variables, including economic factors. We use empirical probabilities to estimate a

potential investor’s (conditional) expectation of future values of government policies and future

values of economic factors, conditional on current values of state values, including government

policy and economic factors.

The dynamic decision-making problem faced by a potential investor is even more compli-

cated when the investment payoff is affected not only by market conditions and government policies,

but also by the existence of nearby plants. Due to potential competition effects and agglomeration

effects (Lin Lawell, 2017; Thome and Lin Lawell, 2022), the presence of existing ethanol plants

may affect the payoff from investing in building a new ethanol plant. As a consequence, a potential

investor’s investment decision depends on its conjecture about competitors’ behavior. In particular,

potential investors may condition their investment decisions on both whether there is an existing

ethanol plant in the county Nkt as well as their expectations on what the future values of Nkt may

be. Future values of Nkt may be different from current values if other potential investors invest in

building a new ethanol plant in a given year.

Since Nkt is a dummy variable for whether there is an existing ethanol plant in county k

at the start of period t, and is therefore pre-determined before the time-t investment decision is

made, it is not endogenous. Because of the time necessary to construct a plant, a potential investor

necessarily observes any previously existing plants before deciding whether to invest.7

As explained in more detail in Section 3, almost all of the economic factors Xkt in our

data are measured at aggregate levels that include many counties k. Because we do not have local

variation in ethanol, gasoline, or natural gas prices, local competition in the ethanol and gasoline

output markets and in the gasoline and natural gas input markets are captured by the dummy

variable Nkt for whether there is an existing ethanol plant in the county.

We model the future values of whether there is an existing ethanol plant in the county

as uncertain from the point of view of potential investors. In particular, we assume that whether

there is an existing ethanol plant in the county evolves as a finite state first-order controlled Markov

process, and that a potential investor’s expectations Nk,t+1
iid∼ FN (·|Ωkt, Iikt = 0) of future values

of whether there is an existing ethanol plant in the county, conditional on the investor not investing

this period, depend on whether there is currently an existing ethanol plant in the county and on

current values of other state variables, including government policies Gkt and economic factors Xkt.

We use empirical probabilities to estimate a potential investor’s (conditional) expectation of future

values of whether there is an existing ethanol plant in the county, conditional on whether there is

currently an existing ethanol plant in the county, on current values of other state variables, and on

the potential investor not investing this period.

7As explained in more detail in Section 3, the dummy for existing plants Nkt in the county is a dummy variable
for whether there is an operational plant in that county on January 1 of year t, and is therefore observable to any
potential investor making a decision in year t. We do not distinguish between whether there are 1 or 2 incumbent
plants for state space considerations, and because very few counties had 2 or more ethanol plants. Only 1 county
had 3 ethanol plants in 2008, the final year of our analysis.
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We use counties to delineate the set of existing ethanol plants and potential investors that

may strategically interact in our ethanol plant investment timing game because the county delin-

eation yields markets with geographical areas commensurate with the extent of local competition.

Owing to high transportation costs in both the feedstock and ethanol markets, competition among

neighboring plants is localized (McNew and Griffith, 2005; Lambert et al., 2008; Sarmiento, Wilson

and Dahl, 2012; Zhang and Irwin, 2007; Thome and Lin Lawell, 2022), and the competition effect

decays with distance (Sarmiento, Wilson and Dahl, 2012; Thome and Lin Lawell, 2022). In their

reduced-form analysis of ethanol plant entry during the second US ethanol boom, Thome and Lin

Lawell (2022) find that existing plants have a significant negative effect on the probability of entry

in a given county, but that existing plants in neighboring counties do not. Thus, the geographical

extent of local competition in the feedstock input market and the ethanol output market is unlikely

to be larger than the size of markets defined at the county level.

In addition to the observable state variables Ωkt = (Nkt, Gkt, Xkt), the decision of a potential

investor i of whether to invest in building an ethanol plant in county k in year t also depends on

a shock εikt, which is private information to potential investor i and unobserved by either other

potential investors or by the econometrician. Such private information may include, for example,

a shock to the cost of building an ethanol plant. We assume the error term is independently and

identically distributed exponentially with mean σ, which is among the parameters to be estimated.

The equilibrium concept used in the model is that of a Markov perfect equilibrium. Each

potential investor is assumed to play a Markov ”state-space” strategy: the past influences current

play only through its effect on the state variables. A potential investor’s dynamically optimal

investment policy is then the Markov strategy that it plays in the Markov perfect equilibrium,

which is a profile of Markov strategies that yields a Nash equilibrium in every proper subgame

(Fudenberg and Tirole, 1998).

While each potential investor’s time-t investment decision depends on both the publicly

observable state variables Ωkt as well as the potential investor’s own private information εikt, its

perception of other potential investors’ time-t investment decisions depend only on the publicly

observable state variables Ωkt. This is because, owing to the above assumptions on the observable

state variables and on the unobservable shocks, potential investors can take expectations over

their competitors’ private information.8 In equilibrium, potential investors’ perceptions of their

competitors’ investment probabilities should be consistent with those that are actually realized

(Starr and Ho, 1969).

The model has at least one Markov perfect equilibrium, and each equilibrium generates a

finite state Markov chain in Ωkt tuples (Pakes, Ostrovsky and Berry, 2007).9 Because we estimate

our model using data that is pooled across all counties, we assume that the data are generated

8While each potential investor plays a pure strategy, from the point of view of their competitors, they appear to
play mixed strategies. Thus, as with Harsanyi’s (1973) purification theorem, a mixed distribution over actions is the
result of unobserved payoff perturbations that sometimes lead potential investors to have a strict preference for one
action, and sometimes a strict preference for another.

9A Markov chain is a Markov process on a finite state space (Stokey, Lucas and Prescott, 1989).
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by a single Markov perfect equilibrium, and therefore that the same equilibrium is played in each

county. If a mixed strategy equilibrium is played, then we assume that the same mixed strategy

equilibrium is played in each county. Under these assumptions, for large enough samples, the data

will pick out the correct equilibrium and the estimators for the parameters in the model will be

consistent (Pakes, Ostrovsky and Berry, 2007). When observed games are drawn from a population

that is culturally or geographically close and shares similar norms and conventions, as perhaps

can be argued is the case for agricultural counties in the Midwestern United States, one would

expect that it is adequate to assume that the same equilibrium is played across games (de Paula,

2013). Moreover, following Bresnahan and Reiss (1990, 1991), to reduce the number of potential

equilibria and thereby further mitigate the issue of multiple equilibria, we assume that all the firms

are symmetric conditional on the state variables and that they produce a homogeneous good, and

therefore that a potential investor’s investment decision depends on whether there is an existing

ethanol plant in the county Nkt, rather than the identity of the existing plants.10

The payoff π(Ωkt, εikt; θ) from investing in an ethanol plant in county k in year t, which

represents the expected present discounted value of the entire stream of net benefits from investing

in an ethanol plant in county k in year t, can be separated into a deterministic component and a

stochastic component as follows:

π(Ωkt, εikt; θ) = π0(Ωkt; θ) + εikt, (1)

where the deterministic component π0(·) is linear in the state variables:

π0(Ωkt; θ) = N ′
ktγN +G′

ktγG +X ′
ktγX , (2)

and where θ = (γN , γG, γX , σ) denotes the parameters to be estimated. The coefficients γN , γG,

and γX measure the effects of the state variables Nkt, Gkt, and Xkt, respectively, on the payoff to

investing in building a new ethanol plant.

The dynamic optimization problem faced by a potential investor i is to choose the invest-

ment strategy to maximize the investor’s expected present discounted value. The value function

V (Ωkt, εikt; θ) for a potential investor i in county k in year t, which is the expected present dis-

counted value from following the dynamically optimal investment strategy, can be written as:

V (Ωkt, εikt; θ) = max{π(Ωkt, εikt; θ), βV
c(Ωkt; θ)}, (3)

10If a long panel is available, it may sometimes be possible to estimate the policy functions separately for each
market (Bajari, Benkard and Levin, 2007). Since our study involves a large number of markets (870) and a small
number of time periods (13), however, and due to the scarcity of long panel data, we instead assume that the pooled
data are generated by the same equilibrium. Otsu, Pesendorfer and Takahashi (2016) propose statistical tests for
finite state Markov games to examine whether data from distinct markets can be pooled. Unfortunately, their test
is not applicable to our context since their test performs well for moderate values of the number of markets (e.g., 20
or 40), while our study involves a large number of markets (870) and a small number of time periods (13). As seen
in their Monte Carlo results when multiple equilibria are possible with non-zero probability in their Tables 3 and 4,
their test does not perform well in their simulations in which the number of markets is closest to that in our study
(i.e., 640) and the number of time periods is closest to that in our study (i.e., 10).
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where β is the discount factor and V c(·) is the continuation value. The continuation value V c(·) is
the expected value of the next period’s value function, conditional on not building an ethanol plant

in the current period, and is given by:

V c(Ωkt; θ) = E[V (Ωk,t+1, εik,t+1; θ)|Ωkt, Iikt = 0], (4)

where the expectation is taken over the values of the state variables Ωk,t+1 next period and the

private information εik,t+1 next period, conditional on the state variables Ωkt this period, and

conditional on not investing this period (Iikt = 0). The distribution of state variables Ωk,t+1 next

period, conditional on the state variables Ωkt this period, and conditional on not investing this

period (Iikt = 0), is given by:

FΩ(Ωk,t+1|Ωkt, Iikt = 0) = FG(Gk,t+1|Ωkt)FX(Xk,t+1|Ωkt)FN (Nk,t+1|Ωkt, Iikt = 0). (5)

In a static model of investment, the statically optimal investment rule is to invest if the

payoff π(·) from investing is greater than 0. When investments are irreversible and there is un-

certainty over the future payoff from investment, however, the statically optimal investment rule

is not dynamically optimal. In particular, since the state variables Ωkt (which describe economic

factors, the policy environment, and whether there is an existing ethanol plant in the county) evolve

stochastically over time, it is possible that the state variables may take on values in the future that

yield a payoff π(·) that is high enough that the potential investor would do better in expected

present discounted value to wait rather than make the investment now, even if the payoff π(·) now
is positive. A potential investor who hopes to make a dynamically optimal decision would therefore

need to account for the option value to waiting before making this irreversible investment (Dixit

and Pindyck, 1994).

As seen in Equation (3) for the value function V (Ωkt, εikt; θ) for a potential investor, the

dynamically optimal investment policy is for the potential investor to invest in building an ethanol

plant in year t if and only if the payoff π(·) from investing exceeds the discount factor β times the

continuation value V c(·) to waiting. Because the continuation value to waiting V c(·) is positive, the
dynamically optimal investment rule, which accounts for the option value to waiting, has a higher

threshold βV c(·) for the payoff from investment to exceed before an investment is made compared

to the static investment rule, whose threshold is 0. The option value to waiting before investing in

building an ethanol plant arises from uncertainty regarding market conditions, government policies,

and whether another plant might be constructed nearby, as captured by the stochastic evolution of

the state variables Ωkt. Thus, our structural model, which is dynamic, is more appropriate than a

reduced-form model, which does not explicitly model either the continuation values or the option

value to waiting.

