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Abstract

We develop a dynamic bioeconomic model of a farmer’s decisions regarding the use of synthetic
compounds (e.g., synthetic fertilizers and pesticides) and the transition from conventional to
organic management. Our model accounts for newly documented interrelationships among synthetic
compound use, soil health, and crop yields. In particular, new insights from soil science show that
the use of synthetic compounds can be harmful to beneficial soil microbes that improve agricultural
yields by enhancing crop nutrient use, stress tolerance, and pest resistance. We characterize and
solve for a ”fully informed” farmer’s optimal synthetic compound use strategy, and for whether
and how a farmer should transition from conventional to organic farming. These solutions are
compared to those from a ”misinformed” model in which the farmer is not aware of the interactions
between synthetic compound use, soil health, and crop yields, allowing us to assess how gaining
knowledge of these interactions might be expected to change farmers’ synthetic compound use
strategies and, ultimately, their decisions around adopting organic management. We identify and
discuss agricultural and economic conditions under which farmers can be expected to voluntarily
reduce their reliance on synthetic compounds, and possibly even adopt organic management, upon
learning of the benefits associated with stewardship of their soil’s microbiome.
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1 Introduction

Conventional agriculture has been criticized for its adverse effects on natural resources and the

environment – including biodiversity loss, water pollution, and other forms of pollution posing threats

to public health and climate stability - many of which are due in part to the prevalent use of synthetic

fertilizers and pesticides that characterizes conventional management practices. Organic farming –

wherein farmers do not use synthetic fertilizers, pesticides, herbicides, or fungicides to grow their

produce – is widely considered to be a far more sustainable alternative to conventional food production

(Varanasi, 2019). This paper combines insights from economics and the natural sciences to study and

inform farmer transitions from conventional to organic management.

Soil microbes benefit agricultural production and improve agricultural yields by enhancing crop

nutrient use, stress tolerance, and pest resistance (Lori et al., 2017). New insights from soil science

show that the use of synthetic fertilizers and pesticides can be harmful to these beneficial soil microbes

(Blundell et al., 2020; Hussain et al., 2009; Kalia and Gosal, 2011; Lo, 2010; Lori et al., 2017). Thus,

while using synthetic fertilizers and pesticides may have the initial effect of increasing crop yields,

over time these synthetic compounds exert an indirect negative effect on crop yields through their

negative effects on soil health. This insight has implications for a farmer’s optimal synthetic fertilizer

and pesticide strategy, and for whether and how a farmer should transition from conventional to

organic farming.

We develop a dynamic bioeconomic model of a farmer’s decisions regarding the use of synthetic

compounds (e.g., synthetic fertilizers and pesticides) and the transition from conventional to organic

management. Our model of crop production accounts for the newly documented interrelationships

among synthetic compound use, soil health, and crop yields. By more accurately capturing the

important biological processes at play, our model yields a solution that more accurately captures a

farmer’s optimal synthetic compound use and organic production strategy.

Our objectives are the following. First, we characterize a farmer’s optimal trajectory of synthetic

compound use over time, given the harmful effects that these compounds have on soil bacteria, and

given the beneficial effects of soil bacteria on crop yields. Second, we examine a farmer’s decision

of whether to adopt organic certification by lowering their use of synthetic compounds to meet

certification requirements. The solution to our model describes the feasibility and optimality of

organic production, and how a farmer can best make the transition from conventional to organic

management, given the way that soil health will respond to the transition. Third, in order to assess

how knowledge about soil microbiomes and the interrelationships among synthetic compound use,

soil health, and crop yields may affect farmers’ decisions about transitioning from conventional

to organic management, we compare the optimal synthetic compound use and organic production

strategy determined by our model with the synthetic compound use and organic production strategy

predicted by a model in which farmers are not aware of these interrelationships.

Formally, the dynamic optimization problem faced by the farmer is to choose a pesticide and
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fertilizer input trajectory to maximize the present discounted value of their entire stream of profits

from crop production. Crop yields, and therefore profits, are a function of pesticide and fertilizer

input use, as well as of soil bacteria. Soil bacteria populations, in turn, are a function of per-period

chemical use as well as the stock of synthetic residues that have built up in the farm’s soils from past

chemical use.

We characterize and solve for a ”fully informed” farmer’s optimal synthetic compound use strategy,

and for whether and how a farmer should transition from conventional to organic farming. These

solutions are compared to those from a ”misinformed” model in which the farmer is not aware of the

interactions between synthetic compound use, soil health, and crop yields, allowing us to assess how

gaining knowledge of these interactions might be expected to change farmers; synthetic compound

policies and, ultimately, decisions around adopting organic management.

We find that when farmers account for soil bacteria, some may transition to organic management

”accidentally” as their optimal trajectories eventually take them toward the certification threshold.

This can happen even in the absence of an organic price premium. Others will have discrete ”jump”

transitions that are induced purely by the organic price premium.

When farmers do not account for soil bacteria, however, they never make an ”accidental” transition

to organic, and will instead disinvest as fast as possible until the stock of synthetic compounds in

the soil reaches the maximum chemical stock capacity of the soil. If farmers who do not account for

soil bacteria do transition to organic management, it will be a ”jump” transition, and can only be

induced by a price premium.

Results also show that the ”fully informed” farmer’s behavior contrasts starkly to that of the

”misinformed” farmer, whose erroneous solution leads them to always use as much synthetic compounds

as possible, and to therefore never transition to organic management in the absence of an organic price

premium. Further, because the ”misinformed” farmer misses the source of value in organic farming

generated coming from improved stewardship of beneficial soil microbes (and rather only anticipates

the value associated with the organic price premium) the ”misinformed” farmer may incorrectly hold

off on adopting organic management until they face an organic price premium higher than is needed

for organic management to be optimal. This mistake in the ”misinformed” farmer’s adoption choice

may lead to losses in both private and social welfare relative to the ”fully informed” scenario.

We find and describe several empirically relevant conditions under which learning about the

biological interactions of interest will lead a farmer to discontinue their use of chemical inputs entirely.

Learning about the benefits of soil microbe stewardship may prompt some farmers to transition to

organic management even in the absence of an organic price premium. In other cases, learning about

the importance of soil microbes may result in reduced reliance on chemical inputs.

Our research will help farmers improve decision-making around synthetic compound use and

organic production, and has the potential to improve soil bacteria stewardship, crop yields, farmer

profits, agricultural sustainability, greenhouse gas mitigation, biodiversity, resilience of the organic

farming system, the protection of water and other resources, the provision of ecosystem services, and
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public and environmental health.

Our study will also shed light on the importance to farmers of optimally acting upon an accurate

understanding of the role that soil bacteria play in crop production and the sensitivity of that bacteria

to the application of synthetic compounds. This will help open the way to educational extension

programs that could result in improved yields for conventional farmers, organic farmers, and farmers

transitioning to organic farming.

2 Literature Review

Transitioning to organic farming entails the discontinuation of pesticide use, a change that may impact

farm profits. The relationship between pesticide use and farm profit has been the subject of many

studies. Chambers et al. (2010) shows pesticide use as increasing returns to quasi-fixed factors of

production like capital and land. In contrast, Jacquet et al. (2011) use a mathematical programming

model to determine whether pesticide use can be reduced without affecting farmer income and find

that a up to a 30 percent reduction is possible. In the long run, pesticide use may even negatively affect

profits due to their effects on soil productivity through soil health. Sexton et al. (2007) acknowledge

the effect that pesticide use can have on soil health through its impact on soil microbiomes. Kalia and

Gosal (2011) also document the damaging effects that the application of pesticides in conventional

farming has on soil microorganisms that benefit plant productivity. Jaenicke and Lengnick (1999)

estimate a soil-quality index consistent with the notion of technical efficiency. The literature is thus

inconclusive about the long-term effects of pesticide use on profits once effects on soil health are

accounted for.

The dynamic response of soil health and productivity to the sorts of changes in pesticide use

entailed by transitions to organic farming is still not well accounted for in economic assessments

of the profitability of transitioning to organic farming. Stevens (2018) argues that optimal control

models may be well suited for studying the economics of soil management. In this paper we argue

further that dynamic optimization and dynamic programming may help shed light on the optimal rate

of transition from conventional to organic farming, by allowing us to better capture the countervailing

and dynamic effects that pesticide use has on profits through its effect on pest pressure and soil health.

Multiple studies have applied the dynamic optimization and programming toolkits to the study

of optimal agricultural management practices. Jaenicke (2000) develops a dynamic data envelopment

analysis (DEA) model of crop production to investigate the role soil capital plays in observed productivity

growth and the crop rotation effect. Yeh et al. (2024) develop a novel dynamic bioeconomic analysis

framework that combines numerical dynamic optimization and dynamic structural econometric estimation,

and apply it to analyze the optimal management strategy for Spotted Wing Drosophila, a pest

affecting soft-skinned fruits. Wu (2000) develops a dynamic model and solves for the optimal time

path for herbicide application. Dynamic models have also been developed to study agricultural

productivity (Carroll et al., 2019), agricultural groundwater management (Sears et al., 2019, 2024),
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agricultural disease control (Carroll et al., 2024a), pollination input decisions by apple farmers (Wilcox

et al., 2024), supply chain externalities (Carroll et al., 2024b), optimal bamboo forest management

(Wu et al., 2024), fisheries management (Conrad et al., 2024; Shin et al., 2024), and grapes (Sambucci

et al., 2024).

Delbridge and King (2016) use dynamic programming to address the question of why so few

farmers choose to transition to organic farming. They model the decision to transition to organic

production as a dynamic programming problem where the transition involves sunk costs, and find the

slow uptake of organic farming may be partially driven by the option value generated by the sunk costs

associated with organic transition. Other studies have sought to incorporate transition dynamics, such

as the empirically documented initial decrease in crop yields associated with conventional to organic

transitions, into profitability assessments of organic farming. Dabbert and Madden (1986) find in

their multi-year simulation of a 117-hectare crop-livestock farm that the initial decrease in crop yields

during an organic transition results in a 30 percentage point decrease in income in the first year of

transition. The biological underpinnings of this initial decrease in productivity, and their response to

farmer control variables are not made explicit.

The current study is unique in that it approaches the matter of finding an optimal transition

trajectory from a bioeconomic perspective, informing its net benefit function with insights from

soil sciences on how soils respond to organic management. Blundell et al. (2020) find that organic

management is associated with decreased pest pressure on tomato plants. This effect is driven by

an accumulation of salicylic acid in plant tissue, and is likely mediated by soil microbe communities.

Lori et al. (2017) find that organic management is associated with increased microbial abundance and

activity. Our net benefit function captures such soil health effects on crop productivity and farmer

costs during the organic transition. We are not aware of any other studies that use a bio-economic

dynamic programming approach to solving for a farm’s optimal trajectory for transitioning from

conventional to organic farming.

Another unique aspect of our study is that we use our model to determine the value to farmers

of better understanding (and acting upon their understanding of) both how soil bacteria respond to

synthetic fertilizers and pesticides, and what those responses mean for crop yields. Murphy et al.

(2020) find that farmers in developing countries usually do not have sufficient information about their

soil nutrient levels to make profit-maximizing decisions about fertilizer usage, and that there can be

potentially large net benefits to providing farmers with soil information.

3 Dynamic Bioeconomic Model

3.1 Model

We develop a dynamic bioeconomic model of a farmer’s decisions regarding the use of synthetic

compounds (e.g., synthetic fertilizers and pesticides) and the transition from conventional to organic

management. Our model of crop production accounts for the newly documented interrelationships
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among synthetic compound use, soil health, and crop yields.

We model the farmer’s field-level organic transitions decision-making problem as an infinite horizon

dynamic optimization problem. We assume for the initial analysis that the farmer optimizes for each

of their fields independently.

The crop production function for a field’s crop output y(t) at time t is given by f̃(b(t), c(t);X),

where crop output is a function of beneficial soil microbes (or bacteria) b(t), chemical (or synthetic

compound) inputs c(t), and other human and natural inputsX. Soil microbes b(t) have a non-negative

effect on crop production: ∂f̃(b(t),c(t);X)
∂b ≥ 0.

