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Abstract

Public transit is often advocated as a means to address traffic congestion within urban trans-
portation networks. We estimate the effect of past public transit investment on the demand
for automobile transportation by applying an instrumental variable approach that accounts for
the potential endogeneity of public transit investment, and that distinguishes between the sub-
stitution effect and the equilibrium effect, to a panel dataset of 96 urban areas across the U.S.
over the years 1991-2011. The results show that, owing to the countervailing effects of sub-
stitution and induced demand, the effects of increases in public transit supply on auto travel
depend on the time horizon. In the short run, when accounting for the substitution effect only,
we find that on average a 10% increase in transit capacity leads to a 0.7% reduction in auto
travel. However, transit has no effect on auto travel in the medium run, as latent and induced
demand offset the substitution effect. In the long run, when accounting for both substitution
and induced demand, we find that on average a 10% increase in transit capacity is associated
with a 0.4% increase in auto travel. We also find that public transit supply does not have a
significant effect on auto travel when traffic congestion is below a threshold level. Additionally,
we find that there is substantial heterogeneity across urban areas, with public transit having
significantly different effects on auto travel demand in smaller, less densely populated regions
with less-developed public transit networks than in larger, more densely populated regions with
more extensive public transit networks.
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1 Introduction

Anyone who has idled in traffic anxiously watching the clock is all too familiar with the costs of

traffic congestion. Congestion is ubiquitous across urban roadways and is a persistent topic of

policy debate. The external costs of congestion – which include increased operating costs for both

private and freight vehicles, increased fuel usage and emissions, and, most significantly, the delay

costs and uncertain travel times confronting motorists – are substantial and have been steadily

increasing.1 In 2011, these costs of traffic congestion alone have been estimated to have exceeded

$121 billion in the U.S. (Schrank, Eisele and Lomax, 2012). Congestion has steadily increased in

recent decades: from 1983 to 2001, for example, average car travel time increased by 30% and

average transit travel time increased by 62.5% for a sample of large metropolitan statistical areas

in the U.S. (Berechman, 2009).2

Congestion costs represent the majority of the external costs of automobile travel for urban com-

muters in the U.S.: of the combined per vehicle-mile costs of congestion, accidents, and environmen-

tal externalities for urban commuters in the U.S., congestion costs represent 71.7% of the short-run

average variable social cost of auto travel and 74.3% of the short-run marginal variable social cost

(Small and Verhoef, 2007).3

As one component of broader urban transportation policy, public transit is often advocated as a

means to decrease traffic congestion and reduce emissions from automobiles. Additionally, large-

scale public transit investments are often championed due to purported local and/or regional eco-

nomic development benefits accompanying the construction and operation of the new transit system.

In the U.S., in addition to annual transit operating expenses of $38 billion per year, recent expendi-

tures on public transit capital have exceeded $18 billion per year (American Public Transportation

Association, 2012).

Public transit investments should be evaluated on their contribution to overall net social welfare,

taking into account the cost of the investment and any associated operating costs. While the

broader question as to how public transit should be funded and its role in the U.S. urban trans-

portation sector is important and has been addressed by others such as Viton (1981) and Winston

and Shirley (1998), the congestion-reduction effect of public transit is a potentially important com-

1
Congestion can be particularly costly if individuals exhibit preferences for urgency owing to time constraints,
schedule constraints, and possible penalties for being late (Bento, Roth and Waxman, 2017).

2
In addition, as we show in Section 3 using the population-weighted mean values across 96 large urban areas in the
U.S., total hours of delay attributable to congestion increased by 55% over the period 1991 to 2011.

3
Similarly, of the externalities associated with gasoline consumption that Lin and Prince (2009) analyze in their
study of the optimal gasoline tax for the state of California, the congestion externality is the largest and should
be taxed the most heavily, followed by oil security, accident externalities, local air pollution, and global climate
change.
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ponent of this overall evaluation process, and to date there has not been an empirical consensus on

the magnitude of this effect.4

Although policymakers may wish to use public transit investment as a policy instrument to both

reduce congestion and spur economic activity, these two objectives are often incompatible.5 On

the one hand, an increase in transit supply may cause some commuters to substitute transit travel

for trips previously taken by automobile (the “substitution effect”), thereby decreasing auto travel.

On the other hand, by reducing congestion, increasing accessibility, increasing economic activity,

and/or attracting additional residents and workers to the area, transit investment may generate

additional automobile trips that were previously not undertaken (the “induced demand effect”).

The “equilibrium effect” accounts for both the substitution effect and the induced demand effect.

In this paper, we consider the effect of public transit supply on the volume of auto travel. Specifi-

cally, we address the following questions:

1. Have past public transit investments been effective in reducing the demand for automobile

travel in the U.S.?

2. Is it possible to disentangle the substitution effect and the induced demand effect due to

public transit supply?

Our measure of public transit supply is the public transit capacity in vehicle-revenue miles, where

public transit includes commuter rail, light rail, heavy rail, hybrid rail, monorail, automated guide-

way, bus rapid transit, bus, and trolleybus. We empirically estimate the effect of past public

transit investment on the demand for automobile transportation by applying an instrumental vari-

able approach that accounts for the potential endogeneity of public transit investment, and that

distinguishes between the substitution effect and the equilibrium effect, to a panel dataset of 96

urban areas across the U.S. over the years 1991-2011.

The results show that, owing to the countervailing effects of substitution and induced demand, the

effects of increases in public transit supply on auto travel depend on the time horizon. In the short

run, when accounting for the substitution effect only, we find that on average a 10% increase in

transit capacity leads to a 0.7% reduction in auto travel. However, transit has no effect on auto

travel in the medium run, as latent and induced demand offset the substitution effect. In the long

4
Beaudoin, Farzin and Lin Lawell (2018) develop a theoretical model of optimal public transit investment to evaluate
whether public transit investment has a role in reducing congestion in a second-best setting when a Pigouvian
congestion tax cannot be levied on auto travel.

5
For example, employment growth, a common public policy goal, can lead to a number of unwanted environmental,
social, and economic costs – particularly in high growth communities – due to its impact on peak-hour traffic.
Morrison and Lin Lawell (2016) find that for each additional 10 workers added per square kilometer, travel time
increases by 0.171 to 0.244 minutes per one-way commute trip per commuter in the short run, which equates to
$0.07 to $0.20 in travel time cost per commuter per day.
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run, when accounting for both substitution and induced demand, we find that on average a 10%

increase in transit capacity is associated with a 0.4% increase in auto travel. We also find that

public transit supply does not have a significant effect on auto travel when traffic congestion is

below a threshold level.

Additionally, we find that there is substantial heterogeneity across urban areas. When account-

ing for the substitution effect only, the magnitude of the elasticity of auto travel with respect to

transit capacity varies from approximately -0.008 in smaller, less densely populated regions with

less-developed public transit networks; to approximately -0.215 in larger, more densely populated

regions with more extensive public transit networks. When accounting for both the substitution

effect and the induced demand effect in the long run, the elasticity of auto travel with respect to

transit capacity varies from approximately 0.005 in smaller, less densely populated regions with

less-developed public transit networks; to approximately 0.129 in larger, more densely populated

regions with more extensive public transit networks.

By using a broader set of urban areas over a longer time period than previous studies; by distin-

guishing between the substitution effect and the equilibrium effect; and by accounting for regional

heterogeneity across urban areas where transit investments occur, our empirical analysis helps ex-

plain the previous literature’s seemingly conflicting empirical results on the relationship between

transit supply and traffic congestion.

The balance of our paper proceeds as follows. We review the related literature in Section 2. We

present a conceptual model and our empirical models for analyzing public transit and the demand

for automobile travel in Section 3. We describe our data in Section 4 and present our results in

Section 5. Section 6 concludes.

2 Literature Review

The link between pricing and investment in auto travel was recognized in the seminal papers by

Mohring and Harwitz (1962) and Vickrey (1969), with a recent treatment by Lindsey (2012). While

investment in roadway infrastructure may lead to short-term reductions in congestion, it may be

ineffective in the long run in the absence of efficient pricing, as improvements in travel conditions

will induce additional demand for auto travel (Hau, 1997). This predicted effect is known as the

‘fundamental law of traffic congestion’ and traces back to Downs (1962); it is analogous to the

Tragedy of the Commons associated with any non-excludable and congestible resource, and has

been demonstrated empirically by Duranton and Turner (2011), who show that auto travel vol-

umes increase proportionally with the available auto capacity.
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The concept of induced auto travel following improved travel conditions is also applicable to invest-

ment in public transit. Increasing the relative attractiveness of transit travel may initially cause a

subset of commuters to switch from auto to transit. However, by reducing congestion, increasing

accessibility, increasing economic activity, and/or attracting additional residents and workers to

the area, transit investment may generate additional automobile trips that were previously not un-

dertaken. As Small and Verhoef (2007) note, the introduction of Bay Area Rapid Transit (BART)

service between Oakland and San Francisco in the early 1970s led to 8,750 automobile trips being

diverted to BART; however, 7,000 new automobile trips were subsequently generated, diminish-

ing the net reduction in travel during peak periods. Additionally, investments in mass transit

may lead to localized economic development and land-use changes, which, even if considered to be

‘transit-oriented development’, may still generate automobile trips that countervail potential traffic

congestion reductions due to the initial cross-modal travel substitution (Stopher, 2004; Small and

Verhoef, 2007).

Existing empirical studies of the relationship between public transit investment and traffic con-

gestion can be summarized as follows.6 Baum-Snow and Kahn (2005) analyze 16 new and/or

expanded rapid rail transit systems in large, dense U.S. cities over the period 1970-2000. They find

that rail transit investment does not reduce congestion levels and that variation in metropolitan

area structure (primarily population density) both within and between regions is an important

factor leading to heterogeneous responses of commuters with respect to mode choice following ex-

panded rail service. Winston and Langer (2006) analyze the effects of roadway expenditures on

the cost of congestion in 72 large urban areas in the U.S. over the period 1982-1996. They find

that rail transit mileage leads to a decrease in congestion costs, but that increases in bus service

actually exacerbate congestion costs. Winston and Maheshri (2007) examine 25 rail systems in

the U.S. from 1993-2000. They estimate that in 2000 these rail systems generated approximately

$2.5 billion in congestion cost savings. This estimate is derived by comparing observed congestion

costs with those that would arise in the counterfactual scenario where the rail systems were not

constructed, based on the empirical results of Winston and Langer (2006); their approach does not

provide an estimate of the marginal congestion reduction attributable to incremental changes in

existing rail service levels. Nelson et al. (2007) use a simulation model calibrated for Washington,

DC and find that rail transit generates congestion-reduction benefits large enough to exceed total

rail subsidies.

Duranton and Turner (2011) find empirical support for the ‘fundamental law of traffic congestion’

6
See Beaudoin, Farzin and Lin Lawell (2015) and Beaudoin and Lin Lawell (2017) for detailed discussions and
comparisons of these studies. There is also a burgeoning literature on public transit investment and air quality
(Anas and Timilsina, 2009; Cutter and Neidell, 2009; Chen and Whalley, 2012; Sexton, 2012; Lalive, Luechinger
and Schmutzler, 2013; Rivers, Saberian and Schaufele, 2017; Bauernschuster, Hener and Rainer, 2017; Beaudoin
and Lin Lawell, 2018); see Beaudoin, Farzin and Lin Lawell (2015) and Beaudoin and Lin Lawell (2018) for reviews
and discussions of this literature.
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and convincing evidence of induced demand: increases in road capacity are met with commensu-

rate increases in auto travel. In the course of their analysis, they also find that the level of public

transit service does not affect the volume of auto travel, though they do not estimate the effect on

congestion per se. Controlling for the potential endogeneity of transit service and auto travel, their

analysis covers 228 Metropolitan Statistical Areas in the U.S. for the years 1983, 1993, and 2003.

Anderson (2014) uses a regression discontinuity design based on a 2003 labor dispute within the

Los Angeles transit system, and finds that average highway delay increases by 47% when transit

service ceases operation. He also finds that heterogeneity in congestion levels within a city leads

to congestion reduction from transit roughly six times larger than when there is homogeneous con-

gestion levels facing commuters. As was the case with Winston and Maheshri (2007), Anderson

(2014) provides strong evidence of the effects of transit on congestion at the extensive margin (i.e.

comparing the outcome of an existing transit network with the counterfactual absence of any tran-

sit services), but in addition to only being a short-term effect that may potentially be specific to

the Los Angeles transportation network, it does not address the effect of transit on congestion at

the intensive margin (i.e. comparing incremental changes in the level of transit service provided

relative to the existing network).

The effects of mass transit have recently been examined in various contexts. Bauernschuster, Hener

and Rainer (2017) use a similar research design to Anderson (2014) and find that transit strikes

in Germany resulted in an 11-13% increase in total hours spent in cars during these strikes, and

a commensurate increase in accident and emission externalities. Using a regression discontinuity

framework, Yang et al. (2018) find that subway openings in Beijing in the last decade led to an

average reduction in travel delays of approximately 15% across Beijing, following a near doubling

of the rail network in the city. Mayer and Trevien (2017) estimate that commuter rail openings

in Paris led to localized employment increases, but no detectable effect on overall population growth.

Hamilton and Wichman (2018) study the impact of bicycle-sharing infrastructure on urban trans-

portation, and find that the availability of a bikeshare reduces traffic congestion upwards of 4%

within a neighborhood. They also estimate heterogeneous treatment effects using panel quantile

regression, and find that the congestion-reducing impact of bikeshares is concentrated in highly

congested areas.

Overall, the existing empirical evidence of the effect of transit investment on traffic congestion is

mixed. Anderson (2014) summarizes the literature by recognizing that while public transit service

may have a minimal impact on total travel volumes, it may still have a large impact on congestion

levels, depending on how induced demand occurs along the various margins of the travel decision

(whether to travel, which mode to use, which route to take, and the timing of the trip if taken).
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The conflicting conclusions of previous studies may also be due to differences in empirical method-

ologies employed and the characteristics of the dataset used. Our paper adds further evidence to

this issue by using a broader set of urban areas over a longer time period than previous studies;

by distinguishing between the substitution effect and the equilibrium effect; and by accounting for

regional heterogeneity across urban areas where transit investments occur. The importance of the

time horizon and of regional heterogeneity that our results indicate helps reconcile the literature’s

seemingly conflicting evidence.

3 Public Transit and the Demand for Automobile Travel

Figure 1 displays the growth in congestion and travel volumes for a representative urban area in

the U.S. over the period 1991 to 2011, calculated using the population-weighted mean values across

96 large urban areas (UZAs) in the U.S.,7 with the indices for the 1991 values normalized to 1.00.

Auto data are from the Texas Transportation Institute’s Urban Mobility Report and transit data

are from the Federal Transit Administration’s National Transit Database; both are described in

detail in Section 4. On average, the total hours of delay attributable to congestion increased by

55% over this period, associated with a 36% increase in auto travel and a 34% increase in transit

travel, respectively. Travel times have increased by 4% over this same period, with the total delay

hours being relatively higher due to the growing population and more commuters being exposed to

the congestion externality.

Figure 2 provides an overview of U.S. public transit over the period 1991 to 2011, using data from

the Federal Transit Administration’s National Transit Database, which is described in detail in

Section 4. Indices are again a population-weighted average across the 96 urban areas (UZAs) and

normalized so that their 1991 value is 1.00. Transit service frequency (as measured by vehicle

revenue-miles per directional route-mile) has remained fairly steady over time, while overall transit

network coverage (directional route-miles) has increased by 18%, which suggests that the increased

transit ridership is mostly associated with increased transit accessibility.