Government policies Gkt affect the decision-making problem faced by a potential investor

through several channels. First, as seen in Equation (1), government policies Gkt in year t affect the

payoff π(Ωkt, εikt; θ) from investing in an ethanol plant in county k in year t. Second, expectations

10



and uncertainty about future values of government policies affect a potential investor’s decision

via the transition density FG(Gk,t+1|Ωkt), which, as seen in Equations (4) and (5), affects the

continuation value to waiting V c(·). Third, government policies Gkt affect the evolution of economic

factors Xkt, which include the ethanol price and the availability and cost of corn, through the

transition density FX(Xk,t+1|Ωkt), which, as seen in Equations (4) and (5), in turn affects the

continuation value to waiting V c(·). Fourth, government policies Gkt affect the decisions of other

potential investors, and therefore the evolution of future values of whether there is an existing

ethanol plant in the county Nkt, as captured by the transition density FN (Nk,t+1|Ωkt, Iikt = 0),

which, as seen in Equations (4) and (5), again affects the continuation value to waiting V c(·).
Let g(Ωkt; θ) denote the probability of investing in an ethanol plant at time t, conditional

on the publicly observable information Ωkt at time t, but not on the private information εikt. The

investment choice probability g(Ωkt; θ) is then given by:

g(Ωkt; θ) ≡ Pr (Iikt = 1|Ωkt; θ) = Pr (εikt : π(Ωkt, εikt; θ) > βV c(Ωkt; θ)) . (6)

Evaluating Equation (4) for the continuation value V c(·) using the exponential distribution

for εikt and Equation (1) for the investment payoff π(·), we obtain (Pakes, Ostrovsky and Berry

2007; Lin, 2013):

V c(Ωkt; θ) = E[βV (Ωk,t+1, εik,t+1; θ) + σg(Ωk,t+1; θ)|Ωkt, Iikt = 0]. (7)

Similarly, evaluating Equation (6) for the investment choice probability g(·) using the ex-

ponential distribution for εikt and Equation (1) for the investment payoff π(·), we obtain (Pakes,

Ostrovsky and Berry 2007; Lin, 2013):

g(Ωkt; θ) ≡ Pr (Iikt = 1|Ωkt; θ) = exp

(
−βV

c(Ωkt; θ)− π0(Ωkt; θ)

σ

)
. (8)

For a potential investor i in county k who decides to invest in building an ethanol plant in

year t, we define the welfare we(·) of that investor (entrant) as the expected current-value payoff

that i receives from investing, where the expectation is taken over the private information εikt, as

follows:

we(Ωkt; θ) = E[π(Ωkt, εikt; θ)|Ωkt] = N ′
ktγN +G′

ktγG +X ′
ktγX + σ. (9)

The expression for entrant welfare we(·) incorporates both the deterministic part of the payoff from

investing, π0(Ωkt; θ) = N ′
ktγN +G′

ktγG +X ′
ktγX , as well the mean of the private shock E[εikt] = σ.

As the focus of our paper is on ethanol investment, our definition for entrant welfare we(·) focuses
on the welfare to the entrant, and therefore does not include consumer surplus, environmental

benefits, or other possible components of social welfare.

11



2.2 Econometric Estimation

Among the advantages of estimating a dynamic structural econometric model is that doing so

enables one to explicitly model the dynamic investment decision, including the continuation value

to waiting; to estimate the effect of each state variable on the payoff from investing in an ethanol

plant; and to run counterfactual policy simulations.11 We use a structural econometric model of a

dynamic game developed by Pakes, Ostrovsky and Berry (2007), which has been applied to analyze

the multi-stage investment timing game in offshore petroleum production (Lin, 2013) and peer

effects in health promotion programs in developing countries (Ma et al., 2025).12 We employ a

two-step semi-parametric estimation procedure.

Let ntuple denote the number of combinations (or tuples) of state variables. In other words,

ntuple is the number of different values of the vector Ωkt = (Nkt, Gkt, Xkt) of discrete and finite-

valued state variables.

In the first step in the estimation, we estimate a transition matrix M to capture potential

investors’ expectations FΩ(Ωk,t+1|Ωkt, Iikt = 0) about the evolution of the state variables Ωkt =

(Nkt, Gkt, Xkt) over time, conditional on not investing. In particular, the transition matrix M

is an ntuple by ntuple matrix that gives, for each combination of state variables in year t, the

probability of transitioning to each combination of state variables in year t+1 conditional on not

investing in year t. The element in each row r, column c of the transition matrix M is given

by: Mrc = Pr(Ωk,t+1 = c|Ωkt = r, Iikt = 0). We estimate M non-parametrically using empirical

averages. We therefore assume rational expectations on the part of potential ethanol investors,

namely that their expectations about the evolution of state variables over the time period of our

data set were consistent with the actual evolution realized.

Let ḡ be the vectorized investment policy function, which is a vector whose length is the

number of combinations ntuple of state variables and whose value ḡ(Ωkt) at each component is the

investment policy function g(·) evaluated at the respective combination Ωkt of state variables. Each

component ḡ(Ωkt) of the vectorized investment policy function ḡ gives the probability of investment

11Dynamic structural econometric models, including those developed by Rust (1987, 1988) and Hotz et al. (1994)
have been adapted for many applications, including related applications to energy (Rapson, 2014; Cullen, 2015;
Cullen et al., 2017; Cook and Lin Lawell, 2020; Feger et al., 2020; Langer and Lemoine, 2022; Weber, 2022; Bradt,
2024; Butters, Dorsey and Gowrisankaran, 2025), transportation (Donna, 2021; Li, Liu and Wei, 2022; Gillingham
et al., 2022), agriculture (Scott, 2013; Carroll et al., 2019; Yeh, Gómez and Lin Lawell, 2025; Carroll et al., 2025b;
Meneses et al., 2025; Sambucci, Lin Lawell and Lybbert, 2025; Carroll et al., 2025a), resource management (Timmins,
2002; Aguirregabiria and Luengo, 2016; Reeling, Verdier and Lupi, 2020), environmental regulations (Blundell,
Gowrisankaran and Langer, 2020; Toyama, 2024), and forestry (Oliva et al., 2020; Araujo, Costa and M. Sant’Anna,
2021; Wu et al., 2025).

12Other structural econometric models of dynamic games include those developed by Aguirregabiria and Mira
(2007), Bajari, Benkard and Levin (2007), de Paula (2009), Bajari et al. (2015), Pesendorfer and Schmidt-Dengler
(2008), Srisuma and Linton (2012), Egesdal, Lai and Su (2015), Adusumilli and Eckardt (2020), and Dearing and
Blevins (2025). Related applications of structural econometric models of dynamic games include applications to
environmental policy (Ryan, 2012; Fowlie, Reguant and Ryan, 2016; Yi, Lin Lawell and Thome, 2025; Zakerinia
and Lin Lawell, 2025), energy (Lim and Yurukoglu, 2018; Gerarden, 2023; Jha, 2023; Gowrisankaran, Langer and
Reguant, 2025; Kheiravar, Lin Lawell and Jaffe, 2025), government policy (Barwick, Kalouptsidi and Zahur, 2025),
resource management (Huang and Smith, 2014; Sears, Lin Lawell and Walter, 2025; Sears et al., 2025a; Sears et al.,
2025b), and development (Rojas Valdés, Lin Lawell and Taylor, 2025).
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in a new ethanol plant for the respective observed state of the world Ωkt. We estimate ḡ using

empirical averages.

From Equation (7), the vectorized continuation value V̄ c, which is a vector whose length

is the number of combinations ntuple of state variables and whose value at each component is the

continuation value V c(·) evaluated at the respective combination Ωkt of state variables, can be

specified in vector form as:

V̄ c =M(βV̄ c + σḡ), (10)

where M is the empirical transition matrix, β is the discount factor, and ḡ is the vector of empirical

investment probabilities. Because this is an infinite horizon problem, we estimate the continuation

value by solving Equation (10) for the fixed point V̂ c, which, from Blackwell’s Theorem, is unique.

We then apply the estimate V̂ c to Equation (8) to form the vectorized predicted probability

of investment in an ethanol plant, ĝ, which, given the parameters θ, is a vector whose length is the

number of combinations ntuple of state variables and whose value ĝ(Ωkt; θ) at each component is the

investment policy function g(·) evaluated at the respective combination Ωkt of state variables and

at the vector of parameters θ. Each component ĝ(Ωkt; θ) of the vectorized predicted probability of

investment ĝ gives the probability of investment in a new ethanol plant for the respective observed

state of the world Ωkt given the parameters θ. From Equation (8), ĝ can be specified in vector form

as:

ĝ = exp

(
−
βV̂ c −N ′

ktγN −G′
ktγG −X ′

ktγX
σ

)
. (11)

In the second step of the estimation procedure, we estimate the parameters θ = (γN , γG, γX , σ)

by finding the parameters that best match the investment probability predicted by our model with

the respective empirical investment probabilities in the data using generalized method of moments

(GMM). We use the following moment function:

ψ = (ĝ(Ωkt; θ)− ḡ(Ωkt))n(Ωkt|Iikt−1 = 0), (12)

where n(Ωkt|Iikt−1 = 0) counts the number of times each state Ωkt = (Nkt, Gkt, Xkt) occurs where

there is a potential investor. Additional moments are constructed by interacting the above moments

ψ with the state variables Ωkt. The GMM estimator θ̂ is the solution to the problem:

min
θ

(
1

obs

∑
ψ

)′
W−1

n

(
1

obs

∑
ψ

)
, (13)

where obs is the number of potential investor-county-year observations. Because the system is

exactly identified, we use an identity matrix as the weight matrix Wn.
13

Identification of the parameter σ governing the distribution of private information εikt is

similar to the identification of the entry parameter in Pakes, Ostrovsky and Berry (2007): it comes

13One challenge is determining whether the model has converged at a global or local minimum. We experimented
with several combinations of starting values to initialize the parameters to be estimated. We found the model is
robust to the starting value.
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from the realized investment frequencies, and in particular the moments that match the predicted

investment probabilities with the actual probabilities in the data. Identification of the parameters

γ = (γN , γG, γX) in the payoff from investing in an ethanol plant comes from variation in the state

variables Ωkt = (Nkt, Gkt, Xkt) and investment decisions Iikt across county-years, and in particular

the moments that match the predicted and actual investment probabilities when these probabilities

are interacted with the state variables. As explained below, since our dynamic discrete choice model

only identifies relative values of the coefficients in the investment payoff relative to the mean σ of the

private shock, and does not separately identify the magnitudes of the coefficients in the investment

payoff and the mean σ of the private shock, we focus on interpreting the signs, statistical significance,

and relative magnitudes of the parameters, rather than their absolute magnitudes. Moreover, since

our dynamic discrete choice model only identifies relative welfare values, not absolute values, and

since welfare is therefore unitless, we normalize welfare so that the mean welfare per entrant of the

No Policy scenario is equal to 1.

We form standard errors by a nonparametric bootstrap. We randomly draw counties from

the data with replacement to generate 250 independent panels of size equal to the actual sample

size. The structural econometric model is run on each of the new panels. The standard error is

then formed by taking the standard deviation of the estimates from each of the random samples.14

3 Data

We focus on investments in corn-ethanol plants15 in the Midwestern United States, where the ma-

jority of corn (and ethanol from corn) is produced, over the period 1996 to 2008.16 We focus in

particular on the following ten states: Iowa, Illinois, Indiana, Kansas, Minnesota, Missouri, Ne-

braska, Ohio, South Dakota, and Wisconsin. For our econometric analysis, we eliminate completely

14The problem of spatially correlated unobservables can be addressed by interpreting the investment payoff in the
model as expected investment payoff conditional on observables, where the expectation is taken over the correlated
unobservables. The model is still able to separately identify the (expected) strategic interaction from the correlated
unobservables. In the online Appendix to Lin (2013), Lin (2013) conducts Monte Carlo experiments to analyze
the effect of a state variable that is observed by firms when they make their decisions but unobservable to the
econometrician (i.e., a common shock), and shows that the bias introduced by spatially correlated unobservables is
small. This is consistent with Pakes, Ostrovsky and Berry (2007), who find that the bias from serially correlated
common shocks is small.

15While ethanol is produced throughout the United States using various feedstocks, 95% of the ethanol produced
in this time frame is produced from corn. Focusing on corn-ethanol plants eliminates the need to consider feedstock
choice in the model. For structural econometric models of feedstock choice, see Yi and Lin Lawell (2025b), who model
ethanol investment and feedstock choice in Europe; and Yi and Lin Lawell (2025a), who model ethanol investment
and feedstock choice in Canada.

16We focus on the time period 1996 to 2008, which corresponds to the second ethanol boom in the US. This time
period is narrow enough to allow us to use one set of policy variables, as well as ensure similarity in plant technology.
Starting the analysis earlier would also be difficult because plant startup and closure information is not readily
available before this date. Including the entrants during 2009 and 2010 would require accounting for plant closure
due to the market crash and implosion of Verasun, a large producer. Many plants stopped production in late 2008
or early 2009 following Verasun’s bankruptcy declaration on October 31, 2008. Operations were normal the rest of
the year, and many of the shuttered plants have since restarted under new ownership. Prior to 2008, there was only
one permanent closure (exit) in the sample; others closures were the result of accidents or buyouts, and the plants
returned to normal operations. The exit phenomenon in a subject of ongoing work and is outside the scope of this
model.