The biological production function for soil microbes b(t) is given by g̃(C(t), c(t);X), where the

prevalence of beneficial soil microbes b(t) decreases with the total stock of synthetic compounds

in the soil C(t) , and with greater per-period chemical (or synthetic compound) input use c(t):
∂g̃(C(t),c(t);X)

∂C ≤ 0, ∂g̃(C(t),c(t);X)
∂c ≤ 0. The total stock of synthetic compounds in the soil C(t) only

affects crop production through its effects on soil bacteria b(t), so that C(t) only appears in the crop

production function f̃(·) through its role in the soil microbe production function g(·). The other

human and natural inputs X includes soil characteristics, which are important to how beneficial

bacteria b(t) respond to total synthetic compound stocks C(t) and to synthetic compound use c(t),

and which are also important to the rate µ(X) at which stocks of synthetic compounds in soils C(t)

decompose on their own.

The chemical input use c(t) at any point in time does not exceed an upper bound c, which may

depend on the total stock of synthetic compounds present in the soil C(t), and which may represent,

for example, the maximum recommended dose for any given application, the maximum chemical

input dose that is not lethal to the crop and/or to humans, the maximum chemical dose above which

consumers will no longer purchase the crop, or the maximum chemical input flow at any point in time

that does not destroy the farmer’s land and soil. We assume the upper bound c > 0.

As long as the chemical input use c(t) at any point in time does not exceed the threshold c

the marginal product of chemical input use c(t), conditional on soil microbes b(t), is non-negative:
∂f̃(b(t),c(t);X)

∂c ≥ 0. When accounting for both the direct effect of chemical inputs c(t) on output y(t)

conditional on soil microbes b(t), as well as the indirect effect of chemical inputs c(t) on output y(t)

through their harmful effects on soil microbes b(t), however, it is possible that the unconditional

marginal product of chemical input use c(t), df̃(·)
dc , may have be non-positive.

The farmer’s control variables are the amounts of chemical inputs c(t), which include synthetic

fertilizer and pesticides (including herbicides, insecticides, fungicides, etc.), at each time t.

We assume for the time being that the other human and natural inputs X (which may include

capital, labor, soil characteristics, and land quality) are exogenous, taken as given, and fixed. We can

therefore think of the other human and natural inputs X as a farm-field fixed effect that may lead to

different soil microbe biological production functions and output production functions, for example

by shifting the marginal products of the inputs to soil microbe production and the marginal products

of the inputs to crops production. By assuming these other human and natural inputs X are fixed,
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we are assuming for the time being for this stylized theory model that the time scale for any changes

in these inputs is much longer than the relevant time scale for chemical input c(t) decisions and for

organic transitions.

The state variable is the stock of synthetic chemicals C(t) that is present in the farm’s soil at time

t. The stock of synthetic chemicals increases with chemical input use c(t) and decays at a constant

rate µ(X) ≥ 0 that may depend on the soil characteristics and other human and natural inputs X:

Ċ(t) = c(t)− µ(X)C(t). (1)

Thus, the use of synthetic compounds c(t) not only has harmful contemporaneous effects on soil

microbes b(t), but also has harmful effects on soil microbes b(t) over time by increasing the stock

of synthetic chemicals C(t) that is present in the farm’s soil, since both the total stock of synthetic

compounds in the soil C(t) and the per-period chemical input use c(t) have harmful effects on soil

microbes b(t). As a consequence, while using synthetic fertilizers and pesticides c(t) may have the

initial direct effect of increasing crop yields y(t), over time these synthetic compounds c(t) exert an

indirect negative effect on crop yields y(t) through their negative effects on soil health.

Let C denote the maximum chemical stock capacity of the soil; if the stock of synthetic chemicals

C(t) ever exceeds this upper bound C, the land and soil is destroyed forever and cannot ever be used

for agricultural production again.

The national organic certification threshold for the stock of synthetic chemicals present in a

farm’s soil is given by Corg, where 0 ≤ Corg < C. For the majority of our analysis, we assume (as

we approximately have in all real-world organic certification programs known to the authors) that

organic certification requires that a farmer fully remediate their soils until they are pristine, such that

Corg = 0.

The spot price of the crop in the organic market is Porg. The spot price of the conventionally

grown crop is Pcon. We normalize the unit price of chemical input c(t) to be 1.

The optimal transition trajectory can be described by the solution to the following dynamic

optimization problem:

max
{c(t)}

∫ ∞

t=0

(
(Pcon · 1{C(t) > Corg} +Porg · 1{C(t) ≤ Corg}) · f̃(b(t), c(t);X)− c(t)

)
e−ρtdt

s.t. Ċ(t) = c(t)− µ(X)C(t)

b(t) = g̃(C(t), c(t);X)

0 ≤ c(t) ≤ c

0 ≤ C(t) ≤ C

C(0) = C0 ,

(2)

where 1{x} is an indicator function that is equal to 1 if the condition x is true, and 0 otherwise; ρ is

6



the interest rate; and C0 is the initial stock of synthetic compounds in the soil.

Following Weitzman (2003), to facilitate analysis and economic interpretation, we convert our

problem to prototype economic control problem form. We do this by first defining the stock of clean

soil, K(t), to be

K(t) = C − C(t). (3)

Net investment in clean soil stock, I(t), is given by:

I(t) ≡ K̇(t) = −Ċ(t). (4)

Synthetic compound input use c(t) in terms of K(t) and I(t) is therefore given by the following

function c̃(·):

c(t) = c̃(K(t), I(t)) = µ(X)(C −K(t))− I(t). (5)

The constraint that c(t) ≥ 0 can be rewritten as:

µ(X)(C −K(t)) ≥ I(t) (6)

The constraint that c(t) ≤ c can be rewritten as:

µ(X)(C −K(t))− c ≤ I(t). (7)

We assume that c = µ(X)C when µ(X) > 0 and c > 0 when µ(X) = 0. Applying these

assumptions to Equation (7), we obtain the following lower bound for net investment:I(t) ≥ −µ(X)K(t) if µ(X) > 0

I(t) > µ(X)(C −K(t)) if µ(X) = 0
(8)

The organic certification threshold in terms of clean soil capital is given by:

Korg = C − Corg. (9)

In terms of clean soil capital, our assumption Corg = 0 that organic certification requires that a

farmer fully remediate their soils can be rewritten as Korg = C.

We assume that the crop production function f̃(·) is given by:

f̃(b, c;X) = αb(X)b+ αc(X)c+Ay(X) (10)

where, ∀X, αb ≥ 0, αc ≥ 0, and Ay ≥ 0.

We define a crop production function f(·), which is the crop production function f̃(·) in terms of
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K and I. The crop production function f(·) in terms of K and I is given by:

f(K, I;X) = f̃(b, c̃(K, I);X)

= αb(X)b+ αc(X)c(K, I) +Ay(X)
(11)

Let the soil microbe production function g̃(·) be given by:

g̃(C, c;X) =γc(X)c+
1

2
γcc(X)c2 + γK(X)

(
C − C(t)

)
+Ab(X)

=γc(X)c+
1

2
γcc(X)c2 + γK(X)K +Ab(X)

(12)

where, ∀X, γc ≤ 0, γcc ≤ 0 (i.e., convex costs to synthetic compound use), γK ≥ 0, and Ab ≥ 0.

We define a soil microbe production function g(K, I;X), which is the soil microbe production

function g̃(·) in terms of K and I as follows:

g(K, I;X) = γc(X)c̃(K, I) +
1

2
γcc(X)c̃(K, I)2 + γK(X)K +Ab(X). (13)

Let’s define the national organic certification threshold in terms of the stock of clean soil Korg as:

Korg = C − Corg. (14)

The initial stock of clean soil K0 is given by:

K0 = C − C0. (15)

The per period net gain function G(K, I) is therefore given by:

G(K, I) = (Pcon · 1{K < Korg}+ Porg · 1{K ≥ Korg})·f(b, µ(X)(C−K)−I;X)−
(
µ(X)(C −K)− I

)
,

(16)

and the farmer’s problem can be re-written in prototypical economic form as follows:
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max
{I(t)}

∫ ∞

0

(
(Pcon · 1{K(t) < Korg}+ Porg · 1{K(t) ≥ Korg}) · f(b(t), c̃(K(t), I(t));X)

− c̃(K(t), I(t))
)
· e−ρtdt

s.t. K̇(t) = I(t) : p(t)

b(t) = g(K(t), I(t);X)

c̃(K(t), I(t)) = µ(X)(C −K(t))− I(t)

µ(X)(C −K(t))− c ≤ I(t) ≤ µ(X)(C −K(t))

0 ≤ K(t) ≤ C

K(0) = K0 ,

(17)

where the co-state variable p(t) is the marginal value to the farmer’s optimal program of an extra

unit of clean soil.

3.2 What makes this optimal control problem novel and challenging to solve

The partial derivatives near the national organic certification threshold are tricky to calculate, since

they involve derivatives of indicator functions. The indicator function 1{K ≥ Korg} for satisfying

the national organic certification threshold is the Heaviside function H(K −Korg), where H(x) = 1

if n ≥ 0 and H(x) = 0 if x < 0. The derivative of the Heaviside function H(x) is the Dirac delta

function δ(x):

dH(x)

dx
= δ(x), (18)

which unfortunately is tricky to work with and interpret (it’s a function that spikes at zero).

So instead of trying to take a derivative of an indicator function, we analyze each stage of the

dynamic bioeconomic model separately, and then consider possible transitions from conventional to

organic management. The first stage is conventional agriculture with prices Pcon. The second stage is

organic agriculture with prices Porg. The second stage is reached if organic certification requirement

K(t) ≥ Korg is satisfied.

4 Optimal Solution for Each Stage

We first describe behavior within each stage j ∈ {con, org}. For each stage j ∈ {con, org}, we

solve for stationary rate of return on capital (clean soil stock) Rj(K); determine whether there is

a stationary solution K̂j ; characterize direction and speed of net investment I(t); and solve for the

optimal trajectories I∗(t) and K∗(t) using the Maximum Principle.
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4.1 Optimal control problem for each stage j ∈ {con, org}

For each stage j ∈ {con, org}, the farmer’s dynamic optimization problem is given by:

max
{I(t)}

∫ ∞

0

(
Pj ·f (g(K(t), I(t);X), c̃(K(t), I(t));X)− c̃(K(t), I(t))

)
· e−ρtdt

s.t. K̇(t) = I(t) : p(t)

c̃(K(t), I(t)) = µ(X)(C −K(t))− I(t)

µ(X)(C −K(t))− c ≤ I(t) ≤ µ(X)(C −K(t))

0 ≤ K(t) ≤ C

K(0) = K0j .

(19)

The Hamiltonian is then:

Hj = Gj(K, I) + ρI(t), (20)

where

Gj(K, I) = Pj · f (g(K, I), c(K, I);X)− c(K, I;X). (21)

Given our functional form assumptions, the per-period net gain (or profits) Gj(K, I) for each

stage j ∈ {con, org} is given by:

Gj(K, I) =Pj ·

(
αb

(
γc
(
µ
(
C −K

)
− I
)
+

1

2
γcc
(
µ
(
C −K

)
− I
)2

+ γKK +Ab

)

+ αc

(
µ
(
C −K

)
− I
)
+Ay

)
−
(
µ
(
C −K

)
− I
)

(22)

where the convex costs to synthetic compound use, as measured by the parameter γcc ≤ 0, introduces

non-linear investment costs. We will have a most rapid approach (MRA) policy if γcc = 0 since then

G(K, I) is linear in net investment I.

The solution to the farmer’s dynamic optimization problem for each stage j ∈ {con, org} satisfies

the FOCs of the Maximum Principle:

[#1] :
∂Hj

∂I
= 0 (23)

[#2] : ṗ(t) = −∂H̃j

∂K
(K∗(t), p(t)) + ρp(t) (24)
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[#3] : lim
t→∞

p(t)K(t)e−ρt = 0 (25)

The FOCs of the Maximum Principle are both necessary and sufficient for optimality since our per-

period net gain function Gj(K, I) is concave and the control set is convex for each stage j ∈ {con, org}.