Some analysts (e.g., Rubin and Mansour (2013)) have argued that increased congestion in the pres-

ence of increased public transit supply indicates that public transit is an ineffective tool to reduce

congestion. However, one must consider the counterfactual congestion that would exist in the ab-

sence of this change in transit supply and assess congestion levels within the context of growing

population and per capita income over time (see Noland (2001), Berechman (2009) and Litman

(2014) for a discussion of the underlying contributors to auto travel growth). These considerations

7
As described in detail in Section 4, an ‘urban area’ (UZA) is defined by the U.S. Census Bureau and refers to a
region that is centered around a core metropolitan statistical area (MSA).
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Figure 1: Growth in congestion and travel volumes
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Note: The graph shows trends in traffic congestion, auto travel, and transit travel for a representative urban
area in the U.S. over the period 1991 to 2011, calculated using the population-weighted mean values across
96 large urban areas (UZAs) in the U.S., with the indices for the 1991 values normalized to 1.00.

Data Sources: Auto data are from the Texas Transportation Institute’s Urban Mobility Report and transit

data are from the Federal Transit Administration’s National Transit Database.

Figure 2: Overview of U.S. public transit
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2011. Indices are a population-weighted average across 96 large urban areas (UZAs) and normalized so that
their 1991 value is 1.00.

Data Source: Federal Transit Administration’s National Transit Database.
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of induced demand are especially important in the equilibrium framework one should use to eval-

uate public transit investment.

The ability of public transit supply to reduce congestion levels hinges on the degree to which auto

users switch to transit following a reduction in the cost of transit travel, which depends on both

the substitution effect and the induced demand effect. We now present our conceptual model and

then our empirical models for disentangling the effects of modal substitution and induced demand

following increases in transit supply.

3.1 Conceptual Model

We begin with a simple conceptual model that explains the substitution effect and the induced

demand effect, and how changes in public transit capacity may change auto travel demand in the

short run, medium run, and long run. For a more detailed theoretical model of the effects of public

transit investment on auto travel demand, see Beaudoin, Farzin and Lin Lawell (2018).

The level of public transit supplied in a region influences the demand for automobile travel in two

ways: (1) by determining the total volume of travel across the urban transportation network, and (2)

by influencing the modal distribution of trips across the transit and automobile modes. Moreover,

the incentive to substitute across modes is subject to the regulations in place regarding urban auto

travel; notably, in the absence of a Pigouvian tax on auto travel in congested conditions, the ratio

of the marginal private cost of travel and the marginal social cost of travel across modes is distorted.

We are interested in estimating the net effect of changes in the supply of transit on observed levels

of automobile travel, in the absence of a Pigouvian congestion tax on auto travel. In other words,

we are estimating the effect of transit given existing policies in place, and therefore must account

for induced auto demand due to the inefficient pricing of auto travel.

An increase in the supply of transit affects the relative cost of auto and transit travel. The marginal

private cost of auto travel is given by the sum of the monetary cost of auto travel (which includes

the variable out-of-pocket expenses such as fuel), the monetized value of time spent traveling, and

the per-unit tax levied on auto travel (if any). Similarly, the marginal private cost of transit travel

is given by the sum of the transit fare and the monetized values of the access, wait, and travel times

required for transit trips. Both the equilibrium volume of total travel and the modal distribution

of trips are functions of the equilibrium values of these generalized costs.

An increase in transit supply primarily reduces the access and wait times associated with public

transit use, which has been demonstrated to have a much more significant effect on modal choice
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than changes in monetary costs (Wardman, 2004). This reduction in the generalized cost of transit

travel may lead to a downward shift in the auto demand curve following an increase in transit

capacity, if the cross-elasticity between modes is positive.

In the short run, an increase in transit supply may therefore cause some commuters to substitute

transit travel for trips previously taken by automobile (the “substitution effect”), thereby decreas-

ing auto travel. In the medium and long run, by reducing congestion, increasing accessibility,

increasing economic activity, and/or attracting additional residents and workers to the area, tran-

sit investment may generate additional automobile trips that were previously not undertaken (the

“induced demand effect”). The “equilibrium effect” accounts for both the substitution effect and

the induced demand effect.

A complementary view of the induced demand effect relies on a spatial equilibrium model of an

open urban city. In equilibrium, individuals must be indifferent across cities. Transportation costs

are a potential source of inter-regional compensating variation, and investment in public transit

can lead to inter-regional migration in the long run. Thus, any short-run increase in income levels

and/or decrease in transportation costs following improved transit supply will induce migration

into the city in the long run, until these differentials are eroded by increased population and traffic

congestion. Additionally, there may be positive agglomeration externalities associated with large-

scale transit projects, for example from network effects following accessibility improvements, which

may also attract additional residents and workers to the area in the long run. Both of these effects

would lead to an upward shift in the auto demand curve in the long run.

More formally, spatial equilibrium requires the equalization of utility Uirt(·) across individuals i

and across regions r, so that the following condition must hold at time t for all individuals i and

for all regions r and r′ in the long run:

Uirt

(
Prt (nrt) , Yirt (nrt) , girt

(
nrt,K

T
rt

)
, ar

)
= Uir′t

(
Pr′t

(
nr′t
)
, Yir′t

(
nr′t
)
, gir′t

(
nrt,K

T
r
′
t

)
, ar′

)
,

where, Yirt is individual i’s income; and where for each region r, nrt is the population in region r

at time t; KT
rt is the supply of public transit; ar is a vector of amenities; Prt is a vector of non-

transportation prices (including housing); and girt is the generalized cost of travel for individual i,

which reflects the monetary and non-monetary costs of a trip, including congestion costs. Assuming

individuals choose to take the lower cost mode of travel, the generalized cost of travel is given by

girt = min
{
gTirt, g

A
irt

}
, where T denotes transit and A denotes auto.

In the short run, an increase in public transit KT
rt leads to a decrease in the generalized cost of
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travel girt and an increase in utility Uirt, which subsequently leads to an increase in the population

nrt in region r, with the rate of population growth dependent on the transaction costs and frictions

associated with relocation. This increase in population then reduces utility Uirt by increasing non-

transportation prices, decreasing income, and/or increasing transportation costs, and migration

between regions will continue until utility levels are again equalized across regions.

It follows that the level of auto travel will be affected by transit investment over time. In the short

run, individuals may switch from auto to transit as the generalized cost of transit travel gTirt falls.

However, in the medium run, this will lead to induced auto travel for two reasons: (1) any initial

substitution away from auto travel will lower the cost of auto travel by reducing congestion and

this will then lead to replacement auto trips, and (2) population growth in the region due to the

mechanism outlined in the model above. In the long run, this population growth will have a more

significant effect on auto travel as the inter-region migration flows increase.

To disentangle the effects of modal substitution and induced demand following transit supply in-

creases, we estimate three different models of the effect of transit supply on auto travel volumes.

We now describe these empirical models for estimating the substitution effect, the medium-run

equilibrium effect, and the long-run equilibrium effect, respectively.

3.2 Modal Substitution Effect

To estimate the modal substitution effect, we analyze the effect that transit supply has on ob-

served auto traffic levels in region r at year t while controlling for factors that would lead to

induced demand, including employment rate, income, and population. Our regression model for

the substitution effect is given by:

Auto travelrt = β1·Transit Capacityrt + β2·Freeway Capacityrt + β3·Arterial Road Capacityrt

+ β4·Fuel Costrt + β5·Transit Farert + β6·Employmentrt + β7·Incomert

+ β8·Populationrt + Year Effects + UZA Fixed Effects + εrt,

(1)

where the observed level of auto travel is measured as the number of vehicle-miles traveled per

freeway lane-mile, transit supply is measured as the total transit in terms of vehicle revenue-miles,8

and auto capacity is measured by the number of lane-miles (distinguishing between freeway and

arterial roads). The monetary cost of auto travel is measured by the fuel cost per vehicle-mile

8
The level of transit supplied is measured most accurately by the total capacity of the network, given by the
vehicle-revenue miles of service provided (Small and Verhoef, 2007). It is not possible to separately identify the
effects of transit accessibility (directional route-miles) and transit capacity (vehicle revenue-miles) at the aggregate
level of the transportation network, given the significant collinearity of the two measures: the correlation between
these measures is 0.907 and there is very little spatial and temporal variation in vehicle revenue-miles traveled per
directional route-mile.
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traveled and the transit fare is the average per-trip fare revenue received. Socioeconomic and

regional control variables include employment rate, income, and population. Year effects and ur-

ban area (UZA) fixed effects are also included. The standard errors are clustered at the UZA level.9

For this model, our key parameter of interest is β1, the coefficient on transit capacity. Using a panel

of urban areas, we estimate β1 using regional fixed effects to remove all time-invariant effects that

vary across regions and influence the estimated effect of transit investment on auto travel volume,

such as the physical design of the transportation network, which is very slow to evolve. Variation

in travel volumes and transit levels within a region over time enables us to best estimate the sub-

stitution effect, given the differences in the structure and existing equilibria across transportation

networks, and after controlling for factors that would lead to induced demand (including employ-

ment rate, income, and population), as the fixed effects absorb the heterogeneity in congestion and

transit levels unique to each region.

3.3 Equilibrium Effect Accounting for Induced Demand

When increases in transit supply are considered in a dynamic context with no congestion tax in

place, the fundamental law of road congestion must be accounted for. Although an increase in

transit supply may decrease auto travel in the short run via the substitution effect, this decrease in

auto travel may be offset by the induced demand effect in the medium and long run. In the medium

and long run, by reducing congestion, increasing accessibility, increasing economic activity, and/or

attracting additional residents and workers to the area, transit investment may generate additional

automobile trips that were previously not undertaken. The equilibrium effect accounts for both the

substitution effect and the induced demand effect.

To estimate the medium-run equilibrium effect accounting for both the substitution effect and the

medium-run induced demand effect, we replace the factors associated with the induced demand

effects of the spatial equilibrium model – employment rates, income, and population – with their

5-year lagged values. Thus, unlike our empirical model of the substitution effect, whose coefficient

on transit capacity yields the marginal effect of transit on auto travel holding employment rates,

income, and population constant, the coefficient on transit capacity in our empirical model of

the medium-run equilibrium effect accounts for both the substitution effect and the medium-run

induced demand effect that may have been induced by resulting changes in employment rates,

income, and population in the medium run. Our empirical model of the medium-run equilibrium

effect therefore allows for medium-run adjustments in employment rates, income, and population,

and enables us to estimate the net effect of transit supply on equilibrium auto travel volumes once

9
εrt are stochastic error terms assumed to be independent and identically distributed across regions and time, and
may be heteroskedastic across regions.
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these medium-run mechanisms of induced demand over this period are factored in. Our regression

model for the medium-run equilibrium effect is given by:

Auto travelrt = γ1·Transit Capacityrt + γ2·Freeway Capacityrt + γ3·Arterial Road Capacityrt

+ γ4·Fuel Costrt + γ5·Transit Farert + γ6·Employmentr,t−5 + γ7·Incomer,t−5

+ γ8·Populationr,t−5 + Year Effects + UZA Fixed Effects + εrt.

(2)

For the medium-run equilibrium model, we control for the 5-year lagged values of employment,

income, and population, but not their contemporaneous values, as we wish to allow for the effect

of transit capacity to lead to changes in regional structure over the medium run. For this model,

we use the panel setting to exploit variations in transit supply and auto travel volumes within and

across regions over time. For this model, our key parameter of interest is γ1.

We choose 5 years as the time horizon for the medium run because it is a reasonable medium-run

time horizon for some changes in employment, income, and population to take place, but still short

enough to give us enough observations when we run the model with 5-year lags. To further examine

the dynamics of the induced demand effect, we also vary the number of years we lag the auto demand

determinants (employment, income, and population) in the medium-run equilibrium effect in equa-

tion (2) from 0 to 10 years, representing different medium-run time horizons ranging up to 10 years.

To estimate the long-run equilibrium effect accounting for both the substitution effect and the

long-run induced demand effect, we remove as controls the factors associated with the induced

demand effects of the spatial equilibrium model: employment rates, income, and population. Thus,

unlike our empirical model of the substitution effect, whose coefficient on transit capacity yields

the marginal effect of transit on auto travel conditional on contemporaneous employment rates,

income, and population, the coefficient on transit capacity in our empirical model of the long-

run equilibrium effect accounts for both the substitution effect and the long-run induced demand

effect that may have been induced by changes in employment rates, income, and population. Our

empirical model of the long-run equilibrium effect therefore allows for long-run adjustments in

employment rates, income, and population, and enables us to estimate the net effect of transit

supply on equilibrium auto travel volumes once the long-run mechanisms of induced demand are

factored in. Our regression model for the long-run equilibrium effect is given by:

Auto travelrt = α1·Transit Capacityrt + α2·Freeway Capacityrt + α3·Arterial Road Capacityrt

+ α4·Fuel Costrt + α5·Transit Farert + Year Effects + UZA Fixed Effects + εrt.

(3)

For the long-run equilibrium model, we do not control for employment, income, or population, as

we wish to allow for the effect of transit capacity to lead to changes in regional structure over time.
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For this model, we use the panel setting to exploit variations in transit supply and auto travel

volumes within and across regions over time. For this model, our key parameter of interest is α1.

We expect the substitution effect to be non-positive, with β1 ≤ 0. Similarly, the induced demand

effect should be non-negative; depending on the values of the substitution effect and the induced

demand effect, the net equilibrium effect could take on any value. The implied value of the induced

demand effect is then the difference between β1 and γ1 in the medium run, and the difference

between β1 and α1 in the long run. An alternative interpretation is that the net equilibrium effect

of public transit supply on the volume of automobile travel in the medium run and in the long run

depends on the relative magnitudes of the short-run substitution effect and the respective medium-

and long-run induced demand effect.

3.4 Identification Strategy

Anderson (2014) identifies the effect of changes in transit supply on congestion along the extensive

margin by employing a regression discontinuity design. As we are interested in estimating the ef-

fect along the intensive margin relative to existing public transit supply, our identification strategy

relies on a panel data setting. We seek to identify the causal effect of public transit supply on

auto travel demand by exploiting both time series and cross-sectional variation in transit capital

and auto congestion levels and by using an instrumental variable to address the endogeneity in the

supply of public transit across urban areas of the U.S.

There are two potential sources of time-varying endogeneity of urban transportation investment

to observed congestion levels. First, there may be omitted variable bias, as transportation invest-

ment is more likely to occur in densely populated urban areas that are also likely to have higher

ex ante (and/or anticipated) levels of congestion. Similarly, new investments may be used as a

policy measure to address existing congestion and/or as a component of a regional growth and

development strategy; in both cases, we would expect congestion and transportation investment to

be positively correlated. This has been a prevalent issue in analogous studies evaluating the effects

of road investment on auto travel. As Cervero (2002, pp. 7) notes, “road investments are not made

at random but rather as a result of conscious planning based on anticipated imbalances between

demand and capacity. This implies that, irrespective of any traffic inducement effect, road supply

will generally correlate with road use.” A second source of endogeneity is that travel demand and

congestion are simultaneously determined through the speed-flow relationship and the generalized

travel cost function.

To address the potential endogeneity of transit with respect to congestion, we instrument for pub-

lic transit investment. To identify the effect of transit investment on congestion, our instrument
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must be correlated with the level of investment, while the exclusion restriction requires that our

instrument has no effect on congestion beyond the direct effect on public transit investment.

The instrument we use for public transit investment is the level of Federal funds provided for transit

capital in the region from two years prior. From 1991-2011, the regions studied received 66.7% of

capital funding and 17.3% of operating funding from Federal sources on average, with the remainder

via State and Local sources. As Libermann (2009, pp. 87) states: “...most [Federal] highway, transit

and safety funds are distributed through formulas that only indirectly relate to needs and may have

no relationship to performance. In addition, the programs often do not use the best tools or best

approaches, such as using more rigorous economic analysis to select projects.” Although State and

Local funds may be correlated with unobserved factors affecting regional congestion, conditional on

time-invariant region-specific unobservables that are absorbed by the regional fixed effects, changes

in Federal funds two years ago are orthogonal to current changes in such potential factors. This

supposition is consistent with Berechman (2009, pp. 219-222):

“...the proclivity of local decision makers to accept a project regardless of its actual ben-
efits and risks increases with the proportion of funding obtained from higher levels...This
observation also explains why US federal subsidies to local public transit inherently pro-
vide incentives for selecting capital-intensive projects irrespective of their efficiency or
effectiveness...Our hypothesis states that local authorities, as recipients of federal and
state money, tend to regard external funding as “costless” and as political benefits.
They are therefore predisposed to promoting infrastructure projects containing a large
external funding component...this tendency promotes the implementation of inefficient
projects, selected without any regard for their social rate of return.”