14



non-agricultural counties within the ten states (e.g., northern Minnesota), as well as those with

missing data on agricultural production.

We use counties to delineate the set of existing ethanol plants and potential investors that

may strategically interact in our ethanol plant investment timing game because the county delin-

eation yields markets with geographical areas commensurate with the extent of local competition.

Owing to high transportation costs in both the feedstock and ethanol markets, competition among

neighboring plants is localized (McNew and Griffith, 2005; Lambert et al., 2008; Sarmiento, Wilson

and Dahl, 2012; Zhang and Irwin, 2007; Thome and Lin Lawell, 2022), and the competition effect

decays with distance (Sarmiento, Wilson and Dahl, 2012; Thome and Lin Lawell, 2022). In their

reduced-form analysis of ethanol plant entry during the second US ethanol boom, Thome and Lin

Lawell (2022) find that existing plants have a significant negative effect on the probability of entry

in a given county, but that existing plants in neighboring counties do not. Thus, the geographical

extent of local competition in the feedstock input market and the ethanol output market is unlikely

to be larger than the size of markets defined at the county level.

3.1 Plant Variables

Our ethanol plant data set includes information about start-up date of new entrants, and nameplate

capacity and ownership type for new and existing plants. The original list of operational plants was

obtained online from the Renewable Fuels Association and Ethanol Producer magazine, including

historical lists from the Renewable Fuels Association.17 The sample begins with 22 operational

plants at the start of 1996, and ends with 149 operational plants with a total capacity of almost 10

billion gallons per year in 2008.

The investment variable Iikt is an indicator of whether potential investor i invests in building

a new ethanol plant in county k in year t.18 The maximum number of ethanol plants in any county

in our data set during the time period of our data set is three. Thus, for the number of potential

investors nkt, we allow for up to 3 potential ethanol investors per county-year. The investment

variable Iikt is equal to 1 if the plant enters in a given calendar year.19 Once a potential investor i

invests, it is no longer a potential investor and therefore exits the sample. The dummy for existing

plants Nkt in the county is a dummy variable for whether there is an operational plant in that

county on January 1 of year t, and is therefore observable to any potential investor making a

decision in year t. We do not distinguish between whether there are 1 or 2 incumbent plants for

state space considerations, and because very few counties had 2 or more ethanol plants. Only 1

17These lists do not match perfectly. We were able to rectify inconsistencies between the two lists as well as collect
additional information on plant owners by searching through plant websites, newspaper articles, and SEC filings.

18Though the start-up month for new plants is available, we use annual observations for three reasons. First,
the feedstock of focus, corn, has one growing season in the US. Second, construction of an ethanol plant takes
significantly longer than a month, but usually less than a year, from the start of physical construction activities.
There was a production bottleneck in 2007, when plants took 18-24 months to build (Koplow, 2007). We do not
consider announcements of new plants, as other studies did, because many announced projects were never completed
as investors fell through before construction began. Finally, much of the data on other variables are publicly available
at an annual level.

19Entry is the date of the first grind of corn, which is the first step in corn-ethanol production.
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county had 3 ethanol plants in 2008, the final year of our analysis.

3.2 Policy Variables

We include two state-level policy variables and two federal-level policy variables. The first state-

level policy variable we use is an indicator of whether the state banned MTBE at any point in a

given year. The first states in our sample banned MTBE as early as 2000. All the Midwestern

states in our sample implemented MTBE bans by 2005, before the nationwide ban took effect in

2006.

The second state-level policy variable represents the state producer tax credits.20 Defining

the state producer tax credit variable is complicated because each state places different contingencies

on receiving these funds. For example, some states support only large-capacity plants, others

only small or community-owned plants. Thus, even in states with tax credits, not all entering or

incumbent plants qualify. In addition, some of the credits are available for a specified number or

years, while others expire on a date unrelated to time of plant entry. Because of these differences,

we represent these policies with a binary variable indicating if producer tax credit benefits were

offered to plants that entered in that year.21

At the federal level, we include indicators for the two versions of the Renewable Fuel Stan-

dard (RFS1 and RFS2). The RFS was created under the Energy Policy Act of 2005 with the goal of

accelerating the use of fuels derived from renewable sources (EPA, 2021). This initial RFS (RFS1)

mandated that a minimum of 4 billion gallons of ethanol be blended into gasoline in 2006, rising

to 7.5 billion gallons by 2012. Two years later, the Energy Independence and Security Act of 2007

greatly expanded the biofuel mandate volumes, creating the RFS2. The RFS2 requires steadily

increasing volumes of biofuel to be blended into the nation’s fuel supply, reaching 37 billion gallons

a year by 2022. We model RFS1 with an indicator for the years 2005 and 2006 and RFS2 as an

indicator for the years 2007 and onwards.22

3.3 Economic Variables

Corn and soy prices are available annually from the National Agricultural Statistics Service of the

USDA (NASS) at the state level. Corn production and acreage are available annually by county

20The American Coalition for Ethanol (2007) provides detailed description and review of the policies. Cotti and
Skidmore (2010) study state-level impacts of these policies.

21We hope in future work to quantify the stringency and extent of various state tax credit policies in order to
further examine the effects of government policies on ethanol plant investment decisions.

22We do not include other federal-level policy variables such as the tax credit or the small producer subsidy in
the analysis because they do not vary enough in the time period to identify the effects. We hope in future work to
quantify the stringency and extent of various state tax credit policies and combine the various state tax credit policies
with the federal ethanol tax credit in order to further examine the effects of government policies on ethanol plant
investment decisions. In our ongoing work in Yi, Lin Lawell, and Thome (2025), for example, we empirically analyze
how government subsidies and the Renewable Fuel Standard (a form of a fuel mandate) affect ethanol production,
investment, entry, and exit by estimating a structural econometric model of a dynamic game. We use the estimated
parameters to evaluate three different types of subsidy – a production subsidy, an investment subsidy, and an entry
subsidy – each with and without the Renewable Fuel Standard.
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from NASS. Because counties are different areas, we construct a county corn intensity variable,

defined as the corn acreage divided by the total area of the county, to capture area-independent

acreage using county acreage from the US Census. Because corn price data are not publicly available

at a county level, the local competition in the corn feedstock market is captured both by the county-

level corn intensity variable and by the dummy variable Nkt for whether there is an existing ethanol

plant in the county.

To represent the potential market for distillers’ grains (DDGS), a co-product of corn-ethanol

production that is used for animal feed, we construct a district-level cow density variable using the

number of cows per district-acre, where the number of cows is the count of ‘all cattle’, available

from NASS, and districts are defined by the USDA.23 The potential DDGS market also includes

hogs, but data is not available at the district level for all states. Nevertheless, because cattle use

DDGS more efficiently than hogs, they represent the larger market for co-products (NASS, 2007).

The ethanol price is the free on board price in Omaha, and is published by the Nebraska

Energy Office. We use state-level total gasoline rack prices from the Energy Information Admin-

istration. We do not include an E85 price in this analysis because the price series began much

more recently than our time frame, and it lacks spatial variation. Natural gas (city gate) price

and electricity price to industry are available annually from the EIA, also at state level.24 We use

the average urban CPI to deflate all the prices. For the indicator for metropolitan areas, we use

the US Census definition of counties in metropolitan statistical areas. Data on biodiesel are from

the National Biodiesel Board and Biodiesel Magazine. We construct a dummy variable existing

biodiesel for whether there is existing biodiesel production capacity in county k at the start of year

t.

Because we do not have local variation in ethanol, gasoline, natural gas, or electricity prices,

local competition in the ethanol and gasoline output markets and in the gasoline, natural gas and

electricity input markets are captured by the dummy variable Nkt for whether there is an existing

ethanol plant in the county.

3.4 State Variables

We discretize each of the continuous variables in our data into discrete and finite-valued state

variables, as detailed in Table A.3 in Appendix A. For our base specification, we discretize the

continuous variables into two bins each. In some cases we aim for equally-sized bins (natural gas

price, electricity price, gasoline price, ethanol price, corn intensity). For other variables, owing in

part to their skewed distribution, we create bins that put higher weight on the lower (corn price)

or higher (cow density) part of the continuous variable. We also construct alternate bins to test the

robustness of our model to different break points, including discretizing the continuous variables

into three instead of two bins. Summary statistics for the discretized state variables used in our

23A district is made of up to 120 counties and there are usually 6-8 districts per state.
24We use city gate natural gas price instead of price to industry because the complete series is available; these two

price series trend together within a given state.
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structural model are in Table A.4 in Appendix A.

Each state of the county Ωkt = (Nkt, Gkt, Xkt) is represented by a combination (or tuple)

of discretized state variables. The number of potential states ntuple in each county is the product

of the number of bins of each state variable. Dimensionality is an important consideration for the

simulations we perform using the structural estimates. For example, when we simulate removing

a policy, we must observe the rest of the variables describing the state of the world Ωkt with and

without the policy. Thus, our preferred specification has fewer bins and covariates, thus fewer

potential states of the world Ωkt that we must identify and observe to conduct simulations.

Because the main objectives of this paper are to learn about the effects of government

policy on investment, we are most concerned with the other state variables to the extent that they

can fully describe the state of input and output markets. The indicator variables we construct for

output and energy input prices allow us to control for prices in the state of the world, while freeing

up dimensions to focus on and identify different policies in our simulations. The variable energy

input price is an indicator that is one when both the electricity and natural gas prices are high.

The variable output price indicator is one when both the gasoline and ethanol price is high.

4 Results of Structural Model

4.1 Structural Parameters

The results from the structural estimation of the parameters are reported in Table 1 and Table

A.5 in Appendix A. Since our dynamic discrete choice model only identifies relative values of the

coefficients in the investment payoff relative to the mean σ of the private shock, and does not

separately identify the magnitudes of the coefficients in the investment payoff and the mean σ of

the private shock, we focus on interpreting the signs, statistical significance, and relative magnitudes

of the parameters, rather than their absolute magnitudes. Our preferred specification, which we

use for the counterfactual policy simulations, is specification (i) in Table 1.

The additional specifications (ii)-(vi) in Table 1 show the robustness of the model to different

price specifications. As seen in these alternative price specifications, the coefficient on electricity

price is not significant and the coefficients on the input price indicator are not robust across

specifications. This is consistent with the reduced-form analysis in Thome and Lin Lawell (2022),

which indicates that electricity price does not have a significant impacts on the probability of entry.

Our preferred specification (i) therefore includes only natural gas price and not electricity price or

the input price indicator. Also as seen in these alternative price specifications, the significant

parameters in our preferred specification (i) are all robust and significant across all the alternative

price specifications (ii)-(iv).

All of the policy variables have positive impacts on the payoff from investment in an ethanol

plant, and two, the state-level MTBE Ban and the federal-level RFS2, are significant. Because both

the MTBE ban and the Renewable Fuel Standard can function as implicit blending mandates (de

Gorter and Just, 2010; Anderson and Elzinga, 2014), the similar magnitude of the coefficients
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suggests similar implicit state blending levels. Further, the coefficient on RFS1 is much smaller

and is not statistically significant, which would suggest that the first version of the RFS was not

big enough to induce investment.

On the input (cost) side, county-level corn intensity has a positive impact on the payoff

from investment, while corn price is not significant. This result is similar to the reduced-form

literature on plant location, which finds that physical access to feedstock is a significant location

determinant, but more aggregate feedstock prices are not important (e.g. Cotti and Skidmore,

2010).

On the revenue side, the coefficient on output price indicator is negative; this means when

both ethanol and gasoline prices are high, there is a negative impact on the payoff from investing.

In the alternate price specifications (iii) and (iv) in Table 1, we show that high ethanol and gasoline

prices have negative impacts on the payoff from investment when modeled individually, though the

effects are insignificant.