4.2 Characterizing the Optimal Solution for each stage j ∈ {con, org}

The present discounted value (PDV) of entire stream of marginal net benefit (MNB) of an additional

unit of synthetic compound c(t) today is given by:

Pj · αc −
(
−Pjαb (γc + γccc(t)) +

PjαbγK
µ+ ρ

+ 1

)
, (26)

each term of which is explained in detail in Figure 1. Owing to the convex costs of synthetic compounds

on soil microbe production, as measured by the parameter γcc ≤ 0, the PDV of the entire stream of

marginal net benefits is decreasing in synthetic compound use c(t). Since c(t) = µ(X)(C−K(t))−I(t)

is decreasing in K(t), the PDV of the entire stream of marginal net benefits is increasing in K(t).

The optimal unconstrained amount of synthetic compound c(t) to apply at any time t is the

synthetic compound input level c∗∗j at which the present discounted value (PDV) of entire stream

of marginal net benefit (MNB) of an additional unit of synthetic compound c today is 0. In other

words, at the optimal unconstrained amount of synthetic compound c∗∗j , the PDV of the entire stream

of marginal benefits of an additional unit of synthetic compound c(t) today is exactly offset by the

PDV of the entire stream of marginal costs of an additional unit of synthetic compound c(t) today.

This optimal unconstrained amount of synthetic compound c∗∗j is a constant that is a function of

parameters but not of K(t) and is given by:

c∗∗j = −
Pj ·

(
αc + αb

(
γc − γK

µ+ρ

))
− 1

Pjαbγcc
. (27)

As long as the PDV of the entire stream of MNB of an additional unit of synthetic compound

c(t) today is greater than 0 (i.e., as long as c(t) < c∗∗j , since the PDV of the entire stream of MNB

is decreasing in c(t)), we would want to increase the amount of synthetic compound we use today,

and will continue to do so until either (1) the PDV of the entire stream of MNB of an additional

unit of synthetic compound c(t) today is 0 (i.e., until c(t) = c∗∗j ); or (2) we hit the upper bound c

for synthetic compound use. If we are constrained by the upper bound c for synthetic compound use

from increasing synthetic compound use c(t) any further even though the PDV of the entire stream

of MNB of an additional unit of synthetic compound c(t) today is still greater than 0(i.e., if c∗∗j > c,

then the PDV of the entire stream of MNB of an additional unit of synthetic compound c(t) today is

the smallest positive value that it can be.
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Figure 1: PDV of entire stream of marginal net benefit of additional unit of synthetic compound c(t) today
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︸ ︷︷ ︸
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With the farmer’s problem now in prototypical economic control form, we can solve for the

stationary rate of return on capital, Rj(K) for each stage j ∈ {con, org}. The stationary rate of

return on capital Rj(K) is the per-period rate of return on the clean soil capital stock K from

increasing net investment I a tiny bit this period from a net investment level of I = 0. In other

words stationary rate of return on capital Rj(K) is the per-period yield from increasing the clean soil

capital stock K from a stationary state K, to a stationary state K + ϵ , and is given by (Weitzman,

2003):

Rj(K) = −
∂Gj(K,0)

∂K
∂Gj(K,0)

∂I

. (28)

Solving for the stationary rate of return Rj(K) on clean soil capital for each stage j ∈ {con, org},
we obtain:

Rj(K) = −µ+
γK

γc + γccµ
(
C −K

)
+

αc−P−1
j

αb

. (29)

The slope of Rj(K) is:

R′
j(K) =

γK(
γc + γccµ

(
C −K

)
+

αc−P−1
j

αb

)2γccµ (30)

which we can sign as follows:

R′
j(K) =

γK︸︷︷︸
≥0(

γc + γccµ
(
C −K

)
+

αc − P−1
j

αb

)2

︸ ︷︷ ︸
≥0

γcc︸︷︷︸
≤0

µ︸︷︷︸
≥0

≤ 0 (31)

The stationary solution K̂j is the clean soil stock at which the stationary rate of return on the

clean soil capital stock, Rj(K̂j) is equal to the rate of the return on the best alternative investment

(i.e., the bank), ρ (Weitzman, 2003):

Rj(K̂j) = ρ (32)

Plugging in Equation (29) for the stationary rate of return on the clean soil capital stock, Rj(·)
into Equation (32), we obtain the following condition for the stationary solution K̂j :

Pjαc = −Pjαb

(
γc + γccµ

(
C −K

))
+

PjαbγK
µ+ ρ

+ 1 (33)

The intuition for the condition for the stationary solution K̂j is presented in Figure 2.
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Figure 2: Condition for stationary solution K̂j for each stage j ∈ {con, org}
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(34)
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As seen in Equation (34) in Figure 2, at the stationary solution K̂j for a given stage j ∈ {con, org},
the present discounted value (PDV) of the entire stream of marginal benefits from applying an

additional unit of synthetic compound today equals the present discounted value of the entire stream

of marginal costs of applying an additional unit of synthetic compound today.

The present discounted value of the entire stream of marginal benefits from applying an additional

unit of synthetic compound today, which is given by Pjαc, comes from the direct effect of chemical

input use c(t) on crop output y(t) today and therefore on crop revenue today. Using an additional

unit of synthetic compound today does not yield any future marginal benefits.

The present discounted value of the entire stream of marginal costs of applying an additional

unit of synthetic compound today, which is given by the right-hand side of Equation (34), consists of

several components. Applying an additional unit of synthetic compound today incurs both direct and

indirect marginal costs. The direct marginal cost of an additional unit of synthetic compound today

is simply the unit price of chemical inputs c(t), which we normalize to 1, and which is only incurred

today. The indirect marginal cost of an additional unit of synthetic compound today comes from

the negative effects of synthetic compounds on soil microbes b(t) and their resulting negative effects

on crop output y(t) and therefore on crop revenue. There are two channels through which synthetic

compounds have negative effects on soil microbes. First, applying an additional unit of synthetic

compound today has a direct negative effect on soil microbes today through its direct negative effect

on soil microbe production today. Second, applying an additional unit of synthetic compound today

has an indirect negative effect on soil microbes by decreasing the stock of clean soils K(t) today, which

may last for multiple periods, and which in turn has a negative effect on soil microbe production over

multiple periods of time; we call the PDV of the entire stream of indirect marginal costs of applying

an additional unit of synthetic compound today via their indirect negative effect on soil microbes

through their negative effect on stock of clean soils the ’stock effect’. Thus, the present discounted

value of the entire stream of marginal costs from applying an additional unit of synthetic compound

today comes from the direct marginal cost of purchasing synthetic compounds today, 1; the indirect

marginal cost of applying an additional unit of synthetic compound today via their direct negative

effect on soil microbes today, −Pjαb

(
γc + γccµ

(
C −K

))
; and the PDV of the entire stream of indirect

marginal costs of applying an additional unit of synthetic compound today via their indirect negative

effect on soil microbes through their negative effect on stock of clean soils (the stock effect),
PjαbγK
µ+ρ .

The optimal choice of synthetic compound c(t) at any time t is when the PDV of the entire stream

of marginal net benefits of an additional unit of synthetic compound c(t) today is 0 (or as small a

non-negative number as possible).

Thus, when the stationary solution exists, the optimal synthetic compound use c(t) is constant at

the amount ĉj ≡ µ
(
C − K̂j

)
that exactly offsets how much the stock of chemicals in the soil decays

on its own at the stationary solution.

If (ρ+ µ) γccµ ̸= 0, K̂j is given by:
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K̂j =

(ρ+ µ)

(
γccµC + γc +

αc−P−1
j

αb

)
− γK

(ρ+ µ) γccµ
(35)

Note that our solution for K̂j may be negative or positive depending on model parameters. If

our solution for K̂j is negative then our non-negativity constraint on K(t) will bind. Importantly, we

note that under this formulation of the model it is possible for (A.29) to be positive even in the case

of special interest in which µ > 0.

We conduct comparative statics for K̂j in Appendix A.3.

The stationary solution K̂j is a function of prices Pj .
∂K̂j

∂Pj
is given by:

∂K̂j

∂Pj
=

1

αb︸︷︷︸
≥0

γcc︸︷︷︸
≤0

µ︸︷︷︸
≥0

P 2
j︸︷︷︸

>0

≤ 0 (36)

Thus, the stationary solution K̂j is a decreasing function of prices Pj .

Since the stationary solution K̂j is a decreasing function of prices Pj and Pcon < Porg, the

stationary solution for the organic stage 2, if it exists, is less than the stationary solution for the

conventional stage 1, if it exists.

Note that K(t) is constrained such that K(t) ∈ [0, C].

It is therefore possible that K̂j is not feasible because K̂j is not within the set of feasible K. In

other words, it is possible that K̂j is not feasible because either K̂j < 0 or K̂j > C).

Since our analysis using the stationary rate of return on capital Rj(K) makes the assumption of

the prototype economic control model that ∂G(K,I)
∂I < 0 (i.e., net investment has a strictly negative

effect on contemporaneous net gain). We cannot use the stationary rate of return on capital Rj(K)

and the comparison between the stationary rate of return on capital R(K) and ρ to describe the

optimal solution ∂G(K,I)
∂I < 0. As shown in Appendix A.1, ∂G(K,I)

∂I < 0 when K ≤ K̃j , where K̃j

is defined as the stock of clean soils at which ∂G(K,0)
∂I = 0. A farmer with K ≤ K̃j would invest in

the stock of clean soil, not disinvest, since there is no trade-off involved with net investment: net

investment not only increases future net gain, but also current net gain as well. Thus, for K ≤ K̃j ,

the farmer will invest in clean soil. Also as shown in Appendix A, K̂j ≥ K̃j . Thus, since for K ≤ K̃j ,

the farmer will invest in clean soil, this means that for K0j ≤ K̃j , if the stationary solution K̂j exists,

the farmer will continue to invest in clean soil until he reaches the stationary solution K̂j .

If either γcc = 0 (i.e., the negative effects of chemical input use c(t) on beneficial soil microbes b(t)

are linear rather than convex) or µ = 0 (i.e., synthetic compounds in the soil do not decay on their

own), then Rj(K) is a constant (that does not depend on K) and K̂j will not exist (nor will K̃j).

We discuss how prices Pj affect the optimal solution in Appendix A.2.
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4.3 Optimal Trajectories for Stage j When K̂j Exists

We now solve for the farmer’s optimal stage j trajectories.

In Appendix A.4, we start by solving for the unconstrained solution for each stage j by using

second-order Taylor series approximations of the net gain function G(K, I). Since the net gain

function G(K, I) is quadratic, these second-order Taylor series approximations and the solutions

derived using them are exact. In other words, the second-order Taylor series approximations of the

net gain function G(K, I) is an exact second-order Taylor series expansion of the net gain function

G(K, I).

In Appendix A.5, we then solve for the constrained optimal solution for each stage j by solving

for an exact solution via direct derivation.

There are five possible types of optimal trajectories that arise when K̂j exists, depending on the

parameters. In order from solutions that require the most synthetic compound use and the most

disinvestment in the stock of clean soil, to solutions that require the least synthetic compound use

and the most investment in the stock of clean soils, these five types of optimal trajectories are as

follows:

• Optimal Trajectories 1 [OT1]: Disinvest as fast as possible until K = 0 by always applying

c(t) = c

• Optimal Trajectories 2 [OT2]: Disinvest to K̂j < K0 by always applying ĉj at which PDV

of MNB equals 0

• Optimal Trajectories 3 [OT3]: Stay at initial clean soil stock K0 = K̂j by always applying

ĉj at which PDV of MNB equals 0

• Optimal Trajectories 4 [OT4]: Invest until K̂j > K0 by always applying ĉj at which PDV

of MNB equals 0

• Optimal Trajectories 5 [OT5]: Invest as fast as possible until K = C (the highest possible

value of clean soil stock) by never applying any synthetic compounds at all

Figure 3 presents the parameter spaces for each of the five types of optimal trajectories when K̂j

exists. Figure 4 plots examples of each of the five types of optimal trajectories that arise when K̂j

exists.