There is little evidence that Federal transit funds have been directed towards the most congested

regions. As seen in the scatterplot in Figure 3, there is no clear relationship between the growth

in congestion experienced by urban areas over the period 1991-2000 and the subsequent per capita

Federal transit funds allocated to the region in 2000-2011. The scatterplot therefore provides evi-

dence that areas with the highest levels of congestion growth did not receive greater Federal transit

funding in response. Further, there appears to be a very limited tradeoff between Federal transit

funding and investment in roads.10

We are interested in estimating the effect of transit investment on auto travel demand, holding

fixed the level of auto capacity. While aggregate auto capacity has increased fairly steadily over

the period 1991-2011, this growth rate is very low and the scatterplot in Figure 4 shows that there

is no evidence that auto capacity investment has systematically occurred in the most congested

regions. The scatterplot therefore provides evidence that areas with the highest levels of initial

10
The correlation between auto freeway capacity per capita and Federal transit funding per capita is -0.17 for capital
funding and -0.10 for operating funding.
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Figure 3: Congestion growth and subsequent Federal transit funding
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Note: The scatterplot shows, for each of the 96 urban areas (UZAs) in our data set, the average annual growth

in congestion (as measured by the percent change in daily vehicle-miles per freeway lane-mile) experienced

by the urban area over the period 1991-2000, and the subsequent per capita Federal transit funds allocated

to the region in 2000-2011. Each point on the scatterplot corresponds to one of the 96 urban areas (UZAs)

in our data set. The scatterplot provides evidence that areas with the highest levels of congestion growth did

not receive greater Federal transit funding in response.
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Figure 4: Auto capacity investment and baseline congestion levels
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Note: The scatterplot shows, for each of the 96 urban areas (UZAs) in our data set, the initial level of

congestion (in daily vehicle-miles per freeway lane-mile) in the urban area in 1991, and the subsequent

cumulative auto capacity growth (as measured by the percent change in freeway lane-miles) in the urban

area over the period 1991-2011. Each point on the scatterplot corresponds to one of the 96 urban areas (UZAs)

in our data set. The scatterplot provides evidence that areas with the highest levels of initial congestion did

not receive greater roadway investment in response.

congestion did not receive greater roadway investment in response. Overall, the road networks of

the developed urban regions of the U.S. evolve very slowly and we view road capacity as exogenous

within our sample.

As seen in Table 1, the correlations between changes in Federal capital funding for transit and

changes in lagged determinants of auto travel (employment, income, and population) are extremely

low. The low correlations provide additional evidence that determinants of auto demand are not

correlated with Federal capital funding for transit, and therefore provide further support for the

exogeneity of our Federal transit capital funding instrument.

Conditional on urban area fixed effects and the other controls (including employment, income, and

population), our instrument is therefore plausible, as there should not be any other significant
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Table 1: Correlation between Changes in Federal Capital Funding and Changes in Lagged Determinants of Auto Demand

Correlation between Changes in Federal Capital Funding in year t and Changes in:

Year Employment Income Population VMT per
Rate Freeway Lane-Mile

t −0.000 −0.010 0.103 −0.018
t− 1 0.053 0.081 0.050 0.020
t− 2 0.039 0.048 −0.130 0.034
t− 3 0.033 −0.000 0.034 −0.018
t− 4 −0.036 −0.053 −0.031 0.018
t− 5 −0.052 −0.093 0.055 0.008
t− 6 −0.037 −0.037 0.058 0.002
t− 7 −0.028 −0.045 −0.047 −0.024
t− 8 0.029 0.061 0.100 −0.014
t− 9 −0.006 0.019 −0.003 0.003
t− 10 0.010 −0.009 −0.095 −0.002

Note: The table shows correlations, calculated using the data from each of the 96 urban areas (UZAs) in
our data set, between changes in Federal capital funding for transit in year t in an urban area, and changes
in contemporaneous and lagged determinants of auto travel (employment, income, and population) for the
preceding 1-10 years in that urban area. The low correlations provide evidence that determinants of auto
demand are not correlated with Federal capital funding for transit.

economic changes that are correlated with travel demand and changes in our instrument.11 To

further test the validity of our instrument, we also conduct weak-instrument-robust inference tests,

and their results are reported along with our regression results below. The instrument passes these

tests, and the first-stage Angrist-Pischke F-statistics are greater than 10.12

4 Data

To estimate equations (1) - (3), we construct a panel dataset spanning 21 years from 1991 to

2011, covering 96 urban areas within 351 counties and 44 states across the U.S. An ‘urban area’

(UZA) is defined by the U.S. Census Bureau and refers to a region that is centered around a core

metropolitan statistical area (MSA). A UZA does not align directly with other geographic and/or

political boundaries; while each UZA has a core MSA, a UZA can be contained within multiple

MSAs, counties, and/or States, and a UZA is smaller in overall size than an MSA.13

Appendix A contains further details of our dataset. Table A.1 displays summary statistics, while

Table A.2 lists the regions included in the analysis and gives an overview of these regions across

several relevant characteristics. As Figure 5 shows, the UZAs included in the analysis are spread

across the U.S., and there is significant variation in the attributes of the UZAs. The average pop-

11
In our sample, there is very little residual correlation between congestion and the instrument after conditioning on
the other covariates in the model.

12
Tables A.5 - A.7 in Appendix A present the first-stage regression results.

13
The 96 UZAs in our dataset are the 96 UZAs with both auto and transit data after merging the Texas Trans-
portation Institute’s Urban Mobility Report auto data and the Federal Transit Administration’s National Transit
Database transit data below.
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ulation of the UZAs in 2011 was 1.8 million, ranging from 0.2 million in Brownsville, TX to 18.9

million in New York-Newark, NY-NJ-CT. The average area was 501 square miles, with Laredo, TX

being the smallest at 43 square miles and New York-Newark being the largest at 3,353 square miles.

Data relating to the auto travel components of each UZA’s transportation networks are primarily

from the Texas Transportation Institute’s Urban Mobility Report (Schrank, Eisele and Lomax,

2012), which are the “best available means of comparing congestion levels in different regions and

tracking changes in regional congestion levels over time” (Downs, 2004, pp. 17). While we measure

auto travel as the daily vehicle-miles traveled per freeway lane-mile, Schrank, Eisele and Lomax

(2012) contains additional measures of traffic congestion: the Travel Time Index, which measures

actual travel time relative to free-flow travel time; total annual hours of delay; percentage of peak

vehicle-miles traveled under congested conditions; and the Roadway Congestion Index, which mea-

sures the aggregate traffic density of an urban area relative to the capacity of the transportation

network.14 As seen in Table A.3 in Appendix A, these various measures of congestion are highly

correlated. Table A.4 in Appendix A summarizes congestion levels across UZAs from 1991-2011.

As presented and discussed below, our empirical results are robust to the particular measure of

congestion used.

The per-mile fuel cost of auto travel is derived from the Federal Highway Administration’s Highway

Statistics records. The average state-wide fuel efficiency (gallons per vehicle-mile traveled) in each

year is derived from the total gallons of fuel used and the annual vehicle-miles traveled in each

state. This value is then multiplied by the average cost of fuel (dollars per gallon) in the state

(from TTI’s Urban Mobility Report) to compute the cost of fuel on a per vehicle-mile basis. The

primary state of each UZA is used in assigning this value, as the underlying data are not available

at the UZA level, and the fuel price control variable can thus be considered exogenous with respect

to the congestion levels of the UZA. These current values are then converted to 2011 U.S. Dollars

via the Consumer Price Index.

Transit data are obtained from the Federal Transit Administration’s National Transit Database.15

For each UZA’s transit system, the network size is measured by directional route-miles and capacity

is measured by vehicle-revenue miles. Transit travel is measured by annual passenger-miles trav-

eled, while operating and capital funding is disaggregated by source (fares, Federal, State, Local,

and other). Our two measures of transit fares for the UZA are calculated by dividing total transit

fare revenue by (1) passenger-miles traveled on transit or by (2) the total number of unlinked tran-

sit trips. Since transit fares are very sticky, they are also assumed to be exogenous with respect

14
The Urban Mobility Report measures traffic delay using data from the U.S. Department of Transportation on
traffic volumes and the characteristics of the city (see Winston and Langer (2006) for discussion).

15
www.ntdprogram.gov/ntdprogram/data.htm.
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Figure 5: Urban areas (UZAs) included in the analysis
Roadway Congestion, 2011

Note: Map shows the 96 urban areas (UZAs) in our data set, which span 351 counties and 44 states across the U.S. An ‘urban area’ (UZA) is defined by

the U.S. Census Bureau and refers to a region that is centered around a core metropolitan statistical area (MSA).
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to the congestion level of the UZA.16 Operational transit data are distinguished by modal type -

fixed guideway modes with separate rights-of-way for the transit vehicle versus mixed traffic modes

that share the roadways with automobiles. The fixed guideway modes included are: commuter

rail, light rail, heavy rail, hybrid rail, monorail and automated guideway, and bus rapid transit.

The mixed traffic modes are: bus and trolleybus. We include fixed schedule service and exclude

demand-response modes (such as those typically provided for passengers with mobility issues). In

2011, the modes included in our analysis represent approximately 74% of vehicle-revenue miles and

97% of unlinked passenger trips across the UZAs in our analysis.

Socioeconomic data relating to employment rate, income, and population are compiled for the cen-

tral MSA comprising each UZA and obtained from the Bureau of Economic Analysis’s Regional

Data records.17

5 Empirical Results

We now discuss the empirical results from estimating the models outlined in Section 3.

5.1 Overall Results

Table 2 contains our baseline results from estimating the substitution effect using equation (1).

Specification (1) presents OLS estimates, while specifications (2) and (3) present the IV estimates

excluding and including UZA fixed effects, respectively.18 To interpret the coefficient estimates in

specification (3), which is our preferred specification, we also present the results of specification (3)

in terms of the average elasticity of auto travel with respect to the associated variable across the

96 UZAs.19

Our results for the substitution effect show that in the short run, when accounting for the substi-

tution effect only, and after controlling for the underlying factors that generate auto traffic growth,

increases in transit capacity do lead to a reduction in traffic congestion. The coefficient estimate

for the substitution effect implies a statistically significant average elasticity of auto travel with

respect to transit capacity of -0.07 across the 96 UZAs, which indicates that on average a 10%

16
Though some transit agencies differentiate peak and off-peak fares, there has been little variation in the average
transit fare over time.

17
www.bea.gov/iTable/index.cfm under Local Areas Personal Income and Employment, Economic profiles (CA30).

18
The results of the first-stage regression are presented in Table A.5.

19
The elasticity of auto travel with respect to transit capacity referred to throughout this section is %∆Auto travel

%∆Transit capacity
.

Holding auto capacity fixed, the elasticity of auto travel with respect to transit capacity reflects the change in auto
travel volume due to changes in transit supply.
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increase in transit capacity is expected to lead to a 0.7% reduction in auto travel in the short run.

Our elasticity estimate relates to a change in transit capacity along the intensive margin, which may

not extrapolate to large transit investments. At the individual level, there may be a diminishing

marginal modal substitution rate as the level of transit capacity increases, since those for whom

the initial generalized cost of transit travel only slightly exceeds the generalized cost of auto travel

will be the first induced to switch modes, and progressively larger reductions in transit travel costs

will be required to induce further modal substitution. Additionally, the estimated elasticity may

differ if the scale of the public transit network changes significantly; applying the Lucas critique,

the parameter estimates of the travel choices of individuals will depend on the characteristics of

the modal choices available to them when those choices are observed.

By comparing the OLS and IV coefficient estimates for the substitution effect in specifications (1)

and (3), respectively, of Table 2, we see that while ignoring the endogeneity of transit supply levels

still leads to a statistically significant negative coefficient on transit capacity, it would understate

the congestion-reduction benefit of transit by approximately 26%.20

There are several secondary results of interest. The elasticity of auto travel with respect to freeway

capacity is -0.28, implying that a 10% increase in road capacity leads to a 2.8% reduction in the

volume-to-capacity ratio. Since this effect is holding employment, income, and population constant

and removing the effect of the time trend, this suggests that there is still a small amount of induced

demand associated with capacity expansion beyond these underlying auto demand growth factors,

as a value of -1 would be expected if there were no induced demand. In comparing our results with

the induced demand effect found by Duranton and Turner (2011) – which would imply an auto

capacity coefficient of 0 in our model – it should be noted that their estimate should be interpreted

as a long-run elasticity (as their observations occur at 10-year intervals), whereas our elasticity is

a short-run elasticity based on annual data.

The price of transit travel (as represented by the transit fare) is found to have no effect on the level

of congestion. While the previous literature (Glaister and Lewis, 1978; Parry and Small, 2009)

shows that there is theoretical justification for transit fare subsidization if auto travel is under-

priced, the result is consistent with their conclusion that transit fare subsidies will nonetheless have

a minimal effect on equilibrium congestion levels due to a very low cross-price elasticity of auto

demand with respect to transit fares (Button, 1990).21

20
A Hausman test rejects the null hypothesis that transit capacity is exogenous, and a Davidson-MacKinnon test of
exogeneity soundly rejects the null hypothesis that OLS would yield consistent estimates of the coefficients.

21
Additionally, since existing transit fares are generally below average cost (indicated by the sizable operating subsidy
provided to transit agencies), our estimate of the effect of transit fares is for a marginal change relative to the
existing (subsidized) fare, which could be expected to have a small influence at the margin on transit ridership, as
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The price of auto travel (as represented by the fuel price) is found to have a small or insignificant

effect on auto travel volumes. This result is unsurprising, as the low elasticity of auto travel de-

mand with respect to fuel prices has been well documented: Graham and Glaister (2004) survey

the literature and summarize the elasticity of auto travel with respect to fuel price as -0.15 in the

short run and -0.31 in the long run. The fuel price does not vary by time and location, and aside

from the effect of congestion on per-unit fuel consumption, is largely independent of the degree of

congestion; as a result, this should not be construed as indicating that road pricing would not be

an effective tool in addressing congestion.

Population growth appears to be the main determinant of auto travel increases; the elasticity of

auto travel with respect to population is 0.45. The average elasticity of auto travel with respect to

per capita income is 0.14. The employment rate does not have a significant effect on auto travel.

Table 3 contains our baseline results from estimating the medium-run equilibrium effect, which in-

cludes the potential for induced auto demand in the 5 years following transit supply increases, using

equation (2). Specification (1) presents OLS estimates, while specifications (2) and (3) present the

IV estimates excluding and including UZA fixed effects, respectively.22 To interpret the coefficient

estimates in specification (3), which is our preferred specification, we again present the results of

specification (3) in terms of the average elasticity of auto travel with respect to the associated

variable across the 96 UZAs to facilitate comparisons.

Results from specification (3) show that, in the medium run, an increase in transit capacity has

no significant effect on auto travel, as latent and induced demand offset the substitution effect,

yielding no net effect.