The constant and the mean σ of the private shock are both significant determinants of the

payoff from investing. Since our dynamic discrete choice model only identifies relative values of

the coefficients in the investment payoff relative to the mean σ of the private shock, and does not

separately identify the magnitudes of the coefficients in the investment payoff and the mean σ of the

private shock, we focus on interpreting the signs, statistical significance, and relative magnitudes of

the parameters, rather than their absolute magnitudes. The estimate of σ is similar in magnitude

to the coefficients on MTBE Ban and RFS2, indicating that this private information shock can be

as important as the policies in determining investment payoff. The constant is large and negative,

indicating there are significant fixed costs to investing in an ethanol plant.

Specifications (v)-(vi) in Table 1 show the robustness of the model to various specifications

of the input price variables, none of which have significant impacts on the payoffs from investing in

an ethanol plant. Specification (vii) in Table A.5 in Appendix A builds on the base specification by

adding the additional covariatesmetro area and existing biodiesel. These variables have insignificant

effects on the expected payoff from investing in an ethanol plant, and their inclusion does not lead to

noticeable differences in the other estimates. Consequently, we do not include these covariates in our

preferred specification. Specifications (viii) and (ix) in Table A.5 in Appendix A show the results

of structural estimation with alternate bins and more covariates than our preferred specification

(specification (i)).25 Since dimensionality is an important consideration for the simulations we

perform using the structural estimates, however, our preferred specification (i) has fewer bins and

covariates, thus fewer potential states of the world Ωkt that we must identify and observe to conduct

simulations. Once again, the significant parameters in our preferred specification (i) are robust and

significant across the alternative specifications (vii)-(ix).

Across our different specifications, we find the robust result that the dummy for existing

plants Nkt does not have a significant net effect on the payoff from investment.26 Thus, our

25The bins we use in the base and alternative specifications are described and discussed in Section 3.4.
26One possible explanation for why our results show that existing ethanol plants in the county do not have a

significant net effect on the payoff from investment is that our dummy for existing plants Nkt only captures variation
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results show that the uncertainty in the ethanol investment timing decision arises primarily from

uncertainty in economic factors Xkt and government policy Gkt, rather than also on uncertainty

in what other potential investors are doing and therefore what the future values of the dummy for

existing plants Nkt may be.

4.2 Goodness of Fit

To assess the goodness of fit of our model, we conduct a replication exercise in which we use our

estimated structural parameters θ̂ = (γ̂N , γ̂G, γ̂X , σ̂) from our preferred specification (i) of Table 1

and the observed exogenous state variables to simulate (or predict) the data. We call the model

predicted results our Base scenario.27 Table A.6 in Appendix A compares the observed statistics

(E, Et, W , w̄e, se) in the data with their model simulated values under the Base scenario. The

Base scenario does a good job of replicating the observed number of entrants and their welfare: the

simulated number of entrants in the Base scenario has a mean of 136, versus 132 in the data. The

data and the Base scenario also have similar values for the mean welfare per entrant w̄e and for

total welfare E. Our model therefore does a fairly good job matching the statistics based on actual

data.

5 Counterfactual Policy Scenarios

We use the estimated structural parameters θ̂ = (γ̂N , γ̂G, γ̂X , σ̂) from our preferred specification

(i) of Table 1 to simulate counterfactual policy scenarios to explore the policy factors driving

industry growth and location, and to disentangle the impacts of state and national policies on

the timing and location of investment in the industry. The counterfactual scenarios we run to

disentangle the impacts of state and national policies on the timing and location of investment

in the industry include the No RFS1, No RFS2, No Tax Credit, No MTBE Ban, and No Policy

scenarios. The No RFS1, No RFS2, No Tax Credit, and No MTBE Ban counterfactual scenarios

involve removing each respective policy individually. In the No Policy scenario, we remove all the

policies (MTBE Ban, RFS1, RFS2, and Tax Credit) that might promote investment in ethanol

plants. These counterfactual scenarios are summarized in Table A.1 in Appendix A. We describe

our methodology for the counterfactual simulations in more detail in Appendix B.2.

Our counterfactual simulations capture several channels through which counterfactual gov-

ernment policies may affect the decision-making problem faced by a potential investor. First, since

in whether there there is an existing ethanol plant in the county. In their reduced-form analysis of ethanol plant
entry during the second US ethanol boom, Thome and Lin Lawell (2022) use variation in the number of existing
ethanol plants as well as in the plant ownership type of existing plants, and find evidence for both local competition
among ethanol plants within counties, as well as possible agglomeration benefits from existing conglomerates and
large ethanol producing firms in neighboring counties. Owing to state-space considerations, we are not able to allow
for any more than binary variation in our variable for existing ethanol plants, but focus instead on analyzing the
effects of government policies on ethanol investment. We hope to further evaluate strategic considerations in future
work.

27We describe our methodology for the model fit simulations in Appendix B.1.
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government policies affect the payoff from investing in an ethanol plant, the counterfactual removal

of one or more government policies affects the payoff from investing and therefore the decision to

invest in an ethanol plant. Second, since government policies affect the evolution of other gov-

ernment policies, the counterfactual removal of one government policy affects expectations about

future values of other government policies, which in turn affect the expected payoffs from investing

in the future and therefore the option value to waiting. Third, since government policies affect the

evolution of economic factors, the counterfactual removal of one or more government policies affects

expectations about future values of economic factors, including the ethanol price and the availabil-

ity and cost of corn, and therefore the expected payoffs from investing in the future. Fourth, since

government policies affect the decisions of other potential investors, the counterfactual removal of

one or more government policies affects the decisions of other potential investors, which in turn

affect the expected payoffs from investing in the future.

Table 2 presents the results of counterfactual policy scenarios that were run over the full

period of our data set (1996-2008). As seen in the results in Table 2, removing the RFS2 significantly

decreases the number of entrants compared to the Base scenario, while removing RFS1 and the

state tax credit have smaller but noticeable affects on the number of entrants as well. The removal

of RFS2 also decreases the mean welfare per entrant w̄e relative to the Base scenario more than

does either the removal of RFS1 or the removal of the state tax credit.

As seen in Table 2, there are two striking results that arise from comparing entrants and

welfare in the Base and No Policy scenarios. First, the mean number of entrants in the No Policy

scenario is 37, which is significantly lower than the mean number of entrants of 136 in the Base

scenario. Together, the four policies led to most of the investment in plants over the 13 years of the

simulation. The second important takeaway is that the mean welfare per entrant, w̄e, is significantly

lower in the No Policy scenario than it is under the Base replication scenario. There is less entry

because expected payoff from investment in an ethanol plant is much lower without the policies.

The standard deviation of welfare per entrant under both the Base and No Policy scenarios is large

though; policy changes account for some, but not all, of the differences in profitability across space

and time.

While we use data from the entire time period of our data set to estimate the effect of

the MTBE Ban on the payoff from investing in an ethanol plant, we are only able to run our

counterfactual policy simulations for the No MTBE Ban scenario, which analyzes the counterfactual

scenario in which the MTBE Ban was removed in all states in all years, for the pre-RFS period only

(1996-2004). All the Midwestern states in our sample implemented MTBE bans by 2005, when the

Renewable Fuel Standard was first implemented. Thus, the MTBE ban was implemented in all

states in our sample in each of the two years that the federal RFS1 was in place in all states (2005

and 2006); and similarly the MTBE ban was implemented in all states in our sample in each of

the years in our data set that the federal RFS2 was in place in all states (2007 onwards). As a

consequence, in our data whenever we observe one of the RFS standards in place in any county

in any year, we also observe the MTBE Ban in place in that county and year. In contrast, we
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never have any county-year observations in which one of the RFS standards is in place, but the

MTBE ban is not. This means that it would therefore be impossible to identify a counterfactual

state of the world in which one of the RFS standards in place, but the MTBE ban is not, since

we never observe this counterfactual state of the world in the data. We therefore conducted the

counterfactual simulations for the No MTBE Ban scenario for the pre-RFS period only (1996-2004),

and compare their results with those from similarly running the Base, No Policy, and No Tax Credit

scenarios through 2004 instead of through 2008.

Table 3 shows the results of the No MTBE Ban scenario, as well as the Base, No Policy,

and No Tax Credit scenarios for the pre-RFS period (1996-2004). In this pre-RFS period only

(1996-2004), there were 48 entrants in the Base replication (46 in the data: see Table A.6), and

29 entrants in the scenario with No MTBE Ban; this large difference is statistically significant. In

this same time frame, there were 26 entrants in the No Policy scenario, and the difference between

the No Policy scenario and the No MTBE Ban scenario is only marginally statistically significant.

During this pre-RFS time period, the No Tax Credit scenario leads to fewer entrants than the Base

replication, but this number is still more than the No MTBE Ban scenario. In aggregate, these

results indicate that the MTBE Ban had a bigger effect on entry than the state tax credits in the

pre-RFS era during which the effects of the two policies can be identified and compared.

We disaggregate these results by year in Appendix C to further explore the interactions

among the policy effects. Viewing the simulated entrants by year is useful to begin to disentangle

the effects of the MTBE Ban and the RFS. As described in more detail in Appendix C, welfare per

entrant was lower in the pre-RFS era, which is why there were fewer entrants. During the period

2000-2004, which represents the period during which there were some MTBE bans but no RFS1

or RFS2, the MTBE ban accounted for 54% of the entrants in the period. Without the ban, there

would have been 16 new plants instead of the 35 that entered in the Base scenario. The RFS2 had

a larger impact in percentage and real terms. Nevertheless, both the No MTBE Ban and No RFS2

scenarios led to significantly lower welfare for entrants compared to the Base scenario in respective

the years when the MTBE ban and the RFS2 were in effect. In the No Policy scenario, entry was

slow and relatively constant over time, ranging from 1.6 to 4.1 new plants each year.

We disaggregate the results by each of the 10 Midwestern states in Table A.7 in Appendix A.

States differ in their local market conditions, when they implemented the MTBE ban, and whether

and when they offered tax credits. Figure 1 shows how entry compares across states and policy

scenarios. Each bar in the graph shows the number of entrants in the pre-RFS period (1996-2004)

in black, and the number of entrants in the post-RFS period (2005-2008) in grey, for each state

and each policy scenario. Figure A.1 in Appendix A presents the mean welfare per entrant for each

scenario by state, for the full period (left panel) and for the pre-RFS period (right panel).

There are noticeable differences across states in the total number of entrants, in the timing

of the entrants, and in the relative impact of the different policy scenarios on entry. First, some

states attract much more entry of ethanol plants than others under all scenarios. In particular, Iowa

and Nebraska have the most entrants. The total number of entrants does not exactly correspond
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with the mean welfare per entrant, however (Figure C.2). The mean welfare per entrant is high in

these two states, but overall, entrants had higher welfare from entry in Indiana and South Dakota

in the Base scenario; South Dakota had fewer entrants because only part of the state is suitable

for ethanol production.

The second important difference across states is that some states had relatively more en-

trants in the pre-RFS era than others. Nebraska, for example, had over half of its plants enter

before 2005. Minnesota also experienced more entry in the pre-RFS era. Both these states imple-

mented MTBE bans early (in 2000), and both also had state tax credits for plants that gave them

more favorable conditions for entrants.

Different policies had different impacts on different states. The number of pre-RFS entrants

in the Base and No MTBE Ban scenarios is directly proportional to the number of years the MTBE

ban was in effect in each state, indicating that this policy made a large contribution to industry

growth in the region. Likewise, the No RFS2 scenario led to fewer entrants in all states, indicating

that the RFS2 was a driver of industry growth in the last two years of our analysis. The No Tax

Credit scenario had more mixed results. All the states except Ohio, Iowa, and Illinois had tax

credits available to entrants at some point during the analysis, though the year these policies were

in effect varied across states.

6 Discussion and Conclusion

In this paper, we develop and estimate a dynamic structural econometric model of the ethanol plant

investment timing game to analyze the effects of government policy on the decisions of ethanol-

producing firms to invest in building new ethanol plants in the Midwestern United States during

the second US ethanol boom. According to our results, government policies, particularly the ban

on the use of the oxygenate MTBE as a gasoline additive at the state level, and the 2007 Renewable

Fuel Standard (RFS2) at the federal level, have significant effects on ethanol investment payoffs

and decisions. The intensity of corn production at the county level and private information shocks

have significant effects on ethanol investment payoffs and decisions as well.