As seen in Figure 4, the more the optimal trajectory type requires synthetic compound use and

disinvestment in the stock of clean soil, the higher the initial per-period yield y(t). Over time,

however, the order of the optimal trajectory type by per-period yield reverses, and the more the

optimal trajectory type requires synthetic compound use and disinvestment in the stock of clean soil,

the lower the per-period yield y(t) over the long run. Thus, while using a lot of synthetic compounds

and disinvesting in the stock of clean soil may lead to higher per-period yields in the short run, doing

so eventually leads to lower per-period yields in the long run.
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Figure 3: Parameter Space for Optimal Trajectories When K̂j Exists
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(a) Clean soil stock K(t)
(b) Synthetic compound use c(t)

(c) Microbes b(t) (d) Yield y(t)

Figure 4: Optimal Trajectories When K̂j Exists

Note: We assume c = µC.
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4.3.1 Optimal Trajectories 1: Disinvest as fast as possible to K = 0

When K̂ exists and is negative (i.e., K̂j < 0), the lower-bound constraints on net investment I always

bind (for all t), which means that the upper bound constraint on synthetic compound use always

binds (i.e., c∗∗ > c). Thus, when K̂j < 0, the farmer’s optimal solution is to disinvest as fast as

possible until K = 0. The optimal synthetic compound use c(t) is to apply the maximum amount

possible c every period until we reach K = 0, at which point we stay at K = 0 (i.e., by applying

c(t) = µC each period).

K̂j < 0 occurs when the PDV of the entire stream of marginal net benefits of an additional unit

of synthetic compound today is positive even when the farmer uses the maximum permissible dose of

a synthetic compound:

Pjαc + Pjαbγcc · c+ Pjαbγc − Pjαb
1

(ρ+ µ)
· γK − 1 ≥ 0 (37)

When K̂j exists, our lower corner solutions for K(t), I(t), c(t), a C(t), b(t), and y(t) are as follows:

K(t) = K(0) · e−µ·t ∀ t (38)

I(t) = −µK(t)∀ t (39)

c(t) = c = µC ∀ t (40)

C(t) = C −K(0) · e−µ·t ∀ t (41)

Given g̃(C(t), c(t)) = γcc+
1
2γccc

2 + γK
(
C − C(t)

)
+Ab:

b(t) = max{γcc+
1

2
γccc

2 + γK ·
(
K(0) · e−µ·t)+Ab, 0} ∀ t (42)

Given f(c(t), b(t)) = αcc(t) + αbb(t) +Ay:

y(t) = αc · c+ αb · b(t)LC +Ay ∀ t (43)

4.3.2 Optimal Trajectories 2: Disinvest until K̂j

This case occurs when K̂j ∈ [0, C] and K0j > K̂j .

In this case the optimal solution is to disinvest until K̂j .

The optimal synthetic compound use c(t) is constant at the amount ĉj that exactly offsets how

much the stock of chemicals in the soil decays on its own at the stationary solution.
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c∗j (t) = ĉj = µ
(
C − K̂j

)
(44)

At ĉj , PDV of MNB = 0.

This case occurs when the PDV of the entire stream of marginal net benefits of an additional unit

of synthetic compound today is:

• ≥ 0 when the clean soil stock is less than the initial clean soil stock

• ≤ 0 when clean soil stock is less than 0

In this case the optimal solution approaches K̂j at a moderate speed. The optimal synthetic

compound use c(t) is constant at the amount that exactly offsets how much the stock of chemicals in

the soil decays on its own at the stationary solution.

c∗j (t) = µ
(
C − K̂j

)
(45)

I∗j (t) = µ
(
K̂j −K(t)

)
< 0 (46)

K∗
j (t) = K̂j +

(
K0j − K̂j

)
· e−µ·t (47)

C∗
j (t) = C − K̂j −

(
K0j − K̂j

)
· e−µ·t (48)

b∗j (t) =

(
γcµ

(
C − K̂j

)
+

1

2
γcc

(
µ
(
C − K̂j

))2
+ γKK̂j +Ab + γK

(
K0j − K̂j

)
· e−µ·t

)
(49)

y∗j (t) = αb

(
γcµ

(
C − K̂j

)
+

1

2
γcc

(
µ
(
C − K̂j

))2
+ γKK̂j +Ab

)
(50)

+ αcµ
(
C − K̂j

)
+Ay + αbγK

(
K0j − K̂j

)
· e−µ·t (51)

4.3.3 Optimal Trajectories 3: Stay at initial clean soil stock and do not invest or

disinvest

If K0j = K̂j , we always set I(t) = 0 (for all t) and stay at the initial clean soil stock.

In this case it is optimal to stay at initial clean soil stock and not to invest or disinvest. In other

words, in each period our chemical input use c(t) should exactly offset the stock of chemicals in the

soil decays on its own so that the stock of chemicals in the soil stays constant, and therefore the clean

soil stock stays constant at its initial value.
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Thus, the optimal synthetic compound use c(t) is constant at the amount that exactly offsets how

much the initial stock of chemicals in the soil decays on its own.

Thus, for OT3, the optimal synthetic compound use c(t) is constant at the amount that exactly

offsets how much the initial stock of chemicals in the soil decays on its own.

K(t) = K0j ∀t (52)

I(t) = 0∀t (53)

c(t) = µC(0)∀t (54)

C(t) = C −K0j = C(0)∀t (55)

b(t) =

(
γcµ

(
C −K0j

)
+

1

2
γccµ

2
(
C −K0j

)2
+ γKK0j +Ab

)
∀t (56)

f̃(t) = αb

(
γcµ

(
C −K0j

)
+

1

2
γccµ

2
(
C −K0j

)2
+ γKK0j +Ab

)
+ αcµ

(
C −K0j

)
+Ay ∀t (57)

4.3.4 Optimal Trajectories 4: Invest until K̂j

This case occurs when K̂j ∈ [0, C] and K0j < K̂j .

In this case the optimal solution is to invest until K̂j .

The optimal synthetic compound use c(t) is constant at the amount ĉj that exactly offsets how

much the stock of chemicals in the soil decays on its own at the stationary solution.

c∗j (t) = ĉj = µ
(
C − K̂j

)
(58)

At ĉj , PDV of MNB = 0.

This case occurs when PDV of the entire stream of marginal net benefits of an additional unit of

synthetic compound today is:

• ≥ 0 when clean soil stock K(t) is between the initial clean soil stock K0j and the maximum

level of clean soil stock C, at which point there are no convex costs of synthetic compounds on

soil microbes

• ≤ 0 when clean soil stock K(t) is less than the initial clean soil stock K0j

K0j < K̂j ≤ C (59)
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In this case the optimal solution approaches K̂j at a moderate speed. The optimal synthetic

compound use c(t) is constant at the amount that exactly offsets how much the stock of chemicals in

the soil decays on its own at the stationary solution.

c∗j (t) = µ
(
C − K̂j

)
(60)

I∗j (t) = µ
(
K̂j −K(t)

)
> 0 (61)

K∗
j (t) = K̂j +

(
K0j − K̂j

)
· e−µ·t (62)

C∗
j (t) = C − K̂j −

(
K0j − K̂j

)
· e−µ·t (63)

b∗j (t) =

(
γcµ

(
C − K̂j

)
+

1

2
γcc

(
µ
(
C − K̂j

))2
+ γKK̂j +Ab + γK

(
K0j − K̂j

)
· e−µ·t

)
(64)

y∗j (t) = αb

(
γcµ

(
C − K̂j

)
+

1

2
γcc

(
µ
(
C − K̂j

))2
+ γKK̂j +Ab

)
(65)

+ αcµ
(
C − K̂j

)
+Ay + αbγK

(
K0j − K̂j

)
· e−µ·t (66)

4.3.5 Optimal Trajectories 5: Invest as fast as possible until K = C

If K̂j > C, upper-bound constraints on net investment I always bind (for all t). In this case the

optimal solution is to continue to invest as fast as possible until K = C. It is optimal not to use any

synthetic compounds c(t) at all.

If K̂j > C, the PDV of the entire stream of marginal net benefits of an additional unit of synthetic

compound today is negative even when there are no convex costs of synthetic compounds on soil

microbes:

⇒ Pjαc < −Pjαbγc +
PjαbγK
µ+ ρ

− 1 (67)

When K̂j > C, the optimal solution is to continue to invest as fast as possible until K = C. It is

optimal not to use any synthetic compounds c(t) at all.

c∗j (t) = 0 (68)
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K∗(t)j = K(t)UC, j = C −
(
C −K0j

)
e−µ·t (69)

I∗(t)j = I(t)UC, j = µ ·
(
C −K(t)UC, j

)
(70)

C∗(t)j =
(
C −K0j

)
e−µ·t (71)

b∗(t)j =
(
γK
(
C −

(
C −K0j

)
e−µ·t)+Ab

)
(72)

y∗(t)j = αb

(
γK
(
C −

(
C −K0j

)
e−µ·t)+Ab

)
+Ay (73)

4.4 Optimal Trajectories for Stage j When R(K) is Constant Because γcc = 0

If γcc = 0 (i.e., the negative effects of chemical input use c(t) on beneficial soil microbes b(t) are linear

rather than convex) then Rj(K) is a constant (that does not depend on K).

There are three possible types of optimal trajectories that arise when R(K) is constant because

γcc = 0, depending on the parameters. In order from solutions that require the most synthetic

compound use and the most disinvestment in the stock of clean soil, to solutions that require the

least syntheic compound use and the most investment in the stock of clean soils, these three types of

optimal trajectories are as follows:

• Optimal Trajectories 1 [OT1]: Disinvest as fast as possible until K = 0 by always applying

c(t) = c

• Optimal Trajectories 3’ [OT3’]: Stay at initial clean soil stock K0 by always applying the

amount of synthetic compounds that exactly offsets how much the initial stock of chemicals

decays on its own

• Optimal Trajectories 5 [OT5]: Invest as fast as possible until K = C (the highest possible

value of clean soil stock) by never applying any synthetic compounds at all

Figure 5 presents the parameter spaces for each of the three types of optimal trajectories when

R(K) is constant because γcc = 0. Figure 6 plots examples of each of the 3 types of optimal trajectories

that arise when R(K) is constant because γcc = 0.

As seen in Figure 6, the more the optimal trajectory type requires synthetic compound use and

disinvestment in the stock of clean soil, the higher the initial per-period yield y(t). Over time,

however, the order of the optimal trajectory type by per-period yield reverses, and the more the

optimal trajectory type requires synthetic compound use and disinvestment in the stock of clean soil,
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the lower the per-period yield y(t) over the long run. Thus, while using a lot of synthetic compounds

and disinvesting in the stock of clean soil may lead to higher per-period yields in the short run, doing

so eventually leads to lower per-period yields in the long run.
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Figure 5: Parameter Space for Optimal Trajectories When R(K) is Constant Because γcc = 0
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(a) Clean soil stock K(t)
(b) Synthetic compound use c(t)

(c) Microbes b(t) (d) Yield y(t)

Figure 6: Optimal Trajectories When R(K) is constant because γcc = 0

Note: We assume µ ̸= 0 and c = µC.
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4.4.1 Optimal Trajectories 1: Disinvest as fast as possible to K = 0

If γcc = 0 (i.e., the negative effects of chemical input use c(t) on beneficial soil microbes b(t) are linear

rather than convex) so that Rj(K) is a constant (that does not depend on K), then if prices are high

enough to satisfy the condition that net investment has a negative effect on contemporaneous net

gain (so that Rj(K) is useful for analyzing net investment):

P−1
j < αbγc + αc (74)

and the following condition for Rj(K) < ρ holds:

P−1
j <

αb

ρ+ µ
((ρ+ µ)γc − γK) (75)

then the farmer will always disinvest until he reaches K = 0 since Rj(K) < ρ.

When we have γcc = 0, our gain function is linear in the control variable I:

G(K, I) = Pj ·

(
αb

(
γc
(
µ
(
C −K

)
− I
)
+ γKK +Ab

)
(76)

+ αc

(
µ
(
C −K

)
− I
)
+Ay

)
−
(
µ
(
C −K

)
− I
)
,

which means that the farmer will follow a most rapid approach (MRA) policy. Thus, since Rj(K) < ρ,

the farmer will always disinvest according to the most rapid approach (MRA) policy until he reaches

K = 0.

If Rj(K) is constant because γcc = 0 (i.e., the negative effects of chemical input use c(t) on

beneficial soil microbes b(t) are linear rather than convex), and if R(K) is less than ρ, then lower-

bound constraints on net investment I always bind (for all t), which means the upper bound constraint

on synthetic compound use always binds (i.e., c∗∗ > c).

Rj(K) < ρ occurs when the PDV of the entire stream of marginal net benefits of an additional

unit of synthetic compound today is positive.