To further examine the dynamics of the induced demand effect, we also vary the number of years

we lag the auto demand determinants (employment, income, and population) in the medium-run

equilibrium effect in equation (2) from 0 to 10 years, representing different medium-run time hori-

zons ranging up to 10 years. We graph the resulting elasticities of auto travel with respect to transit

capacity as a function of the length of the medium-run time horizon. As seen in Figure 6, transit

reduces auto travel in the short run (0 to 4 years), but in the longer run (> 4 years) it has no effect

on auto travel, as latent and induced demand offset the substitution effect.23

the transit fare is a relatively low fraction of the total generalized cost of transit travel.
22

The results of the first-stage regression are presented in Table A.6.
23

One can view the long run as the limit as the number of years we lag the auto demand determinants in Figure 6
becomes very large. As our data set spans 21 years, our long run captures a 21-year horizon. Because the sample
size decreases with the number of years we lag the auto demand determinants, we do not lag the auto demand
determinants more than 10 years. However, even with lags of 9 or 10 years, one can see that the point estimate
becomes positive when the time horizon is long enough.
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Table 2: Substitution Effect

Dependent variable is Daily Auto VMT per freeway lane-mile (000s)

Coefficient Avg. Elasticity

(Std. Err.)

(1) OLS (2) IV (3) IV (3) IV

Transit capacity -0.032∗∗∗ -0.041∗∗∗ -0.043∗ -0.07∗

(total vehicle revenue-miles, millions) (0.009) (0.003) (0.019)

Auto capacity: freeways -4.237∗∗∗ -0.192 -4.376∗∗∗ -0.28∗∗∗

(total lane-miles, thousands) (0.533) (0.158) (0.576)

Auto capacity: arterials -0.170 -0.732∗∗∗ -0.118 -0.02

(total lane-miles, thousands) (0.230) (0.129) (0.251)

Fuel price -0.811 0.750 1.574 0.01

($ per vehicle-mile) (6.043) (6.729) (6.379)

Transit fare 0.060 -0.234 0.050 0.00

($ per unlinked trip) (0.070) (0.166) (0.062)

Employment rate 2.984 -2.625∗ 0.414 0.02

(total employed per capita) (2.890) (1.215) (3.141)

Income 0.022 0.126∗∗∗ 0.046 0.14

(real per capita income) (0.027) (0.011) (0.027)

Population 4.079∗∗∗ 2.833∗∗∗ 4.333∗∗∗ 0.45∗∗∗

(millions) (0.581) (0.266) (0.949)

Year fixed effects Yes Yes Yes Yes

UZA fixed effects Yes No Yes Yes

N 1997 1802 1802 1802

R
2

0.641 0.518 0.581 0.581

p-val. (Prob > F) 0.000 0.000 0.000 0.000

First-stage F-statistic

First-stage AP F-stat, Transit Capacity - 108.50 14.12 14.12

Weak-instrument-robust inference

Anderson-Rubin Wald F test: p-val. - 0.000 0.027 0.027

Anderson-Rubin Wald χ
2

test: p-val. - 0.000 0.023 0.023

Notes: Robust standard errors clustered by urban area (UZA) are in parentheses. In (2)-(3), transit capacity is

instrumented by Federal transit funding in UZA, lagged two periods.

(Significance levels: ∗ : p < 0.05 ∗∗ : p < 0.01 ∗ ∗ ∗ : p < 0.001)
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Table 3: Medium-Run Equilibrium Effect with Induced Demand

Dependent variable is Daily Auto VMT per freeway lane-mile (000s)

Coefficient Avg. Elasticity

(Std. Err.)

(1) OLS (2) IV (3) IV (3) IV

Transit capacity -0.005 -0.031∗∗∗ -0.022 -0.04

(total vehicle revenue-miles, millions) (0.007) (0.003) (0.021)

Auto capacity: freeways -4.382∗∗∗ 0.083 -4.461∗∗∗ -0.31∗∗∗

(total lane-miles, thousands) (0.682) (0.178) (0.677)

Auto capacity: arterials 0.019 -0.288 0.068 0.01

(total lane-miles, thousands) (0.297) (0.148) (0.313)

Fuel price 4.497 6.830 4.725 0.04

($ per vehicle-mile) (5.368) (7.155) (5.304)

Transit fare 0.080 -0.215 0.054 0.00

($ per unlinked trip) (0.062) (0.164) (0.063)

Employment rate, 5-year lag 2.689 -3.503∗ 1.994 0.09

(total employed per capita) (3.856) (1.382) (3.824)

Income, 5-year lag 0.001 0.137∗∗∗ 0.006 0.02

(real per capita income) (0.033) (0.013) (0.032)

Population, 5-year lag 2.765∗∗∗ 1.892∗∗∗ 3.235∗∗∗ 0.33∗∗∗

(millions) (0.503) (0.284) (0.838)

Year fixed effects Yes Yes Yes Yes

UZA fixed effects Yes No Yes Yes

N 1528 1521 1521 1521

R
2

0.432 0.471 0.423 0.423

p-val. (Prob > F) 0.000 0.000 0.000 0.000

First-stage F-statistic

First-stage AP F-stat, Transit Capacity - 111.14 12.15 12.15

Weak-instrument-robust inference

Anderson-Rubin Wald F test: p-val. - 0.000 0.327 0.327

Anderson-Rubin Wald χ
2

test: p-val. - 0.000 0.318 0.318

Notes: Robust standard errors clustered by urban area (UZA) are in parentheses. In (2)-(3), transit capacity is

instrumented by Federal transit funding in UZA, lagged two periods.

(Significance levels: ∗ : p < 0.05 ∗∗ : p < 0.01 ∗ ∗ ∗ : p < 0.001)
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Figure 6: Medium-Run Equilibrium Effect for Different Lengths of the Medium-Run Time Horizon
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Notes: Graph shows elasticities of auto travel with respect to transit capacity that result from varying the

number of years we lag the auto demand determinants (employment, income, and population) in the medium-

run equilibrium effect in equation (2). The lags range from 0 to 10 years, representing different medium-run

time horizons. Error bars indicate 95% confidence interval.

Table 4 contains our baseline results from estimating the long-run equilibrium effect, which in-

cludes the potential for long-run induced auto demand following transit supply increases, using

equation (3). Specification (1) presents OLS estimates, while specifications (2) and (3) present the

IV estimates excluding and including UZA fixed effects, respectively.24 To interpret the coefficient

estimates in specification (3), which is our preferred specification, we present the results of speci-

fication (3) in terms of the average elasticity of auto travel with respect to the associated variable

across the 96 UZAs to facilitate comparisons.

The coefficient estimate for the long-run equilibrium effect implies a statistically significant average

elasticity of auto travel with respect to transit capacity of 0.04 across the 96 UZAs. This indicates

that on average a 10% increase in transit capacity is associated with a 0.4% increase in auto travel

in the long run once the long-run induced demand effect is also accounted for; in other words,

24
The results of the first-stage regression are presented in Table A.7.
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the short-run substitution effect is outweighed by the induced demand accompanying population

growth over the long run.

Table 4: Long-Run Equilibrium Effect with Induced Demand

Dependent variable is Daily Auto VMT per freeway lane-mile (000s)

Coefficient Avg. Elasticity

(Std. Err.)

(1) OLS (2) IV (3) IV (3) IV

Transit capacity 0.017∗∗ -0.013∗∗∗ 0.020∗ 0.04∗

(total vehicle revenue-miles, millions) (0.005) (0.001) (0.008)

Auto capacity: freeways -2.400∗∗ 1.090∗∗∗ -2.700∗∗ -0.20∗∗

(total lane-miles, thousands) (0.813) (0.189) (0.893)

Auto capacity: arterials 0.432 0.440∗∗∗ 0.433 0.09

(total lane-miles, thousands) (0.283) (0.050) (0.243)

Fuel price -0.925 31.920∗∗∗ 1.472 0.01

($ per vehicle-mile) (6.736) (6.920) (7.007)

Transit fare 0.069 -0.121 0.065 0.00

($ per unlinked trip) (0.074) (0.083) (0.059)

Year fixed effects Yes Yes Yes Yes

UZA fixed effects Yes No Yes Yes

N 1997 1802 1802 1802

R
2

0.557 0.410 0.491 0.491

p-val. (Prob > F) 0.000 0.000 0.000 0.000

First-stage F-statistic

First-stage AP F-stat, Transit Capacity - 274.55 17.17 17.17

Weak-instrument-robust inference

Anderson-Rubin Wald F test: p-val. - 0.000 0.044 0.044

Anderson-Rubin Wald χ
2

test: p-val. - 0.000 0.039 0.039

Notes: Robust standard errors clustered by urban area (UZA) are in parentheses. In (2)-(3), transit capacity is

instrumented by Federal transit funding in UZA, lagged two periods.

(Significance levels: ∗ : p < 0.05 ∗∗ : p < 0.01 ∗ ∗ ∗ : p < 0.001)

5.2 Regional Heterogeneity

As seen in Figure 7, urban areas vary significantly across several characteristics that may influence

the effect of transit supply on auto travel volumes. In particular, the ability of transit invest-

ment to reduce auto congestion depends on several factors that may vary across regions, including

the extent of existing congestion, the magnitude of auto demand shifts in response to changes in
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the generalized cost of transit travel, and the characteristics of the regional transportation network.

To examine the potential heterogeneity of the congestion-reduction benefit of transit across UZAs,

we compare the elasticities of auto travel with respect to transit capacity when the models in equa-

tions (1) - (3) are applied to a variety of sub-samples of the data, each constructed by stratifying

the urban areas (UZAs) in our data set according to characteristics of the region and the trans-

portation network.25 Table 5 summarizes these results for the substitution effect, the medium-run

equilibrium effect, and the long-run equilibrium effect. The medium-run equilibrium effect is not

statistically significant. The magnitude of the negative substitution effect is consistently twice the

magnitude of the positive long-run equilibrium effect.

When accounting for the substitution effect only, the magnitude of the elasticity of auto travel

with respect to transit capacity varies from approximately -0.008 in smaller, less densely popu-

lated regions with less-developed public transit networks; to approximately -0.215 in larger, more

densely populated regions with more extensive public transit networks. When accounting for both

the substitution effect and the induced demand effect in the long run, the elasticity of auto travel

with respect to transit capacity varies from approximately 0.005 in smaller, less densely populated

regions with less-developed public transit networks; to approximately 0.129 in larger, more densely

populated regions with more extensive public transit networks.

Our baseline results outline the average marginal effect of transit supply on auto travel. We also

examine the extent to which this marginal effect varies according to the level of auto travel occur-

ring in a given region. Figure 8 plots our estimates of the elasticity of auto travel with respect to

transit capacity when the models in equations (1) - (3) are stratified according to deciles of auto

travel. We find that for both the substitution effect and the long-run equilibrium effect, there is

a threshold value for the level of traffic congestion above which public transit supply begins to

potentially affect auto travel.

For values below this threshold, transit capacity does not influence auto travel demand, but once the

volume of auto travel exceeds this threshold, the magnitude of the elasticity of demand for automo-

bile travel with respect to transit capacity increases (becoming more negative for the substitution

effect and more positive for the long-run equilibrium effect) and the precision of the estimate de-

creases with the demand for automobile travel.26 We provide a more detailed analysis of regional

heterogeneity along several different characteristics in Appendix B.

25
For each characteristic, the UZAs are stratified using each UZA’s mean value of that characteristic over the panel
duration; as a result, the decile each UZA is in for a particular characteristic is held fixed over time.

26
Our result that the elasticity varies with congestion provides support for our choice not to estimate a log-log
regression model, which assumes that the elasticity does not vary with congestion.
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Figure 7: Distributions of urban area (UZA) characteristics
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Table 5: Elasticity of auto travel with respect to transit capacity

Avg. Elasticity in Sample

Substitution Medium-Run Long-Run

Sample Effect Equilibrium Equilibrium

Effect Effect

Full sample IV −0.066
∗ −0.037 0.037

∗

Population
Above Median −0.118

∗ −0.066 0.068
∗

Below Median −0.012
∗ −0.006 0.005

∗

Density
Above Median −0.101

∗ −0.056 0.059
∗

Below Median −0.028
∗ −0.015 0.014

∗

Rail Service?
Yes −0.171

∗ −0.096 0.101
∗

No −0.022
∗ −0.011 0.010

∗

Rail Service Established Yes −0.215
∗ −0.123 0.129

∗

Prior to 1991? No −0.027
∗ −0.014 0.013

∗

% Fixed Guideway Transit
High −0.162

∗ −0.091 0.095
∗

Low −0.021
∗ −0.010 0.009

∗

Transit Accessibility
Above Median −0.099

∗ −0.055 0.056
∗

Below Median −0.032
∗ −0.018 0.017

∗

Transit Capacity
Above Median −0.116

∗ −0.066 0.066
∗

Below Median −0.008
∗ −0.014 0.007

∗

Transit Usage
Above Median −0.117

∗ −0.067 0.067
∗

Below Median −0.017
∗ −0.009 0.008

∗

Notes: Table shows the elasticities of auto travel with respect to transit capacity that result when the

models in equations (1) - (3) for different time horizons are applied to a variety of sub-samples of the data,

each constructed by stratifying the urban areas (UZAs) in our data set according to characteristics of the

region and the transportation network. Robust standard errors are clustered by UZA. Transit capacity is

instrumented by Federal transit funding in UZA, lagged two periods. Significance level: ∗ : p < 0.05.

5.3 Robustness

To assess the robustness of the preceding results, several sensitivity analyses were carried out. Very

similar results to those in Tables 2 - 4 were obtained using alternative measures of congestion,

different combinations of lagged values for the instrument, a quadratic time trend in place of year

fixed effects, and a log-linear specification instead of a linear specification.27

To control for regional time-varying unobservables, including regional policies that might affect

auto travel demand, we also estimate the substitution effect, medium-run equilibrium effect, and

long-run equilibrium effect controlling for census division-year fixed effects in addition to UZA

fixed effects and year effects, where the census divisions are defined by the US Census. To allow

for habit formation in the demand for automobile travel, we also estimate a specification for the

27
As our results above show that the elasticity varies with congestion, we choose not to estimate a log-log regression
model, which assumes that the elasticity does not vary with congestion.
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Figure 8: Elasticity of auto travel with respect to transit capacity vs. congestion level
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(a) Substitution Effect
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(b) Medium-Run Equilibrium Effect
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(c) Long-Run Equilibrium Effect

Notes: Graphs show the elasticities of auto travel with respect to transit capacity that result when the models

in equations (1) - (3) are stratified according to deciles of the level of auto travel across the 96 urban areas

(UZAs). Dotted lines indicate 95% confidence interval.
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substitution effect, medium-run equilibrium effect, and long-run equilibrium effect that includes

the lagged dependent variable (i.e., lagged auto travel demand) using the augmented version of

the Arellano-Bond (1991) estimator outlined in Arellano and Bover (1995) and fully developed

in Blundell and Bond (1998). This dynamic panel estimator for lagged dependent variables is a

Generalized Method of Moments estimator that treats the model as a system of equations, one for

each time period, and which addresses the issue with the original Arellano-Bond estimator that

lagged levels are often poor instruments for first differences, especially for variables that are close

to a random walk. As seen in Table A.8 in Appendix A, similar results to those in Tables 2 - 4 were

obtained with regressions that also include census division-year fixed effects, and with regressions

that include a lagged dependent variable.

There are other possible measures of congestion which yield qualitatively similar results in our

analysis, due to the high correlation between the various measures (see Table A.3 in Appendix

A). Results using these alternative measures of congestion – including the volume-to-capacity ratio

combining travel on freeway and arterial roads; the Travel Time Index; the Roadway Congestion

Index; the percentage of peak vehicle-miles traveled in congested conditions; and the annual hours

of delay per capita – are summarized in Table A.9 in Appendix A. Across these specifications, the

short-run substitution effect is negative, the medium-run equilibrium effect is statistically insignif-

icant, and the long-run equilibrium effect is positive. We are not overly concerned with congestion

measurement error, since in a linear regression model, measurement errors in the dependent vari-

able inflate the standard errors of the regression parameters but do not lead to inconsistency of the

estimator (Cameron and Trivedi, 2005).

Additionally, if we instrument for both transit capacity and auto capacity using different com-

binations of lagged values for the instrument, our estimates of the elasticity of auto travel with

respect to transit capacity do not change qualitatively, though the estimates are less precise due to

our instruments being weak estimators of auto capacity. We also try instrumenting for auto price

and transit price using lagged auto price and lagged transit price, in addition to instrumenting for

transit capacity, and our results are again robust. Finally, we also use various weights for the dif-

ferent heterogeneity characteristics outlined above; our results are robust to the various weighting

schemes employed.