We use the estimated structural parameters to simulate counterfactual policy scenarios to

explore the policy factors driving industry growth and location, and to disentangle the impacts of

state and national policies on the timing and location of investment in the industry. We find that,

of the policies analyzed, the MTBE ban and the RFS2 led to most of the ethanol plant investment

during this time period. There are noticeable differences across states in the total number of

entrants, in the timing of the entrants, and in the relative impact of the different policy scenarios

on entry.

One possible reason the MTBE ban was effective in inducing investment in building ethanol

plants is that it increased the demand for ethanol as an oxygenate in place of MTBE. Similarly,

one possible reason the RFS2 was effective in inducing investment in building ethanol plants is

that it increased demand for ethanol by mandating an expansion in ethanol consumption. Previous
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studies have shown that the demand for ethanol is highly elastic (Irwin and Good, 2017; Yi, Lin

Lawell and Thome, 2025). Our results suggest that policies that increase the demand for ethanol

have the potential for inducing investment in building ethanol plants.

Both the MTBE ban and the Renewable Fuel Standard can function as implicit blending

mandates (de Gorter and Just, 2010; Anderson and Elzinga, 2014). Whenever unpriced emissions

are the sole market failure, however, a carbon tax or cap and trade program is more likely to achieve

the first-best (Pigou, 1920; Coase, 1960), while fuel mandates are unable to replicate the first-best

solution (Helfand, 1992; Holland, Knittel and Hughes, 2009; Lapan and Moschini, 2012). Lade and

Lin Lawell (2021) show that when renewable fuel mandates are combined with a cost containment

mechanism such as a credit window price, the efficiency of the mandate can increase substantially.

Thus, while the MTBE ban and the Renewable Fuel Standard were effective in inducing investment

in building ethanol plants, it is possible to increase their efficiency by combining them with cost

containment mechanisms or by using a market-based instrument instead. We hope to explore these

possibilities in future work.

In this paper, we have defined welfare as the payoff to entrants of entry (investment). One

reason ethanol has attracted policy attention are the possible environmental benefits of blending

ethanol with gasoline as a source transportation fuel in place of fueling cars with exclusively gasoline.

As the environmental costs and benefits of ethanol has been a subject of much debate in the

literature (Searchinger et al., 2008; Witcover, Yeh and Sperling, 2013; Treesilvattanakul, Taheripour

and Tyner, 2014; Lade and Lin Lawell, 2015), and therefore require a full and thorough treatment

to address well, we do not include environmental costs and benefits in this paper, but instead focus

on ethanol investment and the payoffs to investment. We hope to incorporate environmental costs

and benefits in future work.

Another set of factors that may affect the costs and benefits of ethanol, and that would also

require a full and thorough treatment to address well, regards the food versus fuel debate. Because

the feedstocks used for the production of ethanol can also be used for food, there is a concern that

ethanol policies might affect the relationship between food and fuel markets (Chen and Khanna,

2012), and, in particular, have potential adverse effects on the price of basic food prices for the

world’s poor (Rajagopal et al., 2007; Abbott, Hurt and Tyner, 2011; Zhang and Wetzstein, 2011;

Poudel et al., 2012; de Gorter, Drabik and Just, 2013; de Gorter et al., 2013; Wright, 2014; Hao

et al., 2017; Si et al., 2023). We do not include costs and benefits regarding food versus fuel in

this paper, but instead focus on ethanol investment and the payoffs to investment. We hope to

incorporate the food versus fuel issue in future work.

In analyzing the short-run effects of each counterfactual policy scenario, we assume that

the counterfactual policy change we simulate is one that potential entrants do not anticipate, and

that the counterfactual scenario does not change which equilibrium is played. Adapting the policy

invariance assumption and approach of Benkard, Bodoh-Creed and Lazarev (2019), we therefore

assume that the policy functions (as functions of state variables), transition densities of unaffected

state variables (as functions of lagged state and action variables), and structural parameters we
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estimate themselves do not change under the different counterfactual policy changes. Since our

model includes many state variables, the state of the game has a large dimension, which makes

solving for the counterfactual equilibrium under each counterfactual scenario computationally im-

possible. In future work, we hope to develop techniques for analyzing counterfactual scenarios that

might change the equilibrium being played, for example by building on and applying oblivious

equilibrium models, in which knowledge of the state space is restricted for players in their decision-

making process (Weintraub, Benkard and Van Roy, 2008; Benkard, Jeziorski and Weintraub, 2015);

moment-based Markov equilibrium (MME) models, in which knowledge of the state space is limited

to the private state and the distribution of the states of all other players (Ifrach and Weintraub,

2017); and recent empirical applications of oblivious equilibrium and moment-based Markov equi-

librium (MME) models (Corbae and D’Erasmo, 2021; Jeon, 2022; Gerarden, 2023; Gowrisankaran,

Langer and Zhang, 2025; Sears et al., 2025b).

25



References

Abbott, P., C. Hurt, and W.E. Tyner. (2011). What’s Driving Food Prices in 2011? Farm Foundation Issue
Report 2011.

Adusumilli, K., and D. Eckardt. (2020). Temporal-Difference estimation of dynamic discrete choice models,
Working paper, University of Pennsylvania.

Aguirregabiria, V., and A. Luengo. (2016). A microeconometric dynamic structural model of copper mining
decisions. Working paper.

Aguirregabiria, V., and P. Mira. (2007). Sequential estimation of dynamic discrete games. Econometrica,
75 (1), 1-53.

American Coalition for Ethanol. (2007). STATUS: A state by state handbook. Sioux Falls, SD.
Anderson, S., and A. Elzinga. (2014). A ban on one is a boon for the other: Strict gasoline content rules

and implicit ethanol blending mandates. Journal of Environmental Economics and Management, 67
(3), 258-273.

Araujo, R., F.J.M. Costa, and M. Sant’Anna. (2021). Efficient forestation in the Brazilian Amazon: Evidence
from a dynamic model. Working paper, FGV EPGE and University of Delaware.

Babcock, B.A. (2011). The impact of U.S. biofuel policies on agricultural price levels and volatility. Inter-
national Centre for Trade and Sustainable Development Issue Paper 35.

Babcock, B.A. (2013). Ethanol without subsidies: An oxymoron or the new reality? American Journal of
Agricultural Economics, 95 (5), 1317-1324.

Bajari, P., C.L. Benkard, and J. Levin. (2007). Estimating dynamic models of imperfect competition.
Econometrica, 75 (5), 1331-1370.

Bajari, P., Chernozhukov, V., Hong, H., and Nekipelov, D. (2015). Identification and efficient semiparametric
estimation of a dynamic discrete game. NBER Working paper 21125.

Barwick, P. J., M. Kalouptsidi, and N. Zahur. (2025). Industrial policy implementation: Empirical evidence
from China’s shipbuilding industry. Review of Economic Studies, forthcoming.

Benkard, C.L., A. Bodoh-Creed, and J. Lazarev. (2019). Simulating the dynamic effects of horizontal
mergers: U.S. airlines. Working paper, Stanford University, UC-Berkeley, and New York University.

Benkard, C.L., P. Jeziorski, and G.Y. Weintraub. (2015). Oblivious equilibrium for concentrated industries.
RAND Journal of Economics, 46(4), 671-708.

Bielen, D., R.G. Newell, and W.A. Pizer. (2018). Who did the ethanol tax credit benefit?: An event analysis
of subsidy incidence. Journal of Public Economics, 161, 1-14.

Biodiesel Magazine. (2008). Biodiesel Plant Lists. Accessed online July 2008. URL: http://biodieselmagazine.
com/plants/listplants/USA/.

Blundell, W., G. Gowrisankaran, and A. Langer. (2020). Escalation of scrutiny: The gains from dynamic
enforcement of environmental regulations. American Economic Review, 110 (8), 2558-2585.

Bradt, J.T. (2024). A policy by any other name: Unconventional industrial policy in the US residential solar
industry. Working paper, University of Texas at Austin.

Bresnahan, T., and P. Reiss. (1990). Entry in monopoly markets. Review of Economic Studies, 57 (4),
531-553.

Bresnahan, T., and P. Reiss. (1991). Empirical models of discrete games. Journal of Econometrics, 48 (1-2),
57-81.

Butters, R.A., J. Dorsey, and G. Gowrisankaran. (2025). Soaking up the sun: Battery investment, renewable
energy, and market equilibrium. Econometrica, 93, 891-927.

Carroll, C.L., C.A. Carter, R.E. Goodhue, and C.-Y.C. Lin Lawell. (2019). Crop disease and agricultural
productivity: Evidence from a dynamic structural model of Verticillium wilt management. In W.
Schlenker (Ed.), Agricultural Productivity and Producer Behavior (pp. 217-249). Chicago: University
of Chicago Press.

Carroll, C.L., C.A. Carter, R.E. Goodhue, and C.-Y.C. Lin Lawell. (2025a). Supply chain externalities and
agricultural disease. Working paper, Cornell University.

Carroll, C.L., C.A. Carter, R.E. Goodhue, and C.-Y.C. Lin Lawell. (2025b). The economics of decision-
making for crop disease control. Working paper, Cornell University.

Carter, C.A., G.C. Rausser, and A. Smith. (2011). Commodity booms and busts. Annual Review of Resource
Economics, 3, 87-118.

26

http://biodieselmagazine.com/plants/listplants/USA/
http://biodieselmagazine.com/plants/listplants/USA/


Chen, X., H. Huang, M. Khanna, and H. Onal. (2014). Alternative transportation fuel standards: Welfare
effects and climate benefits. Journal of Environmental Economics and Management, 67 (3), 241-257.

Chen, X., and M. Khanna. (2012). Food vs. fuel: The effect of biofuel policies. American Journal of
Agricultural Economics, 95 (2), 289-295.

Clancy, M.S., and G. Moschini. (2018). Mandates and the Incentive for Environmental Innovation. American
Journal of Agricultural Economics, 100 (1), 198-219.

Coase, R. (1960). The problem of social cost. Journal of Law and Economics, 3, 1-44.
Cook, J.A., and C.-Y.C. Lin Lawell. (2020). Wind turbine shutdowns and upgrades in Denmark: Timing

decisions and the impact of government policy. Energy Journal, 41 (3), 81-118.
Corbae, D., and P. D’Erasmo. (2021). Capital buffers in a quantitative model of banking industry dynamics.

Econometrica, 89(6), 2975-3023.
Cotti, C., and M. Skidmore. (2010). The impacts of state government subsidies and tax credits in an

emerging industry: Ethanol production 1980-2007. Southern Economic Journal, 76 (4), 1076-1093.
Cullen, J.A. (2015). Dynamic response to environmental regulation in the electricity industry. Working

paper, Washington University in St. Louis.
Cullen, J.A., and S.S. Reynolds. (2017). Market dynamics and investment in the electricity sector. Working

paper, Washington University in St. Louis and University of Arizona.
Dal-Mas, M., S. Giarola, A. Zamboni, and F. Bezzo. (2011). Strategic design and investment capacity

planning of the ethanol supply chain under price uncertainty. Biomass and Bioenergy, 35 (5), 2059-
2071.