When γcc = 0, Rj(K) < ρ implies:

Pjαc > −Pjαbγc +
PjαbγK
µ+ ρ

+ 1 (77)

When Rj(K) is constant because γcc = 0 and is less than ρ, the farmer’s optimal solution is to

disinvest as fast as possible until K = 0. The optimal synthetic compound use c(t) is to always apply

the maximum amount possible c.

The optimal trajectories are therefore:
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K(t) = K(0) · e−µ·t (78)

I(t) = −µ ·K(0) · e−µ·t (79)

c(t) = µC︸︷︷︸
c

∀t (80)

C(t) = C −K(0) · e−µ·t (81)

b(t) = γc µC︸︷︷︸
=c

+
1

2
γcc

 µC︸︷︷︸
=c

2

+ γKK0j · e−µ·t +Ab

y(t) = αb

γc µC︸︷︷︸
=c

+
1

2
γcc

 µC︸︷︷︸
=c

2

+Ab

+ αc µC︸︷︷︸
=c

+Ay + αbγKK0j · e−µ·t

4.4.2 Optimal Trajectories 3’: Stay at initial clean soil stock and do not invest or

disinvest

We always set I(t) = 0 (for all t) and stay at the initial clean soil stock when Rj(K) is constant and

equal to ρ.

In this case it is optimal to stay at initial clean soil stock and not to invest or disinvest. In other

words, in each period our chemical input use c(t) should exactly offset the stock of chemicals in the

soil decays on its own so that the stock of chemicals in the soil stays constant, and therefore the clean

soil stock stays constant at its initial value.

Thus, the optimal synthetic compound use c(t) is constant at the amount that exactly offsets how

much the initial stock of chemicals in the soil decays on its own.

Thus, for OT3’, the optimal synthetic compound use c(t) is constant at the amount that exactly

offsets how much the initial stock of chemicals in the soil decays on its own.

K(t) = K0j ∀t (82)

I(t) = 0∀t (83)
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c(t) = µC(0)∀t (84)

C(t) = C −K0j = C(0)∀t (85)

b(t) =

(
γcµ

(
C −K0j

)
+

1

2
γccµ

2
(
C −K0j

)2
+ γKK0j +Ab

)
∀t (86)

f̃(t) = αb

(
γcµ

(
C −K0j

)
+

1

2
γccµ

2
(
C −K0j

)2
+ γKK0j +Ab

)
+ αcµ

(
C −K0j

)
+Ay ∀t (87)

4.4.3 Optimal Trajectories 5: Invest as fast as possible until K = C

There are two main cases in which the farmer will wish to continually invest when Rj(K) is a constant

(that does not depend on K).

First, if γcc = 0 (i.e., the negative effects of chemical input use c(t) on beneficial soil microbes

b(t) are linear rather than convex) so that Rj(K) is a constant (that does not depend on K), then

if prices are low enough to satisfy the following condition for net investment to have a non-negative

effect on contemporaneous net gain (so that Rj(K) is not useful for analyzing net investment):

P−1
j ≥ αbγc + αc, (88)

then the farmer will wish to continually invest in clean soil stock.

Second, if γcc = 0 (i.e., the negative effects of chemical input use c(t) on beneficial soil microbes

b(t) are linear rather than convex) so that Rj(K) is a constant (that does not depend on K), then if

prices are low enough that Rj(K) > ρ:

P−1
j >

αb

ρ+ µ
((ρ+ µ)γc − γK) (89)

but also high enough that net investment has a negative effect on contemporaneous net gain (so that

Rj(K) is useful for analyzing net investment):

P−1
j < αbγc + αc, (90)

then the farmer will wish to continually invest in clean soil stock.

Moreover, when we have γcc = 0, our gain function is linear in the control variable I:
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G(K, I) = Pj ·

(
αb

(
γc
(
µ
(
C −K

)
− I
)
+ γKK +Ab

)
(91)

+ αc

(
µ
(
C −K

)
− I
)
+Ay

)
−
(
µ
(
C −K

)
− I
)

which means that the farmer will follow a most rapid approach (MRA) policy. Thus, the farmer will

always invest according to the most rapid approach (MRA) policy until he reaches K = C.

When Rj(K) is constant because γcc = 0 (i.e., no convex costs of synthetic compounds on soil

microbe production), and R(K) is greater than ρ, then upper-bound constraints on net investment I

always bind (for all t).

In this case, the PDV of the entire stream of marginal net benefits of an additional unit of

synthetic compound today is negative even when there are no convex costs of synthetic compounds

on soil microbes

When γcc = 0, Rj(K) > ρ implies:

Pjαc < −Pjαbγc +
PjαbγK
µ+ ρ

+ 1 (92)

When γcc = 0 and µ ̸= 0, such that Rj(K) is constant but M(K) ̸= 0∀K, the optimal solution is

to continue to invest as fast as possible until K = C. It is optimal not to use any synthetic compounds

c(t) at all.

c∗j (t) = 0 (93)

K∗(t)j = K(t)UC, j = C −
(
C −K0j

)
e−µ·t (94)

I∗(t)j = I(t)UC, j = µ ·
(
C −K(t)UC, j

)
(95)

C∗(t)j =
(
C −K0j

)
e−µ·t (96)

b∗(t)j =
(
γK
(
C −

(
C −K0j

)
e−µ·t)+Ab

)
(97)

y∗(t)j = αb

(
γK
(
C −

(
C −K0j

)
e−µ·t)+Ab

)
+Ay (98)
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4.5 Optimal Trajectories for Stage j When R(K) is Constant Because µ = 0

If µ = 0 (i.e., synthetic compounds in the soil do not decay on their own) then Rj(K) is a constant

(that does not depend on K).

There are three possible types of optimal trajectories that arise when R(K) is constant because µ =

0, depending on the parameters. In order from solutions that require the most synthetic compound

use and the most disinvestment in the stock of clean soil, to solutions that require the least syntheic

compound use and the least disinvestment in the stock of clean soils, these three types of optimal

trajectories are as follows:

• Optimal Trajectories 1’ [OT1’]: Disinvest as fast as possible by applying c(t) = c until

K = 0 is reached

• Optimal Trajectories 1” [OT1”]: Disinvest by applying c∗∗j at which PDV of MNB equals

0 until K = 0 is reached

• Optimal Trajectories 3” [OT3”]: Stay at initial clean soil stock K0 by never applying any

synthetic compounds at all

Figure 7 presents the parameter spaces for each of the three types of optimal trajectories when

R(K) is constant because µ = 0. Figure 8 plots examples of each of the three types of optimal

trajectories that arise when R(K) is constant because µ = 0.

As seen in Figure 8, the more the optimal trajectory type requires synthetic compound use and

disinvestment in the stock of clean soil, the higher the initial per-period yield y(t). Over time,

however, the order of the optimal trajectory type by per-period yield reverses, and the more the

optimal trajectory type requires synthetic compound use and disinvestment in the stock of clean soil,

the lower the per-period yield y(t) over the long run. Thus, while using a lot of synthetic compounds

and disinvesting in the stock of clean soil may lead to higher per-period yields in the short run, doing

so eventually leads to lower per-period yields in the long run.
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Figure 7: Parameter Space for Optimal Trajectories When R(K) is Constant Because µ = 0
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(a) Clean soil stock K(t)
(b) Synthetic compound use c(t)

(c) Microbes b(t) (d) Yield y(t)

Figure 8: Optimal Trajectories When R(K) is constant because µ = 0
Note: We assume γcc ̸= 0.
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4.5.1 Optimal Trajectories 1’: Disinvest as fast as possible to K = 0

If µ = 0 (i.e., synthetic compounds in the soil do not decay on their own) so that Rj(K) is a

constant (that does not depend on K), then if prices are high enough to satisfy the condition that net

investment has a negative effect on contemporaneous net gain (so that Rj(K) is useful for analyzing

net investment):

P−1
j < αbγc + αc (99)

and the following condition for Rj(K) < ρ holds:

P−1
j <

αb

ρ+ µ
((ρ+ µ)γc − γK) (100)

then the farmer will always disinvest until he reaches K = 0 since Rj(K) < ρ.

The lower bound to I binds when the optimal unconstrained synthetic compound level c∗∗j exceeds

the upper bound for synthetic compound use (i.e., if c∗∗j > c). If the optimal unconstrained synthetic

compound level c∗∗j exceeds the upper bound for synthetic compound use (i.e., if c∗∗j > c), this means

that the PDV of the entire stream of MNB of an additional unit of synthetic compound c(t) today is

still greater than 0 at c = c.

The condition c∗∗j > c implies the following when µ = 0:

−
Pj ·

(
αc + αb

(
γc − 1

ρ · γK
))

− 1

Pjαbγcc
> c (101)

⇒= Pj · αc > −Pjαbγccc+
PjαbγK
µ+ ρ

+ Pjαb (−γc) + 1 (102)

In this case our optimal trajectories are as follows:

K(t) =

K(0)− c · t t < T

0 t ≥ T
(103)

I(t) =

−c t < T

0 t ≥ T
(104)

c(t) =

c t < T

0 t ≥ T
(105)

C(t) =

C −K(0) + c · t t < T

C t ≥ T
(106)
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b(t) =

max{γcc+ 1
2γccc

2 + γK (K(0)− c · t) +Ab, 0} t < T

Ab t ≥ T
(107)

y(t) =

αcc+ αbb(t) +Ay t < T

αbb(t) +Ay t ≥ T
(108)

T =
K(0)

c
(109)

4.5.2 Optimal Trajectories 1”: Disinvest to K = 0

If µ = 0 (i.e., synthetic compounds in the soil do not decay on their own) so that Rj(K) is a

constant (that does not depend on K), then if prices are high enough to satisfy the condition that net

investment has a negative effect on contemporaneous net gain (so that Rj(K) is useful for analyzing

net investment):

P−1
j < αbγc + αc (110)

and the following condition for Rj(K) < ρ holds:

P−1
j <

αb

ρ+ µ
((ρ+ µ)γc − γK) (111)

then the farmer will always disinvest until he reaches K = 0 since Rj(K) < ρ.

When γcc ̸= 0 but µ = 0 the gain function is non-linear in I, and therefore the optimal policy

will not be MRA. If the lower corner solution for I does not bind (because c∗∗j ≤ c), we will have an

interior solution.

The condition c∗∗j ≤ c implies the following when µ = 0:

−
Pj ·

(
αc + αb

(
γc − 1

ρ · γK
))

− 1

Pjαbγcc
≤ c (112)

⇒ Pj · αc ≤ −Pjαbγccc+
PjαbγK
µ+ ρ

+ Pjαb (−γc) + 1 (113)

Thus, for OT1”, the farmer will disinvest by applying the optimal unconstrained synthetic compound

level c∗∗j at which PDV of MNB equals 0 until K = 0. The optimal trajectories are as follows:

K(t) =


γK

(−γcc)

(
ρ−1 −Rj(K)−1

)
· t+K0j , ∀t ≤ T

0, ∀t > T
(114)
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I(t) =


γK

(−γcc)

(
ρ−1 −Rj(K)−1

)
, ∀t ≤ T

0, ∀t > T
(115)

c(t) =


γK
γcc

·
(
ρ−1 −Rj(K)−1

)
, ∀t ≤ T

0, ∀ > T
(116)

C(t) =

C0j +
γK
γcc

(
ρ−1 −Rj(K)−1

)
· t ∀t ≤ T (

C ∀t > T
(117)

b(t) =



γK ·
(((

γc−γK ·t
γcc

)
− 1

2 · (γcc)−1 · γK ·
(
ρ−1 −Rj(K)−1

))
·
(
ρ−1 −Rj(K)−1

)
+K0j) +Ab, ∀t ≤ T

Ab, ∀t > T

(118)

y(t) =



αbγK

(
1
γcc

·
(
αc
αb

+ γc − γK ·
(
t+ 1

2 ·
(
ρ−1 −Rj(K)−1

)))
·
(
ρ−1 −Rj(K)−1

)
+K0j +

Ab+
Ay
αb

γK

)
, ∀t ≤ T

αbAb +Ay, ∀t > T

(119)

T =
K0j

γK
(−γcc)

· (Rj(K)−1 − ρ−1)
≥ 0 (120)

Rj(K) =
γK

γc +
αc−P−1

j

αb

. (121)

4.5.3 Optimal Trajectories 3”: Stay at initial clean soil stock and do not invest or

disinvest

We always set I(t) = 0 (for all t) and stay at the initial clean soil stock when µ = 0 and Rj(K) is

constant and greater than or equal to ρ.