6 Conclusion

Traffic congestion has increased significantly in the U.S. over the last 30 years. For 96 of the largest

urban areas, traffic volumes in 1982 caused an average trip to take 10% longer than it would in

uncongested conditions; by 2011, this congestion delay penalty increased to 23%. The issue of
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congestion is attracting heightened awareness and a greater sense of urgency for policymakers as

we strive for an economically and environmentally sustainable transportation sector. This paper

empirically examines the effect of past public transit investment on the demand for automobile

transportation.

Our empirical results show that, owing to the countervailing effects of substitution and induced

demand, the effects of increases in public transit supply on auto travel depend on the time horizon.

In the short run, when accounting for the substitution effect only, we find that on average a 10%

increase in transit capacity leads to a 0.7% reduction in auto travel. However, transit has no effect

on auto travel in the medium run, as latent and induced demand offset the substitution effect. In

the long run, when accounting for both substitution and induced demand, we find that on average

a 10% increase in transit capacity is associated with a 0.4% increase in auto travel. We also find

that public transit supply does not have a significant effect on auto travel when traffic congestion

is below a threshold level.

Additionally, we find that there is substantial heterogeneity across urban areas. When account-

ing for the substitution effect only, the magnitude of the elasticity of auto travel with respect to

transit capacity varies from approximately -0.008 in smaller, less densely populated regions with

less-developed public transit networks; to approximately -0.215 in larger, more densely populated

regions with more extensive public transit networks. When accounting for both the substitution

effect and the induced demand effect in the long run, the elasticity of auto travel with respect to

transit capacity varies from approximately 0.005 in smaller, less densely populated regions with

less-developed public transit networks; to approximately 0.129 in larger, more densely populated

regions with more extensive public transit networks.

The Federal Highway Administration (2012) suggests that the elasticity of auto travel with respect

to transit fares ranges from 0.03 to 0.1 in the short run, and our estimate is in line with this

value. While there is a general belief that commuters are more responsive to changes in the time

components of transit travel, there does not appear to be a widely used estimate of the elasticity of

auto travel with respect to transit capacity. McFadden (1974) uses a disaggregate discrete choice

approach and estimates that the elasticity of auto travel with respect to waiting and travel time for

bus and rail ranges from 0.02 to 0.15; again, our estimate is of a commensurate order of magnitude.

Our results highlighting the importance of accounting for regional heterogeneity and of distinguish-

ing between the substitution effect and the equilibrium effect when evaluating the impacts of transit

on congestion help reconcile the apparent mixed evidence of the existing empirical studies discussed

in Section 2. While it is not possible to directly compare results across studies due to differences in

the types of analysis undertaken, the data used, and how variables are measured, there are some
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unifying results.

Winston and Langer (2006) report that the type of transit service has a differential effect on con-

gestion; our results are consistent with this conclusion, though we are not able to ascertain whether

this is directly due to the transit technology, or whether rail happens to be located in the largest

and most dense regions where public transit is best positioned to reduce congestion. Winston

and Maheshri (2007) discuss the importance of the transit network configuration in regards to the

efficiency of its operations, and our results comparing the effects of transit investment with and

without taking regional fixed effects into account (such as transit and road network configuration)

suggest a similar interpretation. Anderson (2014) emphasizes the importance of accounting for in-

tra-city heterogeneity across commuters when estimating the effect of transit supply on congestion,

whereas our results focus on the importance of inter -city heterogeneity.

Overall, our results are broadly consistent with those of Duranton and Turner (2011) and sug-

gest that induced demand is a significant factor. If we only include mixed traffic transit modes

and exclude rail service, then transit has a negligible effect on congestion in our model as well.28

While we also find that transit does not reduce auto travel in the medium run or the long run, we

do find that transit can reduce auto congestion for certain transportation networks in the short run.

While our results suggest that fixed guideway transit investments in dense regions yield higher

congestion-reduction benefits than do mixed transit modes in the short run, this should not be

construed as advocating for fixed guideway modes over mixed transit modes per se. In the analysis,

we have only considered the benefits in the auto market due to transit investment, and have not

considered the costs of the various transit modes. Both construction and operating costs of tran-

sit vary widely by region and type of transit.29 Further, proponents of public transit may argue

that investment in public transit today is necessary to develop transit ridership in the future and

to influence land-use patterns in order to sow the roots for a more efficient public transit system

in the future. Overall, the magnitude of this benefit is subject to considerable variability, and is

dependent upon the characteristics of the existing transportation network, the technology of the

proposed transit system, and the socioeconomic and geographic attributes of the region. The im-

plication is that transit cost-benefit analyses must be carried out on a case-by-case basis and there

may be limited scope for the external validity of regional studies, as past experiences in one city

may not generalize to potential new transit investments in another.

Our results when accounting for both substitution and induced demand cast doubt on the benefi-

28
Their study includes counts of large buses in peak service as the measure of transit capacity, whereas we include
all types of transit and a more accurate measure of transit supply in the form of vehicle-miles supplied.

29
Estimates of the construction costs of different transit modes are provided in Table 3.5 of Small and Verhoef (2007).
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cial effects of public transport on congestion in the medium and long run. By reducing congestion,

increasing accessibility, increasing economic activity, and/or attracting additional residents and

workers to the area, transit investment may generate additional automobile trips that were previ-

ously not undertaken, and we find that on average this induced demand may offset the substitution

effect in the medium run and outweigh the substitution effect in the long run. However if addi-

tional residents and workers are attracted to the area in the medium and long run as a result of

transit investment, this migration may possibly reduce congestion in the areas that the migrants

leave behind. Although a rigorous analysis of the subsequent induced demand and any effects of

the ’fundamental law of traffic congestion’ that may subsequently arise as a result of the reduction

in congestion in the areas that the migrants leave behind is beyond the scope of this paper, the

reduction in congestion in areas that migrants leave behind may yield benefits to these areas, at

least initially. Thus, if we account for the general equilibrium effects of public transit investment

across a broader geographical scope beyond the urban area where the public transit investment

takes place, it is possible that public transit investment remains beneficial not only in the short

run, but in the medium and long run as well. In future work we hope to more rigorously explore

the broader, more geographically expansive effects of public transit.

In addition, there are two factors that suggest that public transit could have a more beneficial

impact on road congestion in the future. First, the estimated effects have been generated via the

existing public transit networks, which Winston and Maheshri (2007) emphasize are not presently

optimally configured and should not be assumed to be in long-run equilibrium, due to regulatory,

political, and physical constraints. Second, these results are also in the context of inadequate road

pricing. Small (2005) discusses the potential complementarity of road pricing and public transit

provision; the ability of public transit to reduce congestion could be greatly enhanced if individuals

were required to pay the full marginal social cost of auto travel, which would increase the substitu-

tion effect. Additionally, auto travel is averaged over the entire day in our data; in practice, transit

capacity varies according to peak/off-peak travel periods. With more detailed data disaggregated

over time, it would be possible to generate peak and off-peak elasticities of auto travel with respect

to transit capacity, which would further aid transit investment decisions.

Our finding that there can considerable heterogeneity and sizable differences across regions in the

elasticity of auto travel with respect to transit capacity implies that the observed effects of transit

investment in one region may not generalize to another region, so comparison groups should be con-

sidered carefully when forecasting future effects of potential transit investments. The potential for

regional heterogeneity also has implications for the external validity of our results. Our estimates

of the average elasticities are based on the characteristics of US urban areas and on the observed

travel behavior in relation to existing US policies; the average effect of transit on auto travel in

the US may not necessarily apply to other countries in Europe, South America, etc. In addition,
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mobility may be lower in other countries than in the U.S., perhaps owing in part to unobservable

factors such as culture, which may mitigate the induced demand effect in other countries. We hope

to examine such cross-country differences in future work.

This paper contributes to the literature by separately estimating the substitution and equilibrium

effects following public transit investment; by accounting for regional heterogeneity in the effect

of transit supply on auto use; by using a wider and longer time series of data; by distinguishing

between the substitution effect and the equilibrium effect; and by being cognizant of the potential

endogeneity inherent in evaluating the effect of past investments in transit on traffic congestion.

While there is modest evidence that public transit may be able to reduce congestion levels in the

short run, these benefits may be offset by induced demand. Our results also reaffirm the theoretical

and empirical argument that traffic congestion can only be fully addressed in the long run by devis-

ing economically and politically accepted approaches to efficiently pricing auto travel across the U.S.

35



References

American Public Transportation Association (2012). 2012 Public Transportation Fact Book. Wash-
ington, DC.

Anas, Alex and Govinda Timilsina (2009). “Lock-In Effects Of Road Expansion On CO2 Emis-
sions: Results From A Core-Periphery Model Of Beijing,” World Bank Policy Research Working
Paper.

Anderson, Michael (2014). “Subways, Strikes, and Slowdowns: The Impacts of Public Transit on
Traffic Congestion,” American Economic Review, 104(9): 2763-2796.

Arellano, Manuel and Stephen Bond (1991). “Some Tests of Specification for Panel Data: Monte
Carlo Evidence and an Application to Employment Equations,” Review of Economic Studies, 58:
277-97.

Arellano, Manuel and Olympia Bover (1995). “Another Look at the Instrumental Variable Esti-
mation of Error-Components Models,” Journal of Econometrics, 68: 29-51.

Bauernschuster, Stefan, Timo Hener and Helmut Rainer (2017). “When Labor Disputes Bring
Cities to a Standstill: The Impact of Public Transit Strikes on Traffic, Accidents, Air Pollution,
and Health,” American Economic Journal: Economic Policy, 9(1): 1-37.

Baum-Snow, Nathaniel and Matthew Kahn (2005). “Effects of Urban Rail Transit Expansions:
Evidence from Sixteen Cities,” Brookings-Wharton Papers on Urban Affairs.

Beaudoin, Justin, Y. Hossein Farzin and C.-Y. Cynthia Lin Lawell (2015). “Public Transit In-
vestment and Sustainable Transportation: A Review of Studies of Transit’s Impact on Traffic
Congestion and Air Quality,” Research in Transportation Economics, 52: 15-22.

Beaudoin, Justin, Y. Hossein Farzin and C.-Y. Cynthia Lin Lawell (2018). “Public Transit Invest-
ment and Traffic Congestion Policy,” Working paper.

Beaudoin, Justin and C.-Y. Cynthia Lin Lawell (2017). “The Effects of Urban Public Transit
Investment on Traffic Congestion and Air Quality,” in Hamid Yaghoubi (Ed.), Urban Transport
Systems, Chapter 6. InTech.

Beaudoin, Justin and C.-Y. Cynthia Lin Lawell (2018). “Is Public Transit’s ‘Green’ Reputation
Deserved?: Evaluating the Effects of Transit Supply on Air Quality,” Working paper.

Bento, Antonio, Kevin Roth and Andrew R. Waxman (2017). “Avoiding Traffic Congestion Exter-
nalities? The Value of Urgency,” Working paper.

Berechman, Joseph (2009). The Evaluation of Transportation Investment Projects. New York:
Routledge.

36



Blundell, Richard and Stephen Bond (1998). “Initial Conditions and Moment Restrictions in Dy-
namic Panel Data Models,” Journal of Econometrics, 87: 115-43.

Button, Kenneth (1990). “Environmental Externalities and Transport Policy,” Oxford Review of
Economic Policy, 6(2): 61-75.

Cameron, A. Colin and Pravin Trivedi (2005). Microeconometrics: Methods and Applications.
Cambridge: Cambridge University Press.

Cervero, Robert (2002). “Induced Travel Demand: Research Design, Empirical Evidence, and Nor-
mative Policies,” Journal of Planning Literature, 17(1): 4-20.

Chen, Yihsu and Alexander Whalley (2012). “Green Infrastructure: The Effects of Urban Rail
Transit on Air Quality,” American Economic Journal: Economic Policy, 4(1): 58-97.

Cutter, W. Bowman and Matthew Neidell (2009). “Voluntary information programs and envi-
ronmental regulation: evidence from ‘Spare the Air’,” Journal of Environmental Economics and
Management, 58(3): 253-265.

Downs, Anthony (1962). ”The Law of Peak-Hour Expressway Congestion,” Traffic Quarterly,
16(3): 393-409.

Downs, Anthony (2004). Still Stuck in Traffic: Coping with Peak-Hour Traffic Congestion. Wash-
ington, DC: Brookings.

Duranton, Gilles and Matthew Turner (2011). “The Fundamental Law of Road Congestion: Evi-
dence from US Cities,” American Economic Review, 101(6): 2616-2652.

Federal Highway Administration (2012). “Analysis of Automobile Travel Demand Elasticities With
Respect To Travel Cost,” Report prepared by Oak Ridge National Laboratory for the Federal High-
way Administration Office of Highway Policy Information.

Glaister, Stephen and David Lewis (1978). “An Integrated Fares Policy for Transport in London,”
Journal of Public Economics, 9: 341-355.

Graham, Daniel and Stephen Glaister (2004). “Road Traffic Demand Elasticity Estimates: A Re-
view,” Transport Reviews, 24: 261-274.

Hamilton, Timothy and Casey Wichman (2018). “Bicycle Infrastructure and Traffic Congestion:
Evidence from DC’s Capital Bikeshare,” Journal of Environmental Economics and Management,
87: 72-93.

Hau, Timothy. (1997). “Transport for Urban Development in Hong Kong.” In Transport and
Communications for Urban Development: Report of the HABITAT II Global Workshop. Nairobi,
Kenya: The United Nations Centre for Human Settlements (HABITAT): 267-289.

Holian, Matthew and Matthew Kahn (2013). “California Voting and Suburbanization Patterns:
Implications for Transit Policy,” MTI Report 12-05, Mineta Transportation Institute.

37



Lalive, Rafael, Simon Luechinger, and Armin Schmutzler (2013). “Does Supporting Passenger
Railways Reduce Road Traffic Externalities?” Discussion Paper No. 9335, Centre for Economic
Policy Research.

Libermann, Keith (2009). Surface Transportation: Infrastructure, Environmental Issues and Safety.
Hauppauge, N.Y: Nova Science.

Lin, C.-Y. Cynthia and Lea Prince (2009). “The Optimal Gas Tax for California,” Energy Policy,
37(12): 5173-5183.

Lindsey, Robin (2012). “Road Pricing and Investment,” Economics of Transportation, 1: 49-63.

Litman, Todd (2014). “Critique of “Transit Utilization and Traffic Congestion: Is There a Con-
nection?”,” Victoria Transport Policy Institute Report, www.vtpi.org/R&M critique.pdf.

McFadden, Daniel (1974). “The Measurement of Urban Travel Demand,” Journal of Public Eco-
nomics, 3(4): 303-328.

Mayer, Thierry and Corentin Trevien (2017). “The Impact of Urban Public Transportation: Evi-
dence from the Paris Region,” Journal of Urban Economics, 102: 1-21.

Mohring, Herbert and Mitchell Harwitz (1962). Highway Benefits: An Analytical Framework.
Evanston, Illinois: Northwestern University Press.

Morrison, Geoffrey and C.-Y. Cynthia Lin Lawell (2016). “Does Employment Growth Increase
Travel Time to Work?: An Empirical Analysis Using Military Troop Movements,” Regional Sci-
ence and Urban Economics, 60: 180-197.

Nelson, Peter, Andrew Baglino, Winston Harrington, Elena Safirova and Abram Lipman (2007).
“Transit in Washington, DC: Current Benefits and Optimal Level of Provision,” Journal of Urban
Economics, 62(2): 231-51.

Noland, Robert (2001). “Relationship Between Highway Capacity and Induced Vehicle Travel,”
Transportation Research, Part A, 35(1): 47-72.