Dearing, A., and J.R. Blevins. (2025). Efficient and convergent sequential pseudo-likelihood estimation of
dynamic discrete games. Review of Economic Studies, 92 (2), 981-1021.

de Gorter, H., D. Drabik, and D.R. Just. (2013). How biofuels policies affect the level of grains and oilseed
prices: Theory, models and evidence. Global Food Security, 2, 82-88.

de Gorter, H., D. Drabik, and D.R. Just. (2013). How biofuels policies affect the level of grains and oilseed
prices: Theory, models and evidence. Global Food Security, 2, 82-88.

de Gorter, H., D. Drabik, D.R. Just, and E.M. Kliauga. (2013). The impact of OECD biofuels policies on
developing countries. Agricultural Economics, 44, 477-486.

de Gorter, H., and D.R. Just. (2009). The economics of a blend mandate for biofuels. American Journal of
Agricultural Economics, 91 (3), 738-750.

de Gorter, H., and D.R. Just. (2010). The social costs and benefits of biofuels: The intersection of environ-
mental, energy and agricultural policy. Applied Economics Perspectives and Policy, 32 (1), 4-32.
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Table 1: Results of structural model

Base Model Alternate price specifications
(i) (ii) (iii) (iv) (v) (vi)

Coefficients in the investment payoff on:
Tax Credit 0.209 0.206 0.179 0.16 0.216 0.26

(0.147) (0.147) (0.157) (0.154) (0.154) (0.178)
MTBE Ban 0.814** 1.022*** 0.837** 0.936** 0.907* 0.956*

(0.293) (0.303) (0.305) (0.299) (0.372) (0.323)
RFS 1 0.085 0.05 0.168 0.181 0.166 0.142

(0.242) (0.214) (0.283) (0.313) (0.26) (0.279)
RFS 2 0.727** 0.658** 0.786* 0.946** 0.816** 0.965***

(0.256) (0.231) (0.32) (0.338) (0.309) (0.27)

Cow Density 0.189 0.184 0.206 0.28‡ 0.22� 0.229
(0.149) (0.136) (0.155) (0.16) (0.129) (0.162)

Corn Intensity 1.012*** 0.976*** 0.962*** 1.193*** 0.986*** 1.217***
(0.181) (0.163) (0.201) (0.198) (0.213) (0.22)

Energy Output Indicator −0.423‡ −0.573‡ -0.542 -0.429
(0.246) (0.307) (0.348) (0.334)

Ethanol Price -0.376
(0.364)

Gasoline price -0.289 -0.096
(0.286) (0.245)

Corn Price -0.074 -0.071 -0.08 -0.085 -0.167 -0.183
(0.265) (0.197) (0.239) (0.205) (0.259) (0.231)

Energy Input Indicator 0.753* 0.517 0.67
(0.354) (0.41) (0.444)

Natural Gas Price 0.374 0.436 0.383
(0.275) (0.404) (0.349)

Electricity Price 0.036
(0.179)

Existing Plant 0.034 0.021 -0.237 0.042 -0.129 0.039
(0.279) (0.286) (0.29) (0.311) (0.268) (0.307)

Constant -4.97*** -5.164*** -5.087*** -6.108*** -5.042*** -5.962***
(0.411) (0.372) (0.512) (0.403) (0.413) (0.506)

σ 0.648*** 0.612*** 0.61*** 0.786*** 0.606*** 0.776***
(0.042) (0.039) (0.048) (0.043) (0.073) (0.051)

Number of Observations 33,307 33,307 33,307 33,307 33,307 33,307
Number of Counties 870 870 870 870 870 870

Notes: Standard errors in parentheses. Significance codes: *** p<0.001, ** p<0.01, * p<0.05, ‡ p<0.01
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Table 2: Number of entrants and welfare under counterfactual policy scenarios: Full Period

Base Scenario No RFS1 No RFS2 No Tax Credit No Policy

Number of Entrants 135.9 131.6 91.8 123.2 36.6
(15.0) (17.1) (17.8) (15.7) (17.8)

Total Welfare of All Entrants 278.2 267.8 157.0 246.6 36.6
(31.6) (35.4) (36.7) (34.0) (42.6)

Mean of Welfare per Entrant 2.05 2.03 1.71 2.00 1.00
(0.15) (0.14) (0.14) (0.15) (0.18)

Std. Dev. of Welfare per Entrant 0.70 0.72 0.65 0.72 0.60
(0.04) (0.04) (0.04) (0.04) (0.07)

Difference between this scenario and Base scenario
Number of Entrants -4.3** -44.1*** -12.7*** -99.3***
Total Welfare of All Entrants -10.4 -121.2*** -31.6*** -241.6***
Mean of Welfare per Entrant -0.02 -0.34*** -0.05*** -1.05***
Std. Dev. of Welfare per Entrant 0.02** -0.05*** 0.02** -0.10***

Difference between this scenario and No Policy scenario
Number of Entrants 99.3*** 95.0*** 55.2*** 86.6***
Total Welfare of All Entrants 241.6*** 231.2*** 120.4*** 210.0***
Mean of Welfare per Entrant 1.05*** 1.03*** 0.71*** 1.00***
Std. Dev. of Welfare per Entrant 0.10*** 0.12*** 0.05*** 0.12***

Notes: For each scenario, the reported statistics are averages over 50 simulations. We normalize welfare so that the mean welfare per entrant
of the No Policy scenario is equal to 1. Standard errors are in parentheses, and are calculated from using the parameter estimates from each of
the 250 bootstrap samples. For each of the 250 bootstrap samples, 50 simulations are run using the parameter estimates from that bootstrap
sample. Standard errors for a statistic is the standard deviation of the respective statistics over all 250 bootstrap samples. Significance codes
for two-sample t-tests of difference between scenarios: *** p<0.001, ** p<0.01, * p<0.05
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Table 3: Number of entrants and welfare under counterfactual policy scenarios: Pre-RFS period (1996-2004)

Base Scenario (to 2005) No Tax Credit No MTBE Ban No Policy

Number of Entrants 47.6 43.0 28.9 26.1
(14.4) (14.4) (16.0) (15.6)

Total Welfare of All Entrants 64.0 54.6 24.6 20.3
(32.4) (33.5) (35.7) (36.2)

Mean of Welfare per Entrant 1.34 1.27 0.85 0.78
(0.15) (0.15) (0.21) (0.19)

Std. Dev. of Welfare per Entrant 0.70 0.69 0.56 0.55
(0.06) (0.07) (0.06) (0.06)

Difference between this scenario and Base scenario
Number of Entrants -4.6*** -18.7*** -21.5***
Total Welfare of All Entrants -9.4* -39.4*** -43.7***
Mean of Welfare per Entrant -0.07*** -0.49*** -0.56***
Std. Dev. of Welfare per Entrant -0.01 -0.14*** -0.15***

Difference between this scenario and No Policy scenario
Entrants 21.5*** 16.9*** 2.8*
Total Welfare of All Entrants 43.7*** 34.3*** 4.3�
Mean of Welfare per Entrant 0.56*** 0.49*** 0.07***
Std. Dev. of Welfare per Entrant 0.15*** 0.14*** 0.01

Notes: For each scenario, the reported statistics are averages over 50 simulations. We normalize welfare so that the mean welfare per entrant
of the No Policy scenario is equal to 1. Standard errors are in parentheses, and are calculated from using the parameter estimates from each of
the 250 bootstrap samples. For each of the 250 bootstrap samples, 50 simulations are run using the parameter estimates from that bootstrap
sample. Standard errors for a statistic is the standard deviation of the respective statistics over all 250 bootstrap samples. Significance codes
for two-sample t-tests of difference between scenarios: ***p<0.001, **p<0.01, *p<0.05
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Figure 1: Number of entrants by state under different policy scenarios
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A Supplementary Tables and Figures

Table A.1: Counterfactual Scenarios

Counterfactual Scenario Description

Base Scenario Replication with observed data
No RFS1 Remove RFS1 (set RFS1 to 0)
No RFS2 Remove RFS1 (set RFS2 to 0)
No Tax Credit Remove state tax credit (set Tax Credit to 0)
No MTBE Ban Remove MTBE ban (set MTBE Ban to 0) [Pre-RFS (1996-2004) only]
No Policy Remove all policies (set all Gkt variables to 0)
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Table A.2: Replacement rules followed in counterfactual simulations for missing states of the world Ωkt

Replacement Rule Followed:

Counterfactual Scenario Number Missing Set Existing plant=0
Match policy and

significant state variables
Use annual mean ḡt

for entry probability ĝ(·)
Base Scenario 48.5 48.4 0.1 0.0
No RFS1 66.3 65.5 0.8 0.0
No RFS2 101.2 99.5 1.7 0.0
No Tax Credit 827.3 88.7 738.5 0.0
No MTBE Ban (1996-2004) 380.9 168.1 212.8 0.0
No Policy 4209.1 427.7 3781.2 0.2

Notes: The replacement rules are used for the simulated states of the world Ωkt that we do not observe in the data.
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Table A.3: Bin design of variables for structural estimation

Base Bins Alternate Bins
Bin Design Break Bin Design Break 1 Break 2

Cow Density (head/acre) Bottom two thirds and top third 0.103 Middle Bin is 1.5 Std. Dev. around Mean 0.048 0.124

Corn Intensity Equal sizes 0.175 Middle Bin is 1.5 Std. Dev. around Mean 0.078 0.191

Ethanol Price ($/gal) Equal sizes 1.630 Middle Bin is middle 5 years 1.51 1.91

Gasoline Price ($/gal) Equal sizes 1.110 Bottom third and top two thirds 1

Output Price Indicator High if both ethanol and gasoline prices are high

Alternate Corn Price ($/bushel) Equal sizes 3.010 Middle Bin is 1.5 Std. Dev. around Mean 2.317 3.32

Corn Price ($/bushel) Bottom third and top two thirds 2.340 Middle Bin is 2 Std. Dev. around Mean 5.48 8.88

Natural Gas Price ($/1000ft3) Equal sizes 6.810 Middle Bin is 2 Std. Dev. around Mean 4.519 8.349

Electricity Price (cents/KwH) Equal sizes 5.130 Middle Bin is 2 Std. Dev. around Mean 4.702 5.741

Energy Input Price Indicator High if both electricity and natural gas prices are high

Note: Corn intensity is defined as the corn acreage divided by the total area of the county.
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Table A.4: Summary statistics for discretized variables used in structural estimation

Base Bins Alternate Bins Spatial Resolution
Mean Std. Dev. Mean Std. Dev.

New Plant 0.004 0.063 0.004 0.063 county
Tax Credit 0.341 0.474 0.341 0.474 state policy
MTBE Ban 0.476 0.499 0.475 0.499 state policy
RFS I 0.153 0.360 0.153 0.360 national policy
RFS II 0.151 0.358 0.151 0.358 national policy
Cow Density 0.330 0.470 0.943 0.760 district (USDA definition)
Corn Intensity 0.494 0.500 0.917 0.669 county
Corn Price 0.677 0.468 0.918 0.712 state
Alternate Corn Price 0.513 0.500 state
Soy Price 1.093 0.596 state
Output Price Indicator 0.648 0.478 state
Ethanol Price 0.535 0.499 0.917 0.728 national
Gasoline Price 0.493 0.500 0.380 0.485 state
Energy Input Price Indicator 0.797 0.402 state
Natural Gas Price 0.492 0.500 0.945 0.649 state
Electricity Price 0.499 0.500 0.971 0.545 state
Metro Area 0.283 0.450 0.010 0.099 county
Existing Plant 0.036 0.185 0.037 0.188 county
Existing Biodiesel 0.010 0.100 0.285 0.452 county

Number of Observations 33,307 33,307
Number of Counties 870 870
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Table A.5: Results of structural model with alternate variable and bin specifications

Base Model
Additional
Covariates

Alternate (More) Bins

(i) (vii) (viii) (ix)

Coefficients in the investment payoff on:
Tax Credit 0.209 0.123 0.109 0.394

(0.147) (0.135) (0.247) (0.398)

MTBE Ban 0.814** 1.044*** 0.502‡ 1.014***
(0.293) (0.296) (0.268) (0.284)

RFS 1 0.085 0.044 1.287*** 1.674***
(0.242) (0.209) (0.295) (0.403)

RFS 2 0.727** 0.651* 2.343*** 1.869***
(0.256) (0.268) (0.322) (0.266)

Cow Density 0.189 0.225‡ 0.708*** 0.812***
(0.149) (0.131) (0.159) (0.13)

Corn Intensity 1.012*** 0.965*** 0.209 0.315*
(0.181) (0.168) (0.173) (0.131)

Energy Output Price Indicator -0.423� -0.586*
(0.246) (0.281)

Ethanol Price -0.518 -1.916**
(0.646) (0.636)

Gasoline Price 2.168*** 2.546***
(0.551) (0.613)

Corn Price -0.074 -0.071 -0.439 0.089
(0.265) (0.216) (0.34) (0.266)

Soy Price -0.493 0.67
(0.59) (0.758)

Energy Input Price Indicator 0.792*
(0.382)

Natural Gas Price 0.374 -1.549* -1.104*
(0.275) (0.69) (0.474)

Electricity Price -0.179
(0.253)

Metro Area -0.244 -0.564 -0.369
(0.2) (0.569) (0.589)

Existing Plant 0.034 -0.123 0.135 -0.017
(0.279) (0.26) (0.363) (0.347)

Existing Biodiesel -0.06 0.033 0.023
(0.48) (0.084) (0.074)

Constant -4.97*** -5.08*** -5.591*** -6.583***
(0.411) (0.287) (0.607) (0.587)

σ 0.648*** 0.609*** 0.997*** 0.77***
(0.042) (0.046) (0.083) (0.092)

Number of Observations 33,307 33,307 33,307 33,307
Number of Counties 870 870 870 870

Notes: Standard errors in parentheses. Significance codes: *** p<0.001, ** p<0.01, *p<0.05, ‡ p<0.01
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Table A.6: Number of entrants and welfare in data and Base scenario

Full Period Welfare per Entrant
Number of Entrants Total Welfare of Entrants Mean Std. Dev.