37



If Rj(K) is constant and equal to ρ, it is optimal to stay at initial clean soil stock and not to

invest or disinvest.

When µ = 0, the condition Rj(K) ≥ ρ implies the following:

Pjαc ≤
PjαbγK
µ+ ρ

+ Pjαb (−γc) + 1 (122)

When µ = 0 the upper bound constraint on investment is equal to zero, and will always bind

when Rj(K) is greater than ρ. In this case, the farmer is constrained by the upper bound on I to

stay at their initial capital stock K0j indefinitely.

Thus, for OT3”, the optimal synthetic compound use c(t) is constant at the amount that exactly

offsets how much the initial stock of chemicals in the soil decays on its own. Since the stock of

chemicals in the soil does not decay on its own when µ = 0, this means the optimal synthetic

compound use c(t) is constant at zero.

The optimal trajectories are therefore the following:

K(t) = K0j ∀t (123)

I(t) = 0∀t (124)

c(t) = 0∀t (125)

C(t) = C −K0j = C(0)∀t (126)

b(t) = γKK0j +Ab ∀t. (127)

y(t) = αb (γKK0j +Ab) +Ay ∀t. (128)
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5 Possible Cases for Combinations of Stage 1 and Stage 2

Given that Pcon < Porg, that K̃j ≤ K̂j , and that both K̂j and K̃j are decreasing in prices Pj , we have

the following possible types of cases:

• Case A: For both Stage 1 and Stage 2, stationary solutions exist and K̂j ∈ [0, C]. In

this case our expression for K̂j tells us that K̂con > K̂org.

– This could happen when both conventional and organic crop prices are moderate

enough (not too high and not too low). Our conclusion that Stage 1 SS > Stage

2 SS comes from the assumption that P con < P org

– Sub-cases of Case A include what we will call Cases A1, A2, and A3. These subcases are

described below:

∗ Case A1: Both Conventional Farmer Stationary Solution K̂con and Organic Farmer

Stationary Solution K̂org are above Korg, and K̂j ∈ [0, C] for j ∈ {con, org}
∗ Case A2: Conventional Farmer Stationary Solution K̂con is below Korg and Organic

Farmer Stationary Solution K̂org exists (so is below K̂con and therefore below Korg as

well), and K̂j ∈ [0, C] for j ∈ {con, org}
∗ Case A3: Conventional Farmer Stationary Solution K̂con is above Korg, but Organic

Farmer Stationary Solution K̂org is below Korg, and K̂j ∈ [0, C] for j ∈ {con, org}

• Case B: A non-negative Stage 1 stationary solution exists but Stage 2 organic

farmer disinvests to K = 0)

– This could happen when conventional prices are moderate (not too low and

not too high) and organic prices are too high

– Sub-cases of Case B include what we will call Cases B4-B5. These subcases are described

below:

∗ Case B4: Conventional Farmer Stationary Solution K̂con is below Korg and Organic

Farmer disinvests to K = 0 because K̂org < 0

∗ Case B5: Conventional Farmer Stationary Solution K̂con is above Korg and Organic

Farmer disinvests because K̂org < 0

• Case C: Both the Stage 1 conventional farmer and the Stage 2 organic farmer

disinvest to K = 0

– Assuming that conventional prices are always less than organic prices, this

could happen under very high conventional and organic prices.
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– Sub-cases of Case C include what we will call Cases C6-C7. These subcases are described

below:

∗ Case C6: Both the Stage 1 conventional farmer and the Stage 2 organic farmer

disinvest to K = 0 because K̂con < 0 (and therefore K̂org < 0 as well)

∗ Case C7: Both the Stage 1 conventional farmer and the Stage 2 organic farmer

disinvest to K = 0 because Rj(K) is constant and less than ρ

• Case D: Both the Stage 1 conventional farmer and the Stage 2 organic farmer invest

until they reach K = C

– This could happen if we had low conventional prices and low organic prices

– αc is relatively large compared to (−γcc), (−γc), and µ, but also γK is sufficiently large

relatively to αc, and αb is not too small relative to αc.

– Sub-cases of Case D include what we will call Cases D8-D9. These subcases are described

below:

∗ Case D8: Both Stage 1 conventional farmer and the Stage 2 organic farmer invest

until they reach K = C because K̂j > C

∗ Case D9: Both Stage 1 conventional farmer and the Stage 2 organic farmer invest

until they reach K = C because Rj(K) is constant and greater than ρ

• Case E: Stage 1 conventional farmer invests until he reaches K = C; a Stage 2

stationary solution exists and K̂org ∈ [0, C]

– This could happen if we had low conventional prices and moderate organic

prices

– Sub-cases of Case E include what we will call Cases E10-E11. These subcases are described

below:

∗ Case E10: Stage 1 conventional farmer invests until he reaches K = C because

K̂con > C; and Organic Farmer Stationary Solution K̂org is above Korg and K̂org ∈
[0, C]

∗ Case E11: Stage 1 conventional farmer invests until he reaches K = C because

K̂con > C; and Organic Farmer Stationary Solution K̂org is below Korg and K̂org ∈
[0, C]
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• Case F: Rj(K) is constant and Rorg(K) ≤ ρ ≤ Rcon(K)

– Rj(K) is constant if either γcc = 0 (i.e., the negative effects of chemical input

use c(t) on beneficial soil microbes b(t) are linear rather than convex) or µ = 0

(i.e., synthetic compounds in the soil do not decay on their own)

– In this case, as derived above,
∂Rj(K)
∂Pj

≤ 0.

– Thus, if either γcc = 0 (i.e., the negative effects of chemical input use c(t) on beneficial

soil microbes b(t) are linear rather than convex) or µ = 0 (i.e., synthetic compounds in the

soil do not decay on their own) so that Rj(K) is a constant (that does not depend on K),

then the constant Rj(K) is lower when prices are higher.

– Sub-cases of Case F include what we will call Cases F12-F14. These subcases are described

below:

∗ Case F12: Rj(K) is constant and Rorg(K) < ρ < Rcon(K)

∗ Case F13: Rj(K) is constant and Rorg(K) = ρ < Rcon(K)

∗ Case F14: Rj(K) is constant and Rorg(K) < ρ = Rcon(K)
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5.1 Continuous vs. Discrete Transitions

In summary, we have the following cases:

• Case A1: Both Conventional Farmer Stationary Solution K̂con and Organic Farmer Stationary

Solution K̂org are above Korg, and K̂j ∈ [0, C] for j ∈ {con, org}

• Case A2: Conventional Farmer Stationary Solution K̂con is below Korg and Organic Farmer

Stationary Solution K̂org exists (so is below K̂con and therefore below Korg as well), and K̂j ∈
[0, C] for j ∈ {con, org}

• Case A3: Conventional Farmer Stationary Solution K̂con is above Korg, but Organic Farmer

Stationary Solution K̂org is below Korg, and K̂j ∈ [0, C] for j ∈ {con, org}

• Case B4: Conventional Farmer Stationary Solution K̂con is below Korg and Organic Farmer

disinvests to K = 0 because K̂org < 0

• Case B5: Conventional Farmer Stationary Solution K̂con is above Korg and Organic Farmer

disinvests because K̂org < 0

• Case C6: Both the Stage 1 conventional farmer and the Stage 2 organic farmer disinvest to

K = 0 because K̂con < 0 (and therefore K̂org < 0 as well)

• Case C7: Both the Stage 1 conventional farmer and the Stage 2 organic farmer disinvest to

K = 0 because Rj(K) is constant and less than ρ

• Case D8: Both Stage 1 conventional farmer and the Stage 2 organic farmer invest until they

reach K = C because K̂j > C

• Case D9: Both Stage 1 conventional farmer and the Stage 2 organic farmer invest until they

reach K = C because Rj(K) is constant and greater than ρ

• Case E10: Stage 1 conventional farmer invests until he reaches K = C because K̂con > C; and

Organic Farmer Stationary Solution K̂org is above Korg and K̂org ∈ [0, C]

• Case E11: Stage 1 conventional farmer invests until he reaches K = C because K̂con > C; and

Organic Farmer Stationary Solution K̂org is below Korg and K̂org ∈ [0, C]

• Case F12: Rj(K) is constant and Rorg(K) < ρ < Rcon(K)

• Case F13: Rj(K) is constant and Rorg(K) = ρ < Rcon(K)

• Case F14: Rj(K) is constant and Rorg(K) < ρ = Rcon(K)
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6 Accidental Organic Transitions

The transition from conventional to organic management is ‘accidental’ and continuous even in the

absence of an organic price premium for either:

1. OT5: Invest as fast as possible until K = C (the highest possible value of clean soil stock) by

never applying any synthetic compounds at all

2. OT4 if K̂con ≥Korg: Invest until K̂con by always applying ĉj at which PDV of MNB equals 0

since in these cases the optimal solution for a conventional farmer is to invest in the stock of clean

soils until K(t) exceeds Korg.

This will happen in agricultural systems where soil microbes are sufficiently important for determining

crop yields.

If K̂con ∈ [Korg, C], then we have Optimal Trajectories 4: Approach K̂con at moderate speed, then

the time Torg at which a fully informed conventional farmer makes a continuous transition to organic

farming is given by:

Torg = ln

(
K0,con − K̂con

Korg − K̂con

) 1
µ

(129)

If K̂con > C, or Rcon(K) is constant and greater than ρ, then we have Optimal Trajectories 5:

Invest as fast as possible until K = C, then the time Torg at which a fully informed conventional

farmer makes a continuous transition to organic farming is given by:

Torg = ln

(
C −K0,con

C −Korg

) 1
µ

(130)

The transition from conventional stage 1 to organic stage 2 is continuous when the conventional

farmer stationary solution K̂con is either above Korg or above C, since then a conventional farmer will

tend to invest in the stock of clean soils until he reaches the organic threshold. Thus, of the above

14 cases, the transition from conventional stage 1 to organic stage 2 is continuous for Case A1, Case

A3, Case B5, Case D8, Case D9, Case E10, Case E11, Case F12, and Case F13.
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7 Premium-Induced Organic Transitions

There is no ‘accidental’ transition from conventional to organic for:

1. OT1: Disinvest as fast as possible until K = 0 by always applying c(t) = c

2. OT2: Disinvest to K̂j < K0 by always applying ĉj at which PDV of MNB equals 0

3. OT3: Stay at initial clean soil stock K0 = K̂j by always applying ĉj at which PDV of MNB

equals 0

4. OT4 if K̂con ¡ Korg: Invest until K̂con by always applying ĉj at which PDV of MNB equals 0

Accidental, continuous transitions cannot occur for OT2 because if K̂con is above Korg, then since

initial K is above K̂con, which is above Korg, this means that the ’conventional’ farmer already starts

out organic.

There is no accidental, continuous transition from conventional stage 1 to organic stage 2 when

the conventional farmer stationary solution K̂con is below Korg, since then a conventional farmer will

tend towards the conventional farmer stationary solution K̂con, and therefore stay below Korg rather

than become organic.

Similarly, there is no accidental, continuous transition from conventional stage 1 to organic stage

2 when Rcon(K) is constant and less than ρ, since then the conventional farmer will continually

disinvest until K = 0, and therefore stay below Korg rather than become organic.

Nevertheless, when K̂con < Korg or when Rcon(K) is constant and always less than ρ, the organic

price premium may still cause some farmers to ”jump” to the organic threshold.

If there is no ‘accidental’ transition, an organic price premium may still induce some farmers

to switch to organic management. Given Porg > Pcon, it may still be possible for fully informed

conventional farmer to prefer organic farming, even when K̂j < Korg or when Rcon(K) is constant

and always less than ρ, and make a ”jump” transition to the organic certification threshold. For this

to occur we must have:

∆(ϵ) ≡ Vorg(Korg)− Vcon(K0,con) > 0 (131)

where K0,con = Korg − ϵ for some ϵ > 0.

We denote our full set of model parameters Ω(X).