Parry, Ian (2009). “Pricing Urban Congestion,” Annual Review of Resource Economics, 1: 461-484.

Parry, Ian and Kenneth Small (2009). “Should Urban Transit Subsidies be Reduced?” American
Economic Review, 99(3): 700-724.

Rivers, Nicholas, Soodeh Saberian and Brandon Schaufele (2017). “Public Transit and Air Pollu-
tion,” Working paper.

Rubin, Thomas and Fatma Mansour (2013). “Transit Utilization and Traffic Congestion: Is There a
Connection?” Reason Foundation, http://reason.org/files/transit utilization traffic congestion.pdf.

38



Schrank, David, Bill Eisele and Tim Lomax (2012). Texas A&M Transportation Institute’s 2012
Urban Mobility Report. College Station, TX: Texas Transportation Institute.

Sexton, Steven (2012). “Paying for Pollution? How General Equilibrium Effects Undermine the
“Spare the Air” Program,” Environmental and Resource Economics, 53(4): 553-575.

Small, Kenneth (2005). “Road Pricing and Public Transit: Unnoticed Lessons from London,” Ac-
cess, publication of the University of California Transportation Center, No. 26: Spring 2005.

Small, Kenneth and Erik Verhoef (2007). The Economics of Urban Transportation. New York:
Routledge.

Stopher, Peter (2004). “Reducing Road Congestion: A Reality Check,” Transport Policy, 11: 117-
131.

Vickrey, William (1969). “Congestion Theory and Transport Investment,” American Economic
Review, 59: 251-261.

Viton, Philip (1981). “On Competition and Product Differentiation in Urban Transportation: The
San Francisco Bay Area,” The Bell Journal of Economics, 12(2): 362-379.

Wardman, Mark (2004). “Public Transport Values of Time,” Transport Policy, 11(4): 363-377.

Winston, Clifford and Chad Shirley (1998). Alternate Route: Toward Efficient Urban Transporta-
tion. Washington, D.C.: Brookings Institution.

Winston, Clifford and Ashley Langer (2006). “The Effect of Government Highway Spending on
Road Users’ Congestion Costs,” Journal of Urban Economics, 60(3): 463-483.

Winston, Clifford and Vikram Maheshri (2007). “On the Social Desirability of Urban Rail Transit
Systems,” Journal of Urban Economics, 62(2): 362-382.

Yang, Jun, Shuai Chen, Ping Qin, Fangwen Lu and Antung A. Liu (2018). “The Effect of Subway
Expansions on Vehicle Congestion: Evidence from Beijing,” Journal of Environmental Economics
and Management, 88: 114-133.

39



Appendix A: Supplementary Tables

Table A.1: Summary statistics

Obs Mean Std. Dev. Min Max Source
Traffic Congestion
Travel time index 2,016 1.18 0.08 1.02 1.43 UMR
Total annual hours of delay 2,016 41,954 78,991 289 632,212 UMR
Roadway congestion index 2,016 0.97 0.19 0.50 1.58 UMR
% of peak vehicle-miles traveled under congested conditions 2,016 40.7 20.2 5 96 UMR
Annual delay hours per capita 2,016 21.1 8.9 1.8 58.1 UMR
Daily auto vehicle-mile traveled per lane-mile (000s) 2,016 7.1 1.5 3.0 11.5 UMR
Auto Network
Freeway lane-miles 2,016 909 1,048 30 7,600 UMR
Arterial street lane-miles 2,016 2,618 3,200 190 20,900 UMR
Freeway auto vehicle-miles traveled (daily, 000s) 2,016 13,714 19,304 205 139,275 UMR
Arterial streets auto vehicle-miles traveled (daily, 000s) 2,016 13,461 17,545 600 126,010 UMR
Fuel price per vehicle-mile traveled (2011 dollars) 2,016 0.107 0.023 0.060 0.241 UMR, FHWA
Transit Funding
Transit fare per passenger-mile traveled (2011 dollars) 1,997 0.215 0.093 0.009 2.121 NTD
Annual total Federal funding 2,002 73,136,182 216,742,246 0 2,999,359,744 NTD
Federal funding per capita 2,002 27,902 27,734 0 245,834 NTD
% of capital funds from Federal sources 1,977 0.666 0.228 0 1 NTD
% of operating funds from Federal sources 2,002 0.135 0.106 0 0.662 NTD
Transit Network Size: Directional Route-Miles
Commuter rail 2,002 69.9 282.6 0 2,368 NTD
Light rail 2,002 10.1 24.3 0 152 NTD
Heavy rail 2,002 26.2 116.8 0 958 NTD
Hybrid rail 2,002 0.04 1.56 0 70 NTD
Monorail and automated guideway 2,002 0.18 1.01 0 9 NTD
Bus rapid transit 2,002 0.04 1.15 0 42 NTD
Bus 2,002 1,666 2,237 82 20,520 NTD
Trolleybus 2,002 4.7 23.3 0 173 NTD
Fixed guideway 2,002 106 327 0 2,956 NTD
Mixed traffic 2,002 1,670 2,331 82 20,520 NTD
All transit 2,002 1,777 2,632 82 23,371 NTD
Transit Capacity: Annual Vehicle Revenue-Miles
Commuter rail 2,002 2,677,667 16,637,135 0 186,000,000 NTD
Light rail 1,997 594,859 1,556,640 0 10,154,573 NTD
Heavy rail 2,002 6,113,300 35,689,201 0 367,000,000 NTD
Hybrid rail 2,002 609 27,254 0 1,219,426 NTD
Monorail and automated guideway 2,002 17,811 106,417 0 1,120,647 NTD
Bus rapid transit 2,002 818 22,039 0 874,385 NTD
Bus 2,002 16,294,348 32,901,483 118,378 289,000,000 NTD
Trolleybus 2,002 138,270 832,751 0 7,915,843 NTD
Fixed guideway 1,997 9,427,123 52,303,899 0 554,976,384 NTD
Mixed traffic 2,001 16,410,332 33,028,658 118,378 289,000,000 NTD
All transit 1,996 25,847,205 82,595,975 118,378 843,976,384 NTD
Transit Ridership: Annual Passenger-Miles Traveled
Commuter rail 2,002 97,201,568 604,396,641 0 6,690,000,000 NTD
Light rail 1,997 14,758,379 41,874,325 0 338,000,000 NTD
Heavy rail 2,002 141,634,084 874,646,063 0 10,700,000,000 NTD
Hybrid rail 2,002 20,263 906,638 0 40,566,372 NTD
Monorail and automated guideway 2,002 115,772 760,162 0 10,039,936 NTD
Bus rapid transit 2,002 11,020 314,982 0 12,238,706 NTD
Bus 2,002 184,657,374 485,064,038 230,832 4,790,000,000 NTD
Trolleybus 2,002 1,979,391 13,120,112 0 134,000,000 NTD
Fixed guideway modes 1,997 254,339,441 1,474,259,227 0 17,487,702,016 NTD
Mixed traffic modes 2,002 186,636,765 486,890,379 230,832 4,790,000,128 NTD
All transit modes 1,997 440,954,265 1,921,938,252 230,832 22,099,701,760 NTD
Avg trip length (passenger-miles per trip), fixed guideway 622 7.8 10.1 0 182.3 NTD
Avg trip length (passenger-miles per trip), mixed traffic 2,002 4.2 1.5 1.0 18.8 NTD
Avg trip length (passenger-miles per trip), all transit 1,997 4.5 1.7 1.0 19.5 NTD
Geographic and Socioeconomic
Population (000s) 2,016 1,568 2,386 120 18,946 UMR
Area (square-miles) 2,016 501 522 43 3,353 NTD
Population density (000s per square-mile) 2,016 2.9 1.3 0.8 9.3 UMR, NTD
Proportion of population employed 2,016 0.58 0.07 0.33 0.80 BEA
Per capita income (2011 dollars, 000s) 2,016 38.6 7.6 16.1 71.5 BEA

Data Sources (see Section 4 for details): BEA - Bureau of Economic Analysis; FHWA - Federal Highway Administration; NTD - National Transit

Database; UMR - Texas Transportation Institute’s Urban Mobility Report
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Table A.2: Overview of regions included in the analysis

Urban Area (UZA) Population Travel Time Index Delay Hrs Freeways (Auto) Transit Mode Split Rail

000s %∆ per sq mi 1991 2011 (per cap) %∆lane-mi %∆VMT %∆DRM %∆VRM %∆PMT (VMT/PMT) (Y = 1)

Akron, OH 619 19.0% 2,010 1.10 1.12 15.8 17.3% 38.4% 31.7% 11.0% 11.6% 116.7 No
Albany, NY 616 25.7% 2,169 1.08 1.16 21.3 41.1% 68.4% 58.5% 11.4% -26.8% 70.7 No
Albuquerque, NM 630 21.2% 2,813 1.11 1.10 19.8 70.9% 120.5% 0.5% 75.2% 115.4% 34.1 Yes
Allentown, PA-NJ 635 22.1% 2,190 1.12 1.17 20.9 65.9% 105.5% -3.5% 49.6% 8.2% 167.4 No
Anchorage, AK 307 30.6% 3,886 1.18 1.18 11.8 15.2% 28.4% -35.8% 8.5% 37.8% 39.3 Yes
Atlanta, GA 4,360 50.3% 2,221 1.14 1.24 32.6 52.7% 90.6% 7.1% 16.8% 32.0% 28.5 Yes
Austin, TX 1,345 94.9% 4,230 1.17 1.32 28.5 102.8% 117.0% 60.7% 50.7% 50.6% 43.5 Yes
Bakersfield, CA 544 72.7% 4,945 1.03 1.11 8.7 20.6% 42.0% 41.0% 65.2% 23.3% 76.4 No
Baltimore, MD 2,523 24.9% 3,694 1.14 1.23 27.8 24.9% 67.1% -9.6% 36.7% 45.9% 16.5 Yes
Baton Rouge, LA 610 64.9% 2,171 1.11 1.22 28.1 61.7% 105.4% 7.8% 2.2% 9.8% 217.7 No
Beaumont, TX 243 15.7% 3,000 1.04 1.10 17.3 27.0% 67.7% 14.6% 40.6% -51.0% 775.4 No
Birmingham, AL 861 35.6% 2,196 1.08 1.19 24.3 30.6% 67.0% 62.9% -19.1% -47.9% 342.2 No
Boise, ID 319 87.6% 2,927 1.04 1.06 11.4 137.1% 131.0% -10.3% 111.1% 181.5% 147.5 No
Boston, MA-NH-RI 4,320 19.3% 2,488 1.27 1.28 31.7 44.8% 44.4% 29.9% 19.6% 54.1% 10.6 Yes
Bridgeport, CT-NY 938 31.2% 2,017 1.13 1.27 28.3 31.9% 52.1% 65.6% 53.3% 42.9% 126.0 No
Brownsville, TX 214 78.3% 3,754 1.13 1.18 17.3 170.0% 266.1% 72.3% 32.3% -32.9% 62.1 No
Buffalo, NY 1,048 -1.6% 2,856 1.10 1.17 20.6 24.4% 31.6% -24.3% 4.3% 4.8% 46.1 Yes
Cape Coral, FL 473 93.1% 2,464 1.13 1.15 21.1 285.0% 507.8% 12.0% 129.4% 104.4% 109.8 No
Charleston, SC 535 33.8% 2,316 1.13 1.15 20.3 44.9% 92.5% 90.0% 79.8% 21.0% 155.5 No
Charlotte, NC-SC 1,070 91.1% 2,460 1.14 1.20 27.1 344.5% 357.0% 40.9% 181.6% 207.7% 48.0 Yes
Chicago, IL-IN 8,605 14.5% 4,053 1.17 1.25 31.6 52.2% 66.6% 23.6% 1.9% 17.1% 7.3 Yes
Cincinnati, OH-KY-IN 1,717 43.1% 2,555 1.14 1.20 24.9 52.6% 70.5% 3.8% -2.8% -21.6% 73.3 No
Cleveland, OH 1,700 -3.4% 2,628 1.14 1.16 20.6 33.9% 35.0% 7.5% -38.6% -27.9% 39.5 Yes
Colorado Springs, CO 557 68.8% 2,827 1.04 1.13 17.8 77.0% 157.6% 65.9% 20.5% 9.7% 145.9 No
Columbia, SC 490 46.3% 1,822 1.05 1.11 20.6 57.1% 122.8% 23.9% -20.4% -16.4% 335.1 No
Columbus, OH 1,289 40.1% 3,239 1.08 1.18 27.7 42.5% 79.0% 22.5% 20.2% -19.3% 100.5 No
Corpus Christi, TX 337 18.2% 3,064 1.02 1.04 9.4 33.3% 40.1% -10.5% 3.6% 28.3% 62.6 No
Dallas, TX 5,260 59.9% 3,738 1.13 1.26 31.9 39.6% 72.9% -16.9% 24.6% 32.8% 65.6 Yes
Dayton, OH 745 24.2% 2,299 1.13 1.11 16.7 62.1% 74.4% -15.3% -18.4% -35.1% 93.2 No
Denver-Aurora, CO 2,348 48.6% 4,705 1.14 1.27 32.4 65.3% 94.4% 91.2% 86.3% 143.5% 20.3 Yes
Detroit, MI 3,869 -2.9% 3,066 1.19 1.18 27.5 22.5% 19.6% -11.4% -12.2% -45.5% 91.8 No
El Paso, TX-NM 739 32.0% 3,374 1.09 1.21 21.6 102.4% 100.8% 43.9% 63.7% 4.0% 40.5 No
Eugene, OR 256 31.3% 3,765 1.08 1.08 8.9 49.1% 94.8% 25.2% 4.2% 63.0% 22.1 No
Fresno, CA 686 44.4% 4,935 1.07 1.08 10.8 82.6% 137.4% 28.7% 31.8% 26.6% 73.6 No
Grand Rapids, MI 612 37.5% 2,381 1.05 1.09 16.4 81.7% 100.9% 97.6% 113.8% 144.8% 94.5 No
Greensboro, NC 351 59.5% 2,600 1.03 1.10 18.9 71.6% 122.5% 612.1% 326.0% 621.1% 67.0 No
Hartford, CT 905 9.0% 1,930 1.11 1.18 25.4 29.3% 52.3% 19.2% 27.7% -5.8% 68.5 Yes
Honolulu, HI 719 7.3% 4,669 1.30 1.36 29.0 28.2% 16.8% 12.0% 20.0% 19.9% 6.1 No
Houston, TX 4,129 41.2% 3,188 1.19 1.26 35.3 59.2% 73.1% 77.6% 29.2% -0.6% 54.7 Yes
Indianapolis, IN 1,234 29.9% 2,231 1.10 1.17 28.5 56.8% 75.4% -11.6% 12.1% -25.6% 202.1 No
Jackson, MS 426 25.3% 2,646 1.05 1.10 17.7 31.9% 64.5% -7.9% -2.2% -38.4% 1469.2 No
Jacksonville, FL 1,083 44.4% 2,635 1.18 1.14 20.9 102.8% 123.5% -12.7% 53.4% 52.8% 80.4 No
Kansas City, MO-KS 1,585 36.6% 2,714 1.09 1.13 18.6 37.9% 73.3% 37.5% 10.8% -2.4% 130.7 No
Knoxville, TN 508 58.8% 1,499 1.21 1.16 26.1 49.2% 72.6% -16.0% 48.6% 14.1% 325.1 No
Laredo, TX 235 88.0% 5,465 1.06 1.14 13.1 156.7% 185.9% 125.7% 110.0% 20.7% 65.0 No
Las Vegas, NV 1,443 92.4% 5,045 1.15 1.20 31.5 212.5% 241.8% 27.7% 121.6% 477.7% 35.8 No
Little Rock, AR 464 49.7% 2,252 1.02 1.07 17.5 74.5% 103.5% 1.0% 40.9% 42.1% 227.5 Yes
Los Angeles, CA 13,229 12.5% 7,931 1.40 1.37 37.9 22.7% 25.0% 25.1% 34.8% 40.8% 21.3 Yes
Louisville, KY-IN 1,084 33.8% 2,772 1.13 1.18 24.2 46.4% 86.7% 22.3% -18.0% -32.2% 103.9 No
Madison, WI 403 30.0% 3,535 1.05 1.11 13.3 65.1% 59.0% 34.3% 30.7% 50.5% 31.2 No
McAllen, TX 578 122.3% 1,841 1.02 1.16 19.8 96.4% 159.5% 12.8% 389.0% 50.5% 1982.4 No
Memphis, TN-MS-AR 1,058 22.3% 2,645 1.16 1.18 27.1 58.8% 80.8% 18.3% 1.9% -19.6% 109.6 No
Miami, FL 5,482 38.3% 4,912 1.19 1.25 31.9 35.2% 91.6% 77.1% 55.7% 79.6% 26.9 Yes
Milwaukee, WI 1,496 22.1% 3,072 1.11 1.15 18.6 46.6% 47.3% 5.4% -5.2% -8.2% 46.9 No
Minneapolis-St. Paul, MN 2,757 34.2% 3,084 1.12 1.21 22.0 37.4% 63.3% 51.1% 51.8% 74.2% 31.9 Yes
Nashville, TN 1,145 99.1% 2,657 1.15 1.23 31.2 82.5% 126.9% 35.4% 35.7% 73.4% 134.1 Yes
New Haven, CT 616 35.4% 2,161 1.10 1.17 23.6 57.1% 83.4% -23.8% 21.3% -8.6% 116.2 No
New Orleans, LA 1,065 0.5% 5,379 1.22 1.20 18.0 -2.6% -2.8% -4.8% -53.1% -59.6% 42.6 No
New York, NY-NJ-CT 18,946 18.6% 5,650 1.22 1.33 28.7 24.6% 44.0% 20.2% 18.3% 50.5% 2.7 Yes
Oklahoma City, OK 983 39.4% 3,053 1.04 1.15 25.6 32.0% 49.4% 22.3% 4.5% 30.4% 370.2 No
Omaha, NE-IA 646 20.7% 2,858 1.06 1.11 16.6 88.1% 144.3% -2.8% -0.1% -28.7% 190.9 No