Data 132 273.28 2.07 0.64

Base Scenario 135.92 278.21 2.05 0.704
(14.97) (31.62) (0.15) (0.04)

1996-2004 Welfare per Entrant
Number of Entrants Total Welfare of Entrants Mean Std. Dev.

Data 46 65.68 1.43 0.596

Base Scenario 47.60 64.01 1.3449 0.6958
(14.38) (32.41) (0.154) (0.0649)

Notes: For the Base scenario, the reported statistics are averages over 50 simulations. We normalize welfare so that the mean welfare per
entrant of the No Policy scenario is equal to 1. Standard errors are in parentheses, and are calculated from using the parameter estimates
from each of the 250 bootstrap samples. For each of the 250 bootstrap samples, 50 simulations are run using the parameter estimates from
that bootstrap sample. Standard errors for a statistic is the standard deviation of the respective statistics over all 250 bootstrap samples.

A
-7



Table A.7: Number of entrants and mean welfare per entrant by state in full and pre-RFS periods

Number of Entrants
IL IN IA KS MN MO NE OH SD WI

Full Period

Base 16.2 16.8 23.6 8.7 14.3 8.1 19.9 8.4 12.2 7.6
(2.7) (3.3) (4.2) (1.8) (2.8) (1.6) (3.4) (1.6) (2.9) (1.7)

No RFS1 15.6 16.2 22.9 8.4 14.0 7.8 19.5 8.1 11.9 7.2
(2.9) (3.2) (4.5) (1.9) (2.9) (1.5) (3.7) (1.6) (3.0) (1.7)

No RFS2 10.2 10.3 16.7 5.6 10.5 5.0 15.0 5.3 8.0 5.2
(2.4) (2.5) (3.9) (1.7) (2.8) (1.4) (3.2) (1.3) (2.9) (1.5)

No Tax Credit 16.2 14.3 23.6 6.9 13.5 6.4 17.7 8.4 9.5 6.7
(2.7) (2.6) (4.2) (1.8) (2.6) (1.5) (3.4) (1.6) (2.7) (1.6)

No Policy 5.1 4.9 6.1 2.2 3.8 2.2 4.7 3.1 2.5 2.1
(1.8) (2.3) (2.6) (1.7) (2.6) (1.4) (2.0) (1.1) (2.7) (1.2)

Pre-RFS
(1996-2004)

Base 4.2 4.3 9.7 2.4 6.6 1.8 9.9 2.2 4.1 2.3
(1.3) (2.1) (2.6) (1.3) (2.5) (1.0) (2.5) (0.8) (2.4) (1.1)

No Tax Credit 4.2 4.3 9.7 2.0 5.7 1.6 7.7 2.2 3.7 1.9
(1.4) (2.0) (2.6) (1.4) (2.3) (1.2) (2.0) (0.8) (2.5) (1.0)

No MTBE Ban 3.3 3.5 4.3 1.9 3.4 1.8 4.7 2.2 2.0 1.9
(1.3) (2.1) (2.2) (1.4) (2.7) (1.0) (2.1) (0.9) (2.6) (1.1)

No Policy 3.4 3.5 4.3 1.6 2.8 1.6 3.5 2.2 1.8 1.5
(1.3) (2.1) (2.1) (1.4) (2.4) (1.2) (1.6) (0.8) (2.6) (1.1)

Mean Welfare per Entrant
IL IN IA KS MN MO NE OH SD WI

Full Period

Base 2.05 2.15 2.11 1.80 1.99 1.89 2.05 1.89 2.19 2.02
(0.19) (0.18) (0.14) (0.17) (0.13) (0.21) (0.15) (0.21) (0.17) (0.17)

No RFS1 2.03 2.14 2.10 1.79 1.97 1.88 2.05 1.87 2.18 1.99
(0.19) (0.17) (0.14) (0.16) (0.13) (0.21) (0.14) (0.20) (0.17) (0.16)

No RFS2 1.64 1.74 1.81 1.41 1.70 1.45 1.81 1.46 1.84 1.69
(0.18) (0.16) (0.13) (0.17) (0.13) (0.20) (0.15) (0.18) (0.17) (0.19)

No Tax Credit 2.05 2.03 2.11 1.67 2.00 1.75 2.04 1.89 2.03 1.99
(0.20) (0.15) (0.14) (0.17) (0.13) (0.20) (0.16) (0.21) (0.15) (0.18)

No Policy 1.01 1.09 1.12 0.60 1.04 0.70 1.08 0.94 0.98 0.93
(0.18) (0.17) (0.18) (0.17) (0.20) (0.19) (0.20) (0.19) (0.23) (0.21)

Pre-RFS
(1996-2004)

Base 1.02 1.14 1.53 0.81 1.46 0.62 1.64 0.74 1.50 1.12
(0.15) (0.16) (0.15) (0.19) (0.16) (0.24) (0.18) (0.20) (0.19) (0.21)

No Tax Credit 1.01 1.14 1.53 0.66 1.40 0.46 1.49 0.74 1.40 0.97
(0.15) (0.16) (0.15) (0.18) (0.15) (0.19) (0.18) (0.19) (0.18) (0.19)

No MTBE Ban 0.72 0.88 0.91 0.48 0.92 0.62 1.04 0.74 0.84 0.85
(0.17) (0.20) (0.20) (0.22) (0.26) (0.24) (0.26) (0.21) (0.28) (0.26)

No Policy 0.71 0.88 0.90 0.35 0.82 0.46 0.89 0.74 0.73 0.70
(0.17) (0.20) (0.20) (0.20) (0.23) (0.19) (0.22) (0.19) (0.25) (0.22)

Notes: For each scenario, the reported statistics are averages over 50 simulations. We normalize welfare so that the mean
welfare per entrant of the No Policy scenario is equal to 1. Standard errors are in parentheses, and are calculated from using
the parameter estimates from each of the 250 bootstrap samples. For each of the 250 bootstrap samples, 50 simulations are
run using the parameter estimates from that bootstrap sample. Standard errors for a statistic is the standard deviation of
the respective statistics over all 250 bootstrap samples.
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Figure A.1: Mean welfare per entrant by state under different policy scenarios
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B Methodology for Simulations

B.1 Model Fit Simulations

We use our estimated structural parameters θ̂ = (γ̂N , γ̂G, γ̂X , σ̂) to run simulations to assess good-

ness of fit and to analyze counterfactual scenarios. To assess the goodness of fit of our model,

we conduct a replication exercise in which we use our estimated model applied to the observed

exogenous state variables to simulate (or predict) the data. We call the model predicted results

our Base scenario.

We use our estimated model to simulate 50 trajectories of play, each for 13 years representing

the years 1996-2008. For each simulation, we use the observed state variables for the initial values

of Ωkt at t=1, which corresponds to 1996, our first year of data. For each year t of a given

simulation, we evaluate the estimated investment policy function ĝ(Ωkt; θ̂) at the state of the world

Ωkt = (Nkt, Gkt, Xkt) for each county k at time t, and then use the estimated investment probability

ĝ(Ωkt; θ̂) to simulate the investment decision Iikt for each potential investor i in that county k at

that time t. Once a potential investor i makes an investment (Iikt = 1), that investor exits the

sample. We then update Nkt for year t+ 1 to account for any investments made in each county k

in year t. We use the observed data for the exogenous variables Gkt and Xkt. We repeat for each

year through 2008 (the 13th year), updating Nkt for each period.

After simulating investment (entry) for each year over the period 1996-2008, we record the

total number of entrants E and the number of entrants Et in each year t. We also calculate the

welfare we of each entrant, which we define as the expected current-value investment payoff for

the entrant, by evaluating equation (9) using the estimated parameters θ̂ and the state variables

Ωkt at the time t when the entrant enters. For each simulation, we also calculate the total welfare

W summed over all entrants, the mean welfare per entrant w̄e taken over all entrants in all years,

and the standard deviation se of the welfare per entrant over all years. Since our dynamic discrete

choice model only identifies relative welfare values, not absolute values, and since welfare is therefore

unitless, we normalize welfare so that the mean welfare per entrant of the No Policy scenario is

equal to 1.

We estimate the standard errors for the statistics (E, Et, W , w̄e, se) using a nonparamet-

ric bootstrap. We randomly draw counties from the dataset with replacement to generate 250

independent panels of size equal to the actual sample size. These are the same datasets that we

generated when bootstrapping the standard errors of the structural parameters. For each of the

250 bootstrap samples, we simulate 50 trajectories of play using the estimated parameters θ̂ and

estimated probabilities of investment ĝ(·) associated with the particular bootstrap draw, and then

take the average of the statistics (E, Et, W , w̄e, se) across the 50 simulated trajectories. The

standard error is then formed by taking the standard deviation of the estimated statistics from

each of the random samples.
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B.2 Counterfactual Policy Simulations

We also use our estimated structural parameters θ̂ = (γ̂N , γ̂G, γ̂X , σ̂) to run simulations to analyze

counterfactual scenarios. Our simulations are summarized in Table A.1 in Appendix A. The coun-

terfactual scenarios we run to disentangle the impacts of state and national policies on the timing

and location of investment in the industry include the No RFS1, No RFS2, No Tax Credit, No

MTBE Ban, and No Policy scenarios. The No RFS1, No RFS2, No Tax Credit, and No MTBE

Ban counterfactual scenarios involve removing each respective policy individually. In the No Policy

scenario, we remove all the policies (MTBE Ban, RFS1, RFS2, and Tax Credit) that might promote

investment in ethanol plants.

The methodology for the counterfactual policy simulations is similar to the methodology

described in Appendix B.1 for the Base scenario simulations we run to assess model fit, except that,

for each counterfactual policy scenario in which we remove one or more of the government policies,

we replace the indicators for the specified policy variables in Gkt with zero to form the respective

counterfactual policy variables G̃kt. For example, in the No RFS1 simulation, we set RFS1 = 0 for

all observations.

Our counterfactual simulations capture several channels through which counterfactual gov-

ernment policies may affect the decision-making problem faced by a potential investor. First, since

government policies affect the payoff from investing in an ethanol plant, the counterfactual removal

of one or more government policies affects the payoff from investing and therefore the decision to

invest in an ethanol plant. Second, since government policies affect the evolution of other gov-

ernment policies, the counterfactual removal of one government policy affects expectations about

future values of other government policies, which in turn affect the expected payoffs from investing

in the future and therefore the option value to waiting. Third, since government policies affect the

evolution of economic factors, the counterfactual removal of one or more government policies affects

expectations about future values of economic factors, including the ethanol price and the availabil-

ity and cost of corn, and therefore the expected payoffs from investing in the future. Fourth, since

government policies affect the decisions of other potential investors, the counterfactual removal of

one or more government policies affects the decisions of other potential investors, which in turn

affect the expected payoffs from investing in the future.