We find the conditions on Pcon, Porg, Korg, Ω(X), and ϵ that satisfy Equation (131).

We solve for the values of the organic price premium
Porg−Pcon

Pcon
that satisfy condition (131) for a

conventional farmer to want to adopt organic. Similarly, we solve for the values of ϵ, which measures

how close ϵ the conventional farmer is to satisfying organic requirementKorg at t = 0, satisfy condition

(131) for a conventional farmer to want to adopt organic.
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Because our optimal trajectories change form depending on where we are in the parameter space,

Equation (131) also changes form depending on parameter space. Thus, the conditions on the organic

price premium
Porg−Pcon

Pcon
defining {Porg−Pcon

Pcon
) : ∆(ϵ) > 0} and also on ϵ defining {K0,con = Korg − ϵ :

∆(ϵ) > 0} do not have a general form. As a result, we must find separate conditions from Equation

(131) for each part of parameter space.

7.1 Discrete Analysis for OT1 (Case C6, Case B4; Case C7 when γcc = 0)

Discrete Analysis for Case C6: Both the Stage 1 conventional farmer and the Stage 2 organic farmer

disinvest to K = 0 because K̂con < 0 (and therefore K̂org < 0 as well).

Recall that in Case C6 the optimal solution for each stage j ∈ {con, org} is to disinvest as fast as

possible until K = 0.

A conventional farmer facing C6 conditions will adopt OT1 solutions.

Case B4: Conventional Farmer Stationary Solution K̂con is below Korg and Organic Farmer

disinvests to K = 0 because K̂org < 0.

Case B4 ends up being exactly the same as Case C6 because these two cases only differ in K̂org,

but not in their stage 2 trajectories (in both cases we will have K(t)org = Korg and I(t)org = 0 for

all t).

A conventional farmer facing B4 or C6 conditions will adopt OT1 solutions.

Case C7: Both the Stage 1 conventional farmer and the Stage 2 organic farmer disinvest to K = 0

because Rj(K) is constant and less than ρ

Similarly, Case C7 when γcc = 0 ends up being the same as Case C6 because the conventional

farmer adopts OT1 solutions while for the stage 2 trajectories we have K(t)org = Korg∀t and I(t)org =

0∀t, except that the interpretation for ϵ∗ based on K̂con in Figure B.1 no longer applies, since K̂con

does not exist.

Similarly, Case C7 when γcc = 0 ends up being exactly the same as Case C6 because the

conventional farmer adopts OT1 solutions, while for the stage 2 trajectories we have K(t)org = Korg

and I(t)org = 0 for all t.

A conventional farmer facing B4 or C6 conditions, or C7 conditions when γcc = 0, will adopt OT1

solutions.

In this case, a farmer who starts off organic will disinvest until they reach Korg. They then choose

to remain organic if and only if

Vorg(Korg) > Vcon(Korg − ϵ). (132)

Vorg(Korg) is the present discounted value of the entire stream of net benefits that a farmer will

receive from the moment they have switched to organic management, into perpetuity, assuming the
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organic farmer stays organic indefinitely. Vorg(Korg) assumes that once in stage 2, the farmer follows

the following constrained trajectories:

K̄(t)org = Korg ∀t (133)

Ī(t)org = 0∀t (134)

C(t)org = µ
(
C −Korg

)
∀t (135)

To further simplify our analysis, let’s also assume (as we approximately have in all real-world

organic certification programs known to the authors) that organic certification requires that a farmer

fully remediate their soils, such that they will be certifiied organic if and only if K = C.

When Korg = C, the value Vorg(Korg) of the farmer’s optimal program for stage 2 following this

constrained capital trajectory can be written as follows:

Vorg(Korg) =
1

ρ
Porg ·

(
αb

(
γKC +Ab

)
+Ay

)
(136)

On the other hand, Vcon(Korg − ϵ) is the present discounted value of the entire stream of net

benefits that a farmer will receive if they continue to produce conventionally indefinitely. When the

conventional farmer adopts OT1 solutions and Korg = C, Vcon(Korg − ϵ) is given by:

Vcon(Korg − ϵ) =
1

ρ
· Pconαb ·

(
ρ

(µ+ ρ)
· γK ·

(
C − ϵ

)
+

(
1

2
γccµC + γc +

αc − P−1
con

αb

)
· µC +Ab +

Ay

αb

)
(137)

With expressions for Vorg(Korg) and Vcon(Korg − ϵ) we can now write the following expression:

∆(ϵ) = Vorg(Korg)− Vcon(Korg − ϵ) (138)

as follows when Korg = C:
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∆C6(ϵ) =
1

ρ
Porg · αbγK C︸︷︷︸

=Korg︸ ︷︷ ︸
PDV of stewarding soil microbiome

at organic-level capital stock and

at organic prices

+
1

ρ
(Porg − Pcon) · (αbAb +Ay)︸ ︷︷ ︸

PDV of organic price premium

on ”level effect”

of other agricultural inputs

− 1

(µ+ ρ)
· Pconαb · γK ·

(
C − ϵ

)︸ ︷︷ ︸
=K0︸ ︷︷ ︸

PDV of microbial productivity

under conventional management

− 1

ρ
·
(
Pcon

(
αb ·

(
1

2
γccµC + γc

)
+ αc

)
− 1

)
· µC︸ ︷︷ ︸

PDV of using synthetic compounds

at dynamically optimal rate µC

The sign of ∂∆(ϵ)
∂ϵ is given by:

∂∆(ϵ)

∂ϵ
≥ Pcon · αb ·

1

(µ+ ρ)
· γK︸ ︷︷ ︸

≥0

(139)

Thus, ∆(ϵ) is linear and weakly increasing in ϵ.

Let ϵ∗ be the value of ϵ such that ∆(ϵ∗) = 0. Note that ∆(ϵ∗) = 0.

The range of ϵ yielding ∆(ϵ) ≥ 0 is ϵ ≥ ϵ∗ where:

ϵ∗ =

(
µ+ ρ

γK
·
(
1

2
γccµC + γc +

αc − P−1
con

αb

)
− 1

)
· µ
ρ
· C

− 1

γK
· µ+ ρ

ρ
·
(
γK · C +Ab +

Ay

αb

)
︸ ︷︷ ︸

≥0

·
(
Porg − Pcon

Pcon

)

ϵ∗ = − µ+ ρ

PconγK
· 1
ρ︸ ︷︷ ︸

≤0

(Porg − Pcon)

(
Ab +

Ay

αb

)
︸ ︷︷ ︸

≥0

−Pcon


(
1

2
γccµC + γc +

αc − P−1
con

αb

)
µ−

(
Porg

Pcon
− ρ

µ+ ρ

)
γK︸ ︷︷ ︸

≥0

C


(140)

This means that when ϵ∗ ≤ 0 the farmer will face Vorg(Korg)−Vcon(Korg − ϵ) > 0∀ϵ ≥ 0, and will
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therefore prefer to produce organically for all feasible initial capital stocks (i.e. they always prefer to

produce organically).

Given ∂∆(ϵ∗)
∂ϵ ≥ 0, we will have that:

• The lower the threshold ϵ∗, the larger the set {K0,con = Korg − ϵ : ∆(ϵ) > 0}

• The higher the threshold ϵ∗, the smaller the {K0,con = Korg − ϵ : ∆(ϵ) > 0}

We conduct a comparative statics analysis of ∆ (ϵ) = Vorg(Korg) − Vcon(Korg − ϵ) to analyze

how ∆(ϵ) responds to changes in parameters (µ, ρ, γcc, γc, γK , α1,αc, Pcon, and Porg). The results are

summarized in Table B.1 and the derivations are presented in Appendix B.1.1.

We similarly conduct a comparative static analysis for ϵ∗. The results are summarized in Table

B.2 and the derivations are presented in Appendix B.1.2.

We also want to find how large the price premium needs to be in order to induce the fully informed

farmer to prefer organic management. We derive this requirement for
(
Porg−Pcon

Pcon

)
below.

The range of
(
Porg−Pcon

Pcon

)
yielding ∆(ϵ) ≥ 0 is

Porg−Pcon

Pcon
≥
(
Porg−Pcon

Pcon

)∗
, where:

(
Porg − Pcon

Pcon

)∗
=

(
1
2γccµC + γc +

αc−P−1
con

αb

)
· µC − 1

(µ+ρ) · γK ·
(
µC + ρ · ϵ

)
γK · C +Ab +

Ay

αb

(141)

We also conduct a comparative statics analysis for threshold organic price premium
(
Porg−Pcon

Pcon

)∗
.

The results are summarized in Table B.3 and full derivations are presented in Appendix B.1.3.

7.2 Discrete Analysis for OT2/OT3/OT4 (Case A2)

Case A2: Conventional Farmer Stationary Solution K̂con is belowKorg and Organic Farmer Stationary

Solution K̂org exists (so is below K̂con and therefore below Korg as well), and K̂Sj ∈ [0, C] for

j ∈ {con, org}
In A2 the farmer will also adopt the same stage 2 trajectories as in B4 and C6, namely K(t)org =

Korg∀t and I(t)org = 0∀t.
A conventional farmer facing A2 conditions will adopt either an OT2, OT3, or OT4 solution.

The conventional A2 farmer faces:

0 < K̂j < Korg ≤ C (142)

and adopts the following trajectories:

K∗(t)Sj = K̂j +
(
K(0)j − K̂j

)
· e−µ·t (143)
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I∗(t)Sj = µ
(
K̂j −K(t)

)
(144)

c∗(t)Sj = µ
(
C − K̂j

)
(145)

For the conventional A2 farmer, assuming Korg = C, Vcon(Korg − ϵ) is given by:

V A2
con(Korg − ϵ) =

1

ρ
· Pcon (αb ·Ab +Ay)︸ ︷︷ ︸

PDV of ”level effect”

of other agricultural inputs

at conventional prices

+
1

(µ+ ρ)
· Pconαb · γK ·

(Korg − ϵ)︸ ︷︷ ︸
=K0

−K̂con


︸ ︷︷ ︸

PDV of microbial productivity

under conventional management

+
1

ρ
·
(
Pcon

(
αb ·

(
1

2
γccµ

(
C − K̂con

)
+ γc

)
+ αc

)
− 1

)
· µ
(
C − K̂con

)
︸ ︷︷ ︸

PDV of using synthetic compounds at dynamically optimal rate µ
(
C − K̂con

)
Given Korg = C the stage-2 A2 farmer faces:

Vorg(Korg) =
1

ρ
Porg · αbγK C︸︷︷︸

=Korg︸ ︷︷ ︸
PDV of stewarding soil microbiome

at organic-level capital stock and

at organic prices

+
1

ρ
Porg · (αbAb +Ay)︸ ︷︷ ︸

PDV of ”level effect”

of other agricultural inputs

at organic prices

(146)

Given Korg = C the ∆A2(ϵ) faced by the conventional A2 farmer is given by:
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∆A2(ϵ) =
1

ρ
Porg · αbγK C︸︷︷︸

=Korg︸ ︷︷ ︸
PDV of stewarding soil microbiome

at organic-level capital stock and

at organic prices

+
1

ρ
(Porg − Pcon) · (αbAb +Ay)︸ ︷︷ ︸

PDV of organic price premium

on ”level effect”

of other agricultural inputs

− 1

(µ+ ρ)
· Pconαb · γK ·

(C − ϵ
)︸ ︷︷ ︸

=K0

−K̂con


︸ ︷︷ ︸

PDV of microbial productivity

under conventional management

− 1

ρ
·
(
Pcon

(
αb ·

(
1

2
γccµ

(
C − K̂con

)
+ γc

)
+ αc

)
− 1

)
· µ
(
C − K̂con

)
︸ ︷︷ ︸

PDV of using synthetic compounds at dynamically optimal rate µ
(
C − K̂con

)

The sign of ∂∆(ϵ)
∂ϵ is given by:

∂∆(ϵ)

∂ϵ
=

PconαbγK
µ+ ρ

· ϵ ≥ 0 (147)

Thus, ∆(ϵ) is linear and weakly increasing in ϵ.

Let ϵ∗ be the value of ϵ such that ∆(ϵ∗) = 0.