Continued on next page
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Table A.2 – continued from previous page
Urban Area (UZA) Population Travel Time Index Delay Hrs Freeways (Auto) Transit Mode Split Rail

000s %∆ per sq mi 1991 2011 (per cap) %∆lane-mi %∆VMT %∆DRM %∆VRM %∆PMT (VMT/PMT) (Y = 1)

Orlando, FL 1,475 62.1% 3,256 1.21 1.20 31.6 99.2% 130.2% 142.9% 204.6% 275.5% 56.2 No
Oxnard, CA 428 43.4% 5,632 1.02 1.10 17.5 12.0% 34.9% 79.1% 162.0% 143.0% 137.2 No
Pensacola, FL-AL 361 36.2% 1,648 1.07 1.11 15.7 96.8% 84.3% 106.6% 60.7% 31.9% 240.1 No
Philadelphia, PA-NJ-MD 5,381 17.2% 2,989 1.16 1.26 29.0 45.8% 55.1% 40.1% 28.8% 26.3% 11.5 Yes
Phoenix-Mesa, AZ 3,679 90.6% 4,605 1.09 1.18 22.4 162.3% 229.0% 116.7% 174.9% 101.9% 56.5 Yes
Pittsburgh, PA 1,761 -0.8% 2,067 1.29 1.24 26.5 26.2% 32.9% -0.5% -18.1% -37.3% 29.0 Yes
Portland, OR-WA 1,925 57.8% 4,061 1.14 1.28 27.0 53.5% 67.6% 3.6% 41.2% 103.9% 15.9 Yes
Poughkeepsie, NY 550 59.4% 2,075 1.12 1.12 17.8 75.9% 56.2% 90.7% 56.7% 231.1% 92.2 No
Providence, RI-MA 1,236 12.4% 2,452 1.09 1.16 19.9 39.7% 62.7% 140.2% 39.7% 20.7% 67.0 No
Raleigh-Durham, NC 1,142 119.6% 3,569 1.08 1.14 15.7 150.0% 176.9% 10.5% 131.0% 80.2% 244.7 No
Richmond, VA 974 42.2% 2,229 1.09 1.11 20.0 81.5% 76.8% 29.6% 1.1% -27.4% 165.1 No
Riverside, CA 2,025 50.0% 4,613 1.13 1.23 25.3 35.9% 65.7% 36.2% 109.9% 78.6% 77.4 No
Rochester, NY 749 21.8% 2,539 1.13 1.13 19.8 27.7% 40.7% 51.5% -25.1% 25.2% 59.2 No
Sacramento, CA 1,895 62.7% 5,136 1.16 1.20 20.7 24.6% 61.4% 94.7% 59.6% 51.6% 48.5 Yes
Salem, OR 246 44.7% 3,565 1.11 1.14 18.7 68.9% 73.9% -18.9% 32.0% 55.1% 70.0 No
Salt Lake City, UT 1,027 27.6% 4,446 1.14 1.14 21.3 28.8% 48.5% 72.8% 47.7% 107.6% 18.5 Yes
San Antonio, TX 1,558 32.0% 3,819 1.06 1.19 25.7 31.4% 97.1% 49.6% 14.6% 13.4% 45.4 No
San Diego, CA 3,121 27.6% 3,991 1.12 1.18 23.2 22.8% 37.2% 4.9% 12.3% 22.8% 32.2 Yes
San Francisco, CA 4,101 10.1% 7,782 1.23 1.22 37.8 15.7% 27.7% 12.1% 27.5% 23.5% 8.5 Yes
San Jose, CA 1,838 22.5% 7,069 1.23 1.24 25.8 -5.7% 3.8% -3.6% -16.6% -1.8% 43.2 Yes
Sarasota, FL 688 51.2% 2,548 1.11 1.12 15.3 260.0% 619.1% 93.4% 168.6% 205.1% 103.0 No
Seattle, WA 3,286 39.8% 3,444 1.27 1.26 30.7 52.9% 44.3% -9.4% 73.1% 82.3% 16.5 Yes
Spokane, WA-ID 383 29.8% 2,678 1.12 1.12 15.9 104.0% 138.1% -6.8% 15.0% 27.7% 40.1 No
Springfield, MA-CT 628 9.2% 2,032 1.11 1.13 19.2 36.3% 68.6% 26.4% 5.6% -4.7% 92.8 No
St. Louis, MO-IL 2,343 19.2% 2,826 1.14 1.14 21.2 74.1% 72.6% 12.5% 50.7% 56.8% 44.8 Yes
Stockton, CA 409 43.5% 5,527 1.10 1.10 8.6 37.5% 99.5% 233.8% 112.4% 292.5% 29.5 Yes
Tampa, FL 2,393 38.7% 2,984 1.22 1.20 26.3 139.1% 145.5% -30.7% 54.8% 55.7% 73.2 Yes
Toledo, OH-MI 516 5.3% 2,554 1.05 1.13 17.8 21.9% 44.9% -53.3% -42.0% -54.3% 162.3 No
Tucson, AZ 718 30.5% 2,467 1.13 1.16 26.6 145.7% 203.4% 141.2% 36.5% 15.1% 54.0 No
Tulsa, OK 717 12.9% 2,747 1.06 1.12 21.6 96.0% 72.3% 52.4% -4.1% -21.8% 295.9 No
Virginia Beach, VA 1,555 14.8% 2,951 1.18 1.20 29.7 27.6% 51.5% 38.2% 45.7% 76.6% 81.4 No
Washington, DC-VA-MD 4,613 41.9% 3,987 1.25 1.32 38.9 27.0% 54.2% 172.0% 67.4% 50.5% 9.4 Yes
Wichita, KS 510 39.7% 2,849 1.06 1.09 13.5 83.2% 134.9% -20.5% -20.1% 1.7% 226.0 No
Winston-Salem, NC 388 68.7% 1,546 1.04 1.11 13.9 64.3% 70.6% -11.4% 14.6% -20.6% 258.6 No
Worcester, MA-CT 447 17.6% 1,788 1.11 1.13 22.7 45.6% 47.4% -19.9% -27.7% -17.0% 264.7 No

Mean 1,761 39.4% 3,272 1.12 1.17 22.48 66.4% 96.5% 0.39 0.45 48.3% 136.6 0.354
Median 956 34.8% 2,857 1.12 1.17 21.29 50.7% 72.8% 0.23 0.30 25.8% 69.2 0
Min 214 -3.4% 1,499 1.02 1.04 8.60 -5.7% -2.8% -0.53 -0.53 -59.6% 2.7 0
Max 18,946 122.3% 7,931 1.40 1.37 38.88 344.5% 619.1% 6.12 3.89 621.1% 1982.4 1

Abbreviations: VMT - vehicle-miles traveled; DRM - directional route-miles; VRM - vehicle revenue-miles; PMT - passenger-miles traveled
Note: Throughout the table, values for each urban area (UZA) are measured in 2011 (unless specified otherwise), and growth rates reflect the cumulative growth of 2011 values relative to 1991 values.
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Table A.3: Correlation between various measures of congestion for the 96 urban areas (UZAs)

V/C Travel Roadway % peak VMT Annual
ratio Time Congestion in congested delay hours

(freeways) Index Index conditions per capita
Volume-to-capacity (V/C) ratio, freeways 1.000 - - - -

Travel Time Index 0.601 1.000 - - -

Roadway Congestion Index 0.933 0.620 1.000 - -

% peak VMT in congested conditions 0.858 0.677 0.911 1.000 -

Annual delay hours per capita 0.653 0.792 0.677 0.720 1.000

Notes: Table shows the pairwise correlations between each pair of the following measures of congestion: the volume-to-
capacity ratio on freeways; the Travel Time Index; the Roadway Congestion Index; the percentage of peak vehicle-miles
traveled in congested conditions; and the annual hours of delay per capita.
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Table A.4: Average congestion levels by urban area (UZA), 1991-2011

Urban Area (UZA) Roadway Congestion Annual Delay Hours Urban Area (UZA) Roadway Congestion Annual Delay Hours
Index per Capita Index per Capita

Los Angeles, CA 1.543 43.7 Nashville, TN 0.950 31.1
San Francisco, CA 1.354 44.4 St. Louis, MO-IL 0.946 24.2
Riverside, CA 1.317 20.3 Milwaukee, WI 0.936 19.1
San Diego, CA 1.301 21.3 New Orleans, LA 0.927 15.1
San Jose, CA 1.282 33.1 Allentown, PA-NJ 0.920 20.8
Washington, DC-VA-MD 1.270 39.3 New Haven, CT 0.912 23.9
Miami, FL 1.260 27.8 Birmingham, AL 0.907 22.0
Atlanta, GA 1.248 32.8 Memphis, TN-MS-AR 0.900 25.7
Sacramento, CA 1.227 22.6 Fresno, CA 0.897 11.7
Oxnard, CA 1.213 14.5 Boise, ID 0.895 10.6
Tampa, FL 1.192 23.1 Cleveland, OH 0.889 18.0
Phoenix-Mesa, AZ 1.168 20.0 Dayton, OH 0.877 19.3
Detroit, MI 1.163 29.7 Hartford, CT 0.872 22.1
Las Vegas, NV 1.162 27.8 Omaha, NE-IA 0.868 12.2
Chicago, IL-IN 1.140 25.9 Poughkeepsie, NY 0.863 14.8
Portland, OR-WA 1.134 26.1 Salem, OR 0.858 22.2
Seattle, WA 1.134 33.2 El Paso, TX-NM 0.852 18.6
Houston, TX 1.123 26.3 Columbia, SC 0.846 14.5
Indianapolis, IN 1.113 31.7 Eugene, OR 0.844 10.7
Cape Coral, FL 1.112 21.3 Oklahoma City, OK 0.844 21.5
Orlando, FL 1.112 32.9 Grand Rapids, MI 0.842 14.1
Baltimore, MD 1.105 23.7 Madison, WI 0.838 7.8
Dallas, TX 1.091 25.8 Providence, RI-MA 0.838 18.7
Denver-Aurora, CO 1.090 27.3 Akron, OH 0.831 19.5
Sarasota, FL 1.087 15.1 Little Rock, AR 0.820 12.6
Minneapolis-St. Paul, MN 1.080 20.6 Toledo, OH-MI 0.818 20.0
Boston, MA-NH-RI 1.073 30.6 Jackson, MS 0.814 13.7
Bridgeport, CT-NY 1.073 29.4 Worcester, MA-CT 0.810 24.8
Charleston, SC 1.056 19.0 Winston-Salem, NC 0.806 11.6
Louisville, KY-IN 1.055 23.3 Richmond, VA 0.803 15.4
Knoxville, TN 1.051 27.9 Kansas City, MO-KS 0.792 21.7
Honolulu, HI 1.051 25.1 McAllen, TX 0.789 13.6
New York, NY-NJ-CT 1.049 24.0 Tulsa, OK 0.780 16.4
Tucson, AZ 1.044 22.0 Springfield, MA-CT 0.779 17.4
Baton Rouge, LA 1.030 22.2 Colorado Springs, CO 0.776 18.5
Stockton, CA 1.030 7.3 Bakersfield, CA 0.766 4.5
Jacksonville, FL 1.027 23.1 Brownsville, TX 0.759 8.8
Columbus, OH 1.027 23.8 Pittsburgh, PA 0.757 26.5
Salt Lake City, UT 1.020 19.4 Beaumont, TX 0.757 12.8
Philadelphia, PA-NJ-MD 1.019 24.4 Spokane, WA-ID 0.728 19.5
Charlotte, NC-SC 1.012 19.8 Albany, NY 0.727 17.1
Cincinnati, OH-KY-IN 1.008 30.4 Anchorage, AK 0.725 17.5
San Antonio, TX 0.997 19.5 Rochester, NY 0.725 17.6
Austin, TX 0.989 26.1 Corpus Christi, TX 0.686 8.2
Pensacola, FL-AL 0.987 13.6 Laredo, TX 0.686 7.6
Albuquerque, NM 0.982 22.4 Buffalo, NY 0.666 18.0
Virginia Beach, VA 0.964 30.1 Greensboro, NC 0.655 19.8
Raleigh-Durham, NC 0.951 15.0 Wichita, KS 0.554 12.8

Mean 0.965 21.1
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Table A.5: First-stage regression results: transit capacity (Substitution Effect)

Dependent variable is Transit Capacity in total vehicle revenue-miles (millions)

Coefficient (Std. Err)

Instrument

Federal Capital Funding, Two Years Prior (2011$) 2.70e-08∗∗∗ (7.19e-09)

Controls

Auto capacity: freeways (total lane-miles) -0.008 (0.006)

Auto capacity: arterials (total lane-miles) 0.002 (0.004)

Fuel price ($ per vehicle-mile) 36.204 (31.988)

Transit fare ($ per unlinked trip) -0.445 (0.274)

Employment rate (total employed per capita) 11.972 (19.429)

Income (real per capita income) 0.268 (0.214)

Population (millions) 27.442∗ (10.764)

Year fixed effects Yes

UZA fixed effects Yes

N 1802

R2 0.671

p-val. (Prob > F) 0.000

First-stage F-statistic

First-stage AP F-stat 14.12

Weak-instrument-robust inference

Anderson-Rubin Wald F test: p-val. 0.027

Anderson-Rubin Wald χ2 test: p-val. 0.023

Notes: Robust standard errors clustered by urban area (UZA) are in parentheses.