In analyzing the short-run effects of each counterfactual policy scenario, we assume that

the counterfactual policy change we simulate is one that potential entrants do not anticipate, and

that the counterfactual scenario does not change which equilibrium is played. Adapting the policy

invariance assumption and approach of Benkard, Bodoh-Creed and Lazarev (2019), we therefore

assume that the policy functions (as functions of state variables), transition densities of unaffected

state variables (as functions of lagged state and action variables), and structural parameters we

estimate themselves do not change under the different counterfactual policy changes.

For each counterfactual policy scenario, we simulate the effects of the counterfactual policy

change on the number of entrants and the welfare of entrants. We use two-sample t-tests to compare

the results of each of the counterfactual scenarios to those of the Base scenario. We also use two-
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sample t-tests to compare the results of each counterfactual scenario that involves removing a policy

individually to the those of the No Policy scenario.

For the No MTBE Ban scenario, we can only run the simulations for the pre-RFS period

(1996-2004) because 2004 was the last year any state in our sample permitted the use of MTBE.

All the Midwestern states in our sample implemented MTBE bans by 2005, when the Renewable

Fuel Standard was first implemented. Thus, the MTBE ban was implemented in all states in our

sample in each of the two years that the federal RFS1 was in place in all states (2005 and 2006);

and similarly the MTBE ban was implemented in all states in our sample in each of the years in

our data set that the federal RFS2 was in place in all states (2007 onwards). As a consequence,

in our data whenever we observe one of the RFS standards in place in any county in any year,

we also observe the MTBE Ban in place in that county and year. In contrast, we never have any

county-year observations in which one of the RFS standards is in place, but the MTBE ban is not.

This means that it would therefore be impossible to identify a counterfactual state of the world in

which one of the RFS standards in place, but the MTBE ban is not, since we never observe this

counterfactual state of the world in the data.

One challenge in simulating alternate policy scenarios is that, because entry is random in the

counterfactual simulations, we sometimes simulate counterfactual states of the world that we do not

observe in the data, and, as a consequence, are unable to evaluate the investment policy function

ĝ(Nkt, G̃kt, Xkt; θ̂) at the simulated counterfactual state Ωkt = (Nkt = n, G̃kt = g,Xkt = x). To

address this issue, we use the following rules to replace the missing value of ĝ(·) for simulated

counterfactual states of the world Ωkt that we do not observe in the data.

A common reason why a simulated counterfactual state of the world Ωkt = (Nkt = n, G̃kt =

g,Xkt = x) is missing in the data is that we simulate investment (entry) in a county k that did

not have any ethanol plants in the data. As seen in Section 4, our structural parameter estimates

show that the dummy for existing plants Nkt does not have a significant net effect on the payoff

from investment. Consequently, our first replacement rule is replace the investment probability

ĝ(Nkt = 1, G̃kt = g,Xkt = x; θ̂) with ĝ(Nkt = 0, G̃kt = g,Xkt = x; θ̂) when we do not observe

Ωkt = (Nkt = 1, G̃kt = g,Xkt = x) in the data. In other words, if we do not observe the state

tuple Ωkt = (Nkt = 1, G̃kt = g,Xkt = x) in the data, we evaluate the investment probability

ĝ(Nkt, G̃kt = g,Xkt = x; θ̂) at Nkt = 0 instead of Nkt = 1, holding all other state variables in that

state tuple fixed. Since the dummy for existing plants Nkt does not have a significant net effect

on the payoff from investment, it should not matter much whether the investment probability

ĝ(Nkt, G̃kt = g,Xkt = x; θ̂) at a given state tuple Ωkt = (Nkt = n, G̃kt = g,Xkt = x) is evaluated at

Nkt = 0 instead of Nkt = 1, holding all other state variables in that state tuple fixed.

Another reason why we do not observe some simulated counterfactual states of the world

Ωkt = (Nkt = n, G̃kt = g,Xkt = x) is that for some values of the economic factors Xkt, we may not

observe that value Xkt under counterfactual values of the policy variables G̃kt. Consequently, for

the second replacement rule, we find a state of the world Ω
′
kt = (Nkt = n, G̃kt = g,Xkt = x

′
) that

we do observe in the data for which the variables in Xkt = x
′
that have a statistically significant
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effect on the payoff from investing in building an ethanol plant and the policy variables G̃kt match

our simulated counterfactual data, and then replace the investment probability ĝ(Nkt = n, G̃kt =

g,Xkt = x; θ̂) with ĝ(Nkt = n, G̃kt = g,Xkt = x
′
; θ̂).

Almost all replacements are made using either the first or second replacement rule above.

The third and final replacement rule for the simulated counterfactual states of the world Ωkt that

we do not observe in the data (and that are not covered by either the first or second replacement

rule above) is to use the annual mean ḡt in place of the missing ĝ(·) for the simulated counterfactual

states of the world Ωkt that we do not observe in the data and that are not covered by either the

first or second replacement rule above.

Table A.2 in Appendix A shows which replacement rule we use in each counterfactual

scenario for the simulated states of the world Ωkt that we do not observe in the data. Almost all

replacements were made in Rule 1 or Rule 2. The No Policy simulation was the most challenging in

this respect because there were relatively few years and counties among which to find replacements.
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C Results of Counterfactual Policy Scenarios by Year

We disaggregate the results of our counterfactual policy scenarios by year in Table C.1 to further

explore the interactions among the policy effects. Viewing the simulated entrants by year is useful

to begin to disentangle the effects of the MTBE Ban and the RFS. Figure C.1 shows the cumulative

number of entrants and the total cumulative welfare of entrants over time. Entry and total welfare

of entrants increased faster in the later years of the analysis, particularly in the years during which

the RFS2 was in effect (2007-2008). In the Base replication the number of entrants per year

increased over time, with a maximum of 32.5 new plants in 2007 (the second to last year of the

simulation).

As seen in Table C.1, the No Tax Credit simulation yielded on average 9% fewer entrants

per given year compared to the Base simulation. The impact was smaller in the earlier years of

the simulation, when fewer states had policies in place. The No RFS1 simulation had a slightly

larger impact on the number of entrants than the No Tax Credit simulation for the years when

RFS1 was in effect (2005-2006), though the cumulative number of entrants was still greater under

the No RFS1 scenario because it was in effect for fewer years. The No RFS2 scenario led to a

much more marked decrease in the number of entrants per year compared to the no RFS1 and

No Tax Credit scenarios (Figure C.1), though the number of entrants per year during the RFS2

period (2007-2008) was still greater than the beginning of our analysis period due to other favorable

economic conditions (Table C.1). Though we can only identify the No MTBE Ban scenario in the

pre-RFS era (before 2005), we find similar magnitude of impact on the number of entrants as the

No RFS2 scenario, particularly as we get closer to 2005, when all the states in our analysis had

banned MTBE. In the No Policy scenario, entry was slow and relatively constant over time, ranging

from 1.6 to 4.1 new plants each year.

Figure C.2 shows how the mean welfare per entrant by year changed over time under

each scenario. The lines for the No RFS1 and the No Tax Credit scenarios closely track the Base

scenario, indicating that these policies had relatively small impacts on the profitability for entrants.

Nevertheless, both the No MTBE Ban and No RFS2 scenarios led to significantly lower welfare for

entrants compared to the Base scenario in respective the years when the MTBE ban and the RFS2

were in effect.

Welfare per entrant was lower in the pre-RFS era, which is why there were fewer entrants.

The first states in our sample banned MTBE as early as 2000, when we see the welfare per entrant

under the No MTBE Ban scenario drop significantly below that of the Base replication. During

the period 2000-2004, which represents the period during which there were some MTBE bans but

no RFS1 or RFS2, the MTBE ban accounted for 54% of the entrants in the period. Without the

ban, there would have been 16 new plants instead of the 35 that entered in the Base scenario. The

RFS2 had a larger impact in percentage and real terms. Nevertheless, the level of entry in the Base

scenario was higher in later years due to a combination of policy and market factors.
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Table C.1: Number of entrants and mean welfare per entrant by year

Number of Entrants
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

Base 1.7 3.4 3.6 4.4 4.2 6.8 7.2 6.7 9.8 13.7 11.2 32.5 30.9
(0.7) (1.4) (3.0) (6.8) (1.8) (1.8) (2.2) (1.8) (2.8) (3.7) (3.2) (5.4) (4.9)

No RFS1 1.7 3.4 3.6 4.4 4.2 6.8 7.3 6.7 9.8 10.9 9.4 32.6 31.0
(0.7) (1.4) (3.1) (6.8) (1.8) (1.8) (2.1) (1.7) (2.8) (3.1) (3.9) (5.4) (5.0)

No RFS2 1.7 3.4 3.6 4.4 4.2 6.8 7.3 6.7 9.8 13.8 11.2 9.7 9.4
(0.7) (1.4) (3.1) (6.8) (1.8) (1.8) (2.1) (1.7) (2.8) (3.7) (3.2) (4.2) (4.0)

No Tax Credit 1.6 3.1 3.4 4.1 3.8 5.8 6.7 5.8 8.7 12.6 10.0 29.5 28.1
(0.7) (1.4) (2.9) (6.6) (1.6) (1.5) (2.2) (1.6) (2.6) (3.4) (2.9) (5.2) (4.9)

No MTBE 1.7 3.3 3.6 4.4 2.3 3.1 3.5 3.5 3.5
(0.7) (1.4) (3.1) (6.8) (1.9) (1.3) (1.3) (1.1) (1.5)

No Policy 1.6 3.1 3.4 4.1 2.1 2.7 3.2 3.0 3.0 3.2 2.4 2.5 2.4
(0.7) (1.4) (2.9) (6.6) (1.8) (1.1) (1.2) (0.9) (1.3) (1.4) (0.9) (1.0) (1.0)

Mean Welfare per Entrant
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

Base -0.29 0.37 0.57 0.77 1.10 1.52 1.59 1.66 1.86 2.04 2.04 2.51 2.56
(0.33) (0.24) (0.26) (0.30) (0.22) (0.19) (0.22) (0.17) (0.16) (0.19) (0.23) (0.21) (0.20)

No RFS1 -0.28 0.36 0.56 0.78 1.11 1.52 1.60 1.66 1.86 1.95 1.96 2.51 2.56
(0.33) (0.24) (0.27) (0.30) (0.22) (0.19) (0.21) (0.17) (0.16) (0.16) (0.24) (0.21) (0.21)

No RFS2 -0.28 0.36 0.56 0.78 1.11 1.52 1.60 1.66 1.86 2.04 2.04 2.05 2.12
(0.33) (0.24) (0.27) (0.30) (0.22) (0.19) (0.21) (0.17) (0.16) (0.19) (0.23) (0.23) (0.22)

No Tax Credit -0.35 0.30 0.50 0.72 1.02 1.44 1.55 1.60 1.81 2.01 2.00 2.48 2.53
(0.31) (0.23) (0.25) (0.29) (0.19) (0.19) (0.22) (0.18) (0.16) (0.19) (0.22) (0.21) (0.21)

No MTBE Ban -0.28 0.36 0.57 0.78 0.60 0.94 1.12 1.27 1.35
(0.32) (0.25) (0.26) (0.30) (0.26) (0.25) (0.19) (0.18) (0.21)

No Policy -0.35 0.30 0.50 0.72 0.55 0.87 1.08 1.22 1.29 1.43 1.44 1.56 1.66
(0.31) (0.23) (0.25) (0.29) (0.24) (0.23) (0.18) (0.18) (0.19) (0.19) (0.23) (0.22) (0.21)

Notes: For each scenario, the reported statistics are averages over 50 simulations. We normalize welfare so that the mean welfare per entrant
of the No Policy scenario is equal to 1. Standard errors are in parentheses, and are calculated from using the parameter estimates from each of
the 250 bootstrap samples. For each of the 250 bootstrap samples, 50 simulations are run using the parameter estimates from that bootstrap
sample. Standard errors for a statistic is the standard deviation of the respective statistics over all 250 bootstrap samples.
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Figure C.1: Cumulative number of entrants and total cumulative welfare of entrants under different policy scenarios over time
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Figure C.2: Mean welfare per entrant by year under different policy scenarios
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