(Significance levels: ∗ : p < 0.05 ∗∗ : p < 0.01 ∗ ∗ ∗ : p < 0.001)
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Table A.6: First-stage regression results: transit capacity (Medium-Run Equilibrium Effect)

Dependent variable is Transit Capacity in total vehicle revenue-miles (millions)

Coefficient (Std. Err)

Instrument

Federal Capital Funding, Two Years Prior (2011$) 2.33e-08∗∗∗ (6.69e-09)

Controls

Auto capacity: freeways (total lane-miles) -0.007 (0.007)

Auto capacity: arterials (total lane-miles) 0.004 (0.004)

Fuel price ($ per vehicle-mile) 31.589 (26.273)

Transit fare ($ per unlinked trip) -0.257 (0.233)

Employment rate, 5-year lag (total employed per capita) -37.424 (21.337)

Income, 5-year lag (real per capita income) 0.155 (0.228)

Population, 5-year lag (millions) 21.279∗ (8.373)

Year fixed effects Yes

UZA fixed effects Yes

N 1521

R2 0.551

p-val. (Prob > F) 0.000

First-stage F-statistic

First-stage AP F-stat 12.15

Weak-instrument-robust inference

Anderson-Rubin Wald F test: p-val. 0.327

Anderson-Rubin Wald χ2 test: p-val. 0.318

Notes: Robust standard errors clustered by urban area (UZA) are in parentheses.

(Significance levels: ∗ : p < 0.05 ∗∗ : p < 0.01 ∗ ∗ ∗ : p < 0.001)
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Table A.7: First-stage regression results: transit capacity (Long-Run Equilibrium Effect)

Dependent variable is Transit Capacity in total vehicle revenue-miles (millions)

Coefficient (Std. Err)

Instrument

Federal Capital Funding, Two Years Prior (2011$) 4.53e-08∗∗∗ (1.09e-08)

Controls

Auto capacity: freeways (total lane-miles) 0.004 (0.007)

Auto capacity: arterials (total lane-miles) 0.009∗∗ (0.003)

Fuel price ($ per vehicle-mile) 63.176 (38.300)

Transit fare ($ per unlinked trip) -0.577 (0.420)

Year fixed effects Yes

UZA fixed effects Yes

N 1802

R2 0.518

p-val. (Prob > F) 0.000

First-stage F-statistic

First-stage AP F-stat 17.17

Weak-instrument-robust inference

Anderson-Rubin Wald F test: p-val. 0.044

Anderson-Rubin Wald χ2 test: p-val. 0.039

Notes: Robust standard errors clustered by urban area (UZA) are in parentheses.

(Significance levels: ∗ : p < 0.05 ∗∗ : p < 0.01 ∗ ∗ ∗ : p < 0.001)
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Table A.8: Elasticity of auto travel with respect to transit capacity for 2 alternative specifications

(1) (2) (3)

base case census division-year fixed effects lagged dependent variable

Substitution Effect -0.066∗ -0.054† -0.016∗

Medium-Run Equilibrium Effect -0.037 -0.005 0.002

Long-Run Equilibrium Effect 0.037∗ 0.050∗∗ 0.016∗∗

Notes: Table compares elasticities of auto travel with respect to transit capacity in (1) the base case, with those
obtained with regressions that also include (2) census division-year fixed effects, and (3) a lagged dependent variable.
Robust standard errors are clustered by urban area (UZA). Transit capacity is instrumented by Federal transit funding
in UZA, lagged two periods. Significance levels: † : p < 0.10 ∗ : p < 0.05 ∗∗ : p < 0.01 ∗ ∗ ∗ : p < 0.001.
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Table A.9: Elasticity of auto travel with respect to transit capacity for 6 alternative dependent variables

(1) (2) (3) (4) (5) (6)

log of V/C ratio: Travel Roadway % peak VMT Annual

V/C ratio freeways & Time Congestion in congested delay hrs

arterials Index Index conditions per capita

Substitution Effect -0.022∗ -0.042∗ -0.020∗ -0.053∗∗∗ -0.089∗∗ 0.001

Medium-Run Equilibrium Effect -0.014 -0.009 -0.013 -0.023 -0.061 0.034

Long-Run Equilibrium Effect 0.015∗∗ - 0.013∗∗ 0.045∗∗∗ 0.076∗∗ 0.059∗∗

Notes: Table shows elasticities of auto travel with respect to transit capacity that result from using the following alternative
measures of congestion, respectively: (1) the log of the volume-to-capacity ratio on freeways; (2) the volume-to-capacity
ratio combining travel on freeway and arterial roads; (3) the Travel Time Index; (4) the Roadway Congestion Index; (5)
the percentage of peak vehicle-miles traveled in congested conditions; and (6) the annual hours of delay per capita. Robust
standard errors are clustered by urban area (UZA). Transit capacity is instrumented by Federal transit funding in UZA, lagged
two periods. Significance levels: ∗ : p < 0.05 ∗∗ : p < 0.01 ∗ ∗ ∗ : p < 0.001.
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Appendix B: Detailed Analysis of Regional Heterogeneity

In this Appendix we provide additional analysis regarding the heterogeneity of the effects of public
transit supply on auto travel across regional characteristics, as outlined in Section 5.2. For each
characteristic, the urban areas (UZAs) are stratified using each UZA’s mean value of that charac-
teristic over the panel duration; as a result, the decile each UZA is in for a particular characteristic
is held fixed over time.

Population size

As population increases, the number of commuters for whom transit is the most desirable (or only)
mode of travel is also likely to increase. In large cities, the marginal external effect of the mode
choice of an individual traveler is also higher, given the convexity of the congestion externality.
Taken together, it is predicted that public transit will lead to a more significant effect on conges-
tion as the city size increases.

There is significant variation in population across the UZAs: in 2011, the mean population was
1.76 million, ranging from a low of 0.21 million in Brownsville, TX to a high of 18.95 million in
New York-Newark, NY-NJ-CT. Table B.1 summarizes the relationship between various congestion
measures and the population of the UZA, indicating that congestion is most prevalent in the largest
regions, as expected.

Table B.1: Congestion versus population size (means)

Population Travel Roadway % peak VMT in Annual VMT per freeway
Quintile Time Congestion congested delay hours lane-mile

Index Index conditions per capita (’000s/day)
Very Low 1.115 0.809 20.07 12.85 10.32
Low 1.137 0.889 30.03 17.99 11.94
Medium 1.173 0.944 40.16 21.39 12.82
High 1.201 1.006 47.54 24.20 13.84
Very High 1.247 1.175 65.26 28.78 16.72

Figure B.1 plots our estimates of the elasticity of auto travel with respect to transit capacity when
the models in equations (1) - (3) are stratified according to population deciles. The results indicate
that transit is likely to have a minimal impact on congestion at lower population levels, but has a
sizable impact for the most populous UZAs, suggesting that a threshold UZA size is required for
transit to have a significant effect in the auto market. The magnitude of the elasticity of demand
for automobile travel with respect to transit capacity increases (becoming more negative for the
substitution effect and more positive for the long-run equilibrium effect) and the precision of the
estimate decreases with population.

Population density

The population density of the UZA is expected to have an effect similar to the scale of the popu-
lation. The average UZA in the sample had a population density of 3,311 people per square mile
in 2011, with Knoxville, TN having the lowest density at 1,499 and Los Angeles, CA having the
highest at 7,931.30 Table B.2 shows that congestion increases with population density, but the

30
For the population density stratification, we have excluded Oxnard, CA, which appears to be an outlier along this
dimension with a population density of 9,342. The results of the population density stratification are robust to
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Figure B.1: Elasticity of auto travel with respect to transit capacity vs. population size
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(c) Long-Run Equilibrium Effect

Notes: Graphs show the elasticities of auto travel with respect to transit capacity that result when the

models in equations (1) - (3) are stratified according to deciles of population across the 96 urban areas

(UZAs). Dotted lines indicate 95% confidence interval.
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Table B.2: Congestion versus population density (means)

Density Travel Roadway % peak VMT in Annual VMT per freeway
Quintile Time Congestion congested delay hours lane-mile

Index Index conditions per capita (’000s/day)
Very Low 1.137 0.897 29.61 18.45 11.73
Low 1.172 0.913 35.95 21.10 12.17
Medium 1.165 0.914 36.35 20.77 12.50
High 1.178 0.967 42.84 20.93 13.34
Very High 1.222 1.136 58.77 24.13 15.95

dispersion between low- and high-density regions is somewhat less than is the case for low- and
high-population regions. Figure B.2 plots our estimates of the elasticity of auto travel with respect
to transit capacity when the models in equations (1) - (3) are stratified according to population
density deciles. The relationship follows a similar pattern to that above for total population size.

Rail service

Regions with rail service are expected to experience a larger effect of transit supply on congestion,
as fixed guideway modes may be more competitive with auto travel for a larger subset of commuters
than are mixed traffic modes. Over the study period, 28.7% of observations relate to UZAs with
rail service in that year. 20 of the 96 UZAs had rail throughout the entire period, while 16 UZAs
initiated rail service between 1991-2011, implying that 36 UZAs had rail in 2011. Accordingly, 60
UZAs have not had rail service at any point in time. Table B.3 shows that rail systems tend to be
located in the more congested regions. Separating the regions according to whether they had rail
service prior to 1991 yields very similar results. According to our results in Table 5, on average the
magnitude of the elasticity of auto travel with respect to transit capacity is nearly 10 times higher
in regions with rail service than in regions without.

Table B.3: Congestion versus rail service (means)

Rail Travel Roadway % peak VMT in Annual VMT per freeway
Service? Time Congestion congested delay hours lane-mile

Index Index conditions per capita (’000s/day)
No 1.150 0.916 34.64 18.89 12.29
Yes 1.239 1.091 56.31 26.84 15.31

Transit type

Similarly, we differentiate regions according to the proportion of total transit capacity supplied by
fixed guideway modes. In 2011, 8.5% of total vehicle-revenue miles was provided by fixed guide-
way modes; 57 UZAs had no fixed guideway service, while the New York UZA had the highest
percentage of fixed guideway transit at 66.1%. Table B.4 shows that fixed guideway transit occurs
most prominently in higher-congested regions. It is possible that fixed guideway modes – that may
have a greater effect on modal demand substitution and do not interact with auto traffic – can
be expected to reduce traffic congestion, while mixed traffic modes may not. According to our
results in Table 5, regions with a high proportion of fixed guideway transit have a magnitude of the
elasticity of auto travel with respect to transit capacity approximately 8-9 times as large as those
regions with a low proportion of fixed guideway transit.

whether Oxnard, CA is excluded.
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Figure B.2: Elasticity of auto travel with respect to transit capacity vs. population density
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(c) Long-Run Equilibrium Effect

Notes: Graphs show the elasticities of auto travel with respect to transit capacity that result when the

models in equations (1) - (3) are stratified according to deciles of population density across the 96 urban

areas (UZAs). Dotted lines indicate 95% confidence interval.

53



Table B.4: Congestion versus % of fixed guideway transit (means)

% of FG Travel Roadway % peak VMT in Annual VMT per freeway
transit Time Congestion congested delay hours lane-mile
service Index Index conditions per capita (’000s/day)

Low 1.159 0.925 35.90 19.64 12.44
High 1.241 1.133 60.66 27.29 16.03

Transit accessibility

Transit accessibility represents the extent to which the transit system has developed in a region,
and is measured here by the directional-route miles of service provided per square mile. In 2011,
the average UZA had 4.1 directional-route miles per square mile, ranging from a low of 0.7 in
Winston-Salem, NC to a high of 34.2 in Stockton, CA. Greater transit accessibility is expected
to lead to a higher likelihood of modal substitution when an increase in transit supply lowers the
generalized cost of transit travel. Table B.5 shows that the accessibility of public transit is highest
in the most congested regions.

Table B.5: Congestion versus transit accessibility (means)

Transit Travel Roadway % peak VMT in Annual VMT per freeway
Access Time Congestion congested delay hours lane-mile
quintile Index Index conditions per capita (’000s/day)

Very Low 1.137 0.909 32.41 19.26 12.07
Low 1.165 0.942 37.31 21.14 12.57
Medium 1.172 0.939 40.41 20.16 12.89
High 1.190 0.966 42.71 21.53 13.45
Very High 1.213 1.075 51.34 23.64 14.79

According to our results in Figure B.3, the magnitude of the elasticity of demand for automobile
travel with respect to transit capacity increases (becoming more negative for the substitution effect
and more positive for the long-run equilibrium effect) and the precision of the estimate decreases
with transit accessibility. In the long run, the relationship between transit accessibility and the
elasticity of demand for automobile travel with respect to transit capacity appears somewhat non-
monotonic, with the elasticity decreasing slightly at high levels of transit accessibility. Thus, at
high levels of transit accessibility, increases in transit accessibility are associated with a decrease in
the elasticity of demand for automobile travel with respect to transit capacity. A possible explana-
tion is that when transit is already extremely accessible, auto demand does not increase as much
in the long run in response to changes in transit capacity, perhaps because transit capacity is not
as binding in areas where transit is already extremely accessible.

Transit capacity

We measure transit capacity by the per capita vehicle-revenue miles of transit service provided,
which is another indication of the degree of transit network development. In 2011, the average
value across UZAs was 9.4 vehicle-revenue miles per capita, ranging from a low of 1.7 in McAllen,
TX to a high of 43.4 in New York. Table B.6 indicates that the highest public transit service
frequency occurs in the most congested regions. As was the case with transit accessibility, Figure
B.4 illustrates that additional transit service capacity has the greatest impact in regions that have
a high pre-existing supply of public transit.
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Figure B.3: Elasticity of auto travel with respect to transit capacity vs. transit accessibility
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Notes: Graphs show the elasticities of auto travel with respect to transit capacity that result when the models

in equations (1) - (3) are stratified according to deciles of the level of transit accessibility (as measured by

directional-route miles of service provided per square mile) across the 96 urban areas (UZAs). Dotted lines

indicate 95% confidence interval.
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Figure B.4: Elasticity of auto travel with respect to transit capacity vs. transit capacity
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Notes: Graphs show the elasticities of auto travel with respect to transit capacity that result when the models

in equations (1) - (3) are stratified according to deciles of the level of transit capacity (as measured by per

capita vehicle-revenue miles of transit service) across the 96 urban areas (UZAs). Dotted lines indicate 95%

confidence interval.
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Table B.6: Congestion versus transit capacity (means)

Transit Travel Roadway % peak VMT in Annual VMT per freeway
Capacity Time Congestion congested delay hours lane-mile
quintile Index Index conditions per capita (’000s/day)

Very Low 1.124 0.881 28.11 16.89 11.61
Low 1.153 0.927 36.00 20.27 12.46
Medium 1.163 0.931 38.00 19.31 12.60
High 1.197 1.035 48.40 23.16 14.30
Very High 1.240 1.057 53.76 26.23 14.82

Transit usage

Lastly, we consider how the existing rate of transit ridership influences the effect of transit supply
on congestion. The relative transit usage of a region is measured by the ratio of transit passenger-
miles traveled to auto vehicle-miles traveled. Table B.7 indicates that the modal travel share of
transit is positively correlated with the level of congestion. According to our results in Figure B.5,
the magnitude of the elasticity of demand for automobile travel with respect to transit capacity
increases (becoming more negative for the substitution effect and more positive for the long-run
equilibrium effect) and the precision of the estimate decreases with the degree of existing transit
usage.

Table B.7: Congestion versus transit use (means)

Transit Travel Roadway % peak VMT in Annual VMT per freeway
Usage Time Congestion congested delay hours lane-mile
quintile Index Index conditions per capita (’000s/day)

Very Low 1.121 0.879 27.41 17.96 11.66
Low 1.158 0.953 38.35 21.08 12.70
Medium 1.169 0.945 39.89 20.63 12.79
High 1.184 0.980 43.78 20.61 13.59
Very High 1.245 1.075 54.83 25.58 15.03
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Figure B.5: Elasticity of auto travel with respect to transit capacity vs. transit use
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Notes: Graphs show the elasticities of auto travel with respect to transit capacity that result when the models

in equations (1) - (3) are stratified according to deciles of the level of transit use (as measured by the ratio

of transit passenger- miles traveled to auto vehicle-miles traveled) across the 96 urban areas (UZAs). Dotted

lines indicate 95% confidence interval.
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