The range of ϵ yielding ∆(ϵ) ≥ 0 is ϵ ≥ ϵ∗ where, when Korg = C:

ϵ∗ =
1

γK
· µ+ ρ

ρ
·

1

2
·

(
γc +

αc−P−1
con

αb
− γK

µ+ρ

)2
(−γcc)︸ ︷︷ ︸
≥0

−
(
Porg

Pcon
− 1

)
·
(
γK · C +Ab +

Ay

αb

)
︸ ︷︷ ︸

≥0

 (148)

As shown in Appendix B.2, case A2 allows for the possibility that ϵ∗ exceeds C. When this

happens there will be no feasible ϵ for which ∆(ϵ) ≥ 0, and there will therefore be no feasible capital

stock for which the fully informed farmer facing Case A2 OT2/OT3/OT3 conditions will prefer to

produce organically. ϵ∗ will be more likely to exceed C when the farmer faces small organic price

premia.
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We conduct a comparative statics analysis of ∆ (ϵ) = Vorg(Korg) − Vcon(Korg − ϵ) to analyze

how ∆(ϵ) responds to changes in parameters (µ, ρ, γcc, γc, γK , α1,αc, Pcon, and Porg). The results are

summarized in Table B.4 and the derivations are presented in Appendix B.2.1.

We similarly conduct a comparative statics analysis for ϵ∗. The results are summarized in Table

B.5 and the derivations are presented in Appendix B.2.2.

Next we are interested in describing how large the organic price premium needs to be in order to

induce a fully informed farmer facing A2, OT2/OT3/OT4 conditions to prefer to produce organically.

We derive an inequality describing the necessary conditions in Appendix B.2.3.

Given the assumption that Korg = C, and assuming conventional crop prices are not zero, we can

write:

Porg − Pcon

Pcon
≥
∫∞
0 Pcon · αb · 1

2 · (−γcc) c(T̂ )
2 · e−ρ·tdt−

∫∞
0 Pcon · αb · γK · ϵ · e−(µ+ρ)·tdt∫∞

0 Pcon ·
(
αb

(
γKC +Ab

)
+Ay

)
· e−ρ·tdt

(149)

We’re finding that there’s a value to (1) not managing conventionally (i.e. reducing one’s per-

period synthetic compound use), but also to (2) receiving enough capital to satisfy the organic

certification requirement (i.e. having an overall larger capital stock).

∫ ∞

0
(Porg − Pcon) · forg · e−ρ·tdt︸ ︷︷ ︸

Net gain from organic premium

(150)

+

∫ ∞

0
Pcon · αb · γK ·

(
ϵ · e−µ·t) · e−ρ·tdt︸ ︷︷ ︸

gain from organic management

≥

∫ ∞

0
Pcon · αb ·

1

2
· (−γcc) c(T̂ )

2 · e−ρ·tdt︸ ︷︷ ︸
loss from conventional management

Let
(
Porg−Pcon

Pcon

)∗
denote the threshold value:
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(
Porg − Pcon

Pcon

)∗
=(
1

2
· 1

(−γcc)
·
(
γc +

αc − P−1
con

αb
− γK

(µ+ ρ)

)2

− ρ

µ+ ρ
· γK · ϵ

)
·
(
γKC +Ab +

Ay

αb

)−1

(151)

Then we can determine how
(
Porg−Pcon

Pcon

)∗
changes in response to changes in our model parameters.

The results are summarized in Table B.6 and derivations are presented in Appendix B.2.3.

7.3 Discrete Analysis for OT3’ and OT3” (Case F14)

Case F14: R(K)con and R(K)org Constant with R(K)con = ρ and R(K)org < ρ

If Rj(K) is constant ∀j ∈ {con, org}, it must be that either γcc = 0, µ = 0, or both. Because the

conventional farmer’s optimal trajectory and value function will depend on which of these conditions

holds true, we will have to examine case F14 in two parts:

• F14 A, where γcc = 0 and µ ̸= 0 (conventional OT3’)

• F14 B, where µ = 0 (conventional OT3”)

We consider each case in turn below.

7.3.1 Case F14 A: γcc = 0, µ ̸= 0, Rcon(K) = ρ ∀K (conventional OT3’), and Rorg(K) < ρ:

In this case the stage 1 conventional farmer follows the following solution trajectories (OT3’):

K(t)con = Korg − ϵ∀t (152)

I(t)con = 0∀t (153)

c(t)con = µ
(
C −K(t)con

)
− I(t)con (154)

= µ
(
C −Korg + ϵ

)
∀t (155)

Given the assumption that Korg = C, K(t)con and c(t)con simply to

K(t)con = C − ϵ∀t (156)

c(t)con = µ · ϵ∀t (157)
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where ϵ > 0 and is determined by the equation K(0) = Korg − ϵ.

The stage 2 organic farmer will, conditional on having reached the organic threshold and decided

to remain organic, adopt the following constrained trajectory:

K̄(t)org = C ∀t (158)

Ī(t)org = 0∀t (159)

C(t)org = µ
(
C − K̄(t)org

)
− Ī(t)org (160)

= 0∀t (161)

Applying our solutions for c(t)con and K(t)con from above, as well as the assumption that Korg =

C, and γcc = 0, we can then write Vcon(Korg − ϵ) as:

Vcon(C − ϵ) =

1

ρ
· Pcon · αb ·

(
Ab +

Ay

αb

)
︸ ︷︷ ︸
PDV of ”level effect”

of other agricultural inputs

at conventional prices

+
1

ρ
· Pcon · αb · γK ·

(
C − ϵ

)
︸ ︷︷ ︸
PDV of value gained from

microbial productivity

under conventional management

+
1

ρ
· Pcon · αb ·

γK
µ+ ρ

· µ · ϵ︸ ︷︷ ︸
PDV of using synthetic compounds

at dynamically optimal

conventional rate µ · ϵ

(162)

When γcc = 0 and µ ̸= 0, Rcon(K) = ρ∀K implies:

γc +
αc − P−1

con

αb
=

γK
µ+ ρ

(163)

On the other hand, the F14 A fully informed farmer will face the following stage 2 value function:
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Vorg(Korg) =
1

ρ
Porg · αbγK C︸︷︷︸

=Korg︸ ︷︷ ︸
PDV of value of stewarding soil microbiome

at organic-level capital stock and

at organic prices

+
1

ρ
Porg · (αbAb +Ay)︸ ︷︷ ︸

PDV of ”level effect”

of other agricultural inputs

at organic prices

(164)

Given Korg = C, the ∆F14A(ϵ) faced by the conventional F14 A farmer is given by:

∆F14A(ϵ) =
1

ρ
Porg · αbγK C︸︷︷︸

=Korg︸ ︷︷ ︸
PDV of value of stewarding soil microbiome

at organic-level capital stock and

at organic prices

+
1

ρ
(Porg − Pcon) · (αbAb +Ay)︸ ︷︷ ︸

PDV of organic price premium

on ”level effect”

of other agricultural inputs

(165)

− 1

ρ
· Pcon · αb · γK ·

(
C − ϵ

)︸ ︷︷ ︸
=K0︸ ︷︷ ︸

PDV of microbial productivity

under conventional management

− 1

ρ
· Pcon · αb ·

γK
µ+ ρ

· µ · ϵ︸ ︷︷ ︸
PDV of using synthetic compounts

at dynamically optimal

conventional rate µ · ϵ

which we can simplify as follows:
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∆F14A(ϵ) =
1

ρ
(Porg − Pcon) · αbγK C︸︷︷︸

=Korg︸ ︷︷ ︸
PDV of organic price premium

from organic stock effect

+
1

ρ
αb (Porg − Pcon)

(
Ab +

Ay

αb

)
︸ ︷︷ ︸
PDV of organic price premium

from ag. base productivity

(166)

+
1

ρ
· Pcon · αb · γK · ϵ︸ ︷︷ ︸

PDV of additional value gained from

microbial productivity after adopting

organic management practices,

valued at conventional prices

− 1

ρ
· Pcon · αb ·

γK
µ+ ρ

· µ · ϵ︸ ︷︷ ︸
PDV of using synthetic

compounds at dynamically

optimal conventional rate µ · ϵ

In Appendix B.3.1, we discuss the signs of ∂∆(ϵ)
∂i , imposing the assumption that Korg = C. The

results are summarized in Table B.7.

In Appendix B.3.2, we calculate the partials of ϵ∗ with respect to our model parameters. We

assume organic certification requires having pristine soils, such that Korg = C. The results are

summarized in Table B.8.

Next we are interested in describing how large the organic price premium needs to be in order to

induce a fully informed farmer facing F14A conditions to prefer to produce organically. We derive an

inequality describing the necessary conditions below.

Assuming that Pcon ̸= 0, and assuming that 1
ραb

(
γKC +Ab +

Ay

αb

)
̸= 0, we can write:

(
Porg − Pcon

Pcon

)∗
= − 1

C +
(
Ab +

Ay

αb

)
· γ−1

K

· ρ

µ+ ρ
· ϵ ≤ 0 (167)

Given

∂∆F14A(ϵ)

∂
(
Porg−Pcon

Pcon

) =
1

ρ
· Pcon · αb ·

(
γKC +Ab +

Ay

αb

)
≥ 0, (168)

(
Porg−Pcon

Pcon

)∗
≤ 0 implies that the F14A farmer prefers organic given any non-negative price

premium. Still, we may at some point be interested in how the value of
(
Porg−Pcon

Pcon

)∗
responds to

55



changes in our parameter values in this case. In Appendix B.3.3, we determine how
(
Porg−Pcon

Pcon

)∗
changes in response to changes in our model parameters. The results are summarized in Table B.9.

7.3.2 Case F14 B: µ = 0, Rcon(K) = ρ ∀K (conventional OT3”), and Rorg(K) < ρ:

In this case the stage 1 conventional farmer follows the following solution trajectories (OT3”):

K(t)con = Korg − ϵ∀t (169)

I(t)con = 0∀t (170)

c(t)con = µ
(
C −K(t)con

)
− I(t)con = 0∀t (171)

Given the assumption that Korg = C, K(t)con and c(t)con simply to

K(t)con = C − ϵ∀t (172)

c(t)con = 0∀t (173)

where ϵ > 0 and is determined by the equation K(0) = Korg − ϵ.

The stage 2 organic farmer will, conditional on having reached the organic threshold and decided

to remain organic, adopt the following constrained trajectory:

K̄(t)org = C ∀t (174)

Ī(t)org = 0∀t (175)

C(t)org = µ
(
C − K̄(t)org

)
− Ī(t)org = 0∀t (176)

Applying our solutions for c(t)con and K(t)con from above, as well as the assumption that Korg =

C, and µ = 0, and given that ρ > 0:, we can then write Vcon(Korg − ϵ) as:
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Vcon(Korg − ϵ) =
1

ρ
· Pconαb ·

(
Ab +

Ay

αb

)
︸ ︷︷ ︸
PDV of ”level effect”

of other agricultural inputs

at conventional prices

+
1

ρ
· PconαbγK

(
C − ϵ

)
︸ ︷︷ ︸

PDV of value gained from

microbial productivity

under conventional management

(177)

On the other hand, the F14 B fully informed farmer will face the following stage 2 value function:

Vorg(Korg) =
1

ρ
Porg · αbγK C︸︷︷︸

=Korg︸ ︷︷ ︸
PDV of value of stewarding soil microbiome

at organic-level capital stock and

at organic prices

+
1

ρ
Porg · (αbAb +Ay)︸ ︷︷ ︸

PDV of ”level effect”

of other agricultural inputs

at organic prices

(178)

Given Korg = C, the conventional F14 B farmer faces:

∆F14B(ϵ) =
1

ρ
Porg · αbγK C︸︷︷︸

=Korg︸ ︷︷ ︸
PDV of value of stewarding soil microbiome

at organic-level capital stock and

at organic prices

+
1

ρ
(Porg − Pcon) · (αbAb +Ay)︸ ︷︷ ︸

PDV of organic price premium

on ”level effect”

of other agricultural inputs

(179)

− 1

ρ
· PconαbγK

(
C − ϵ

)
︸ ︷︷ ︸

PDV of microbial productivity

under conventional management

which we can simplify as follows:
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∆F14B(ϵ) =
1

ρ
(Porg − Pcon) · αbγK C︸︷︷︸

=Korg︸ ︷︷ ︸
PDV of organic price premium

from organic stock effect

+
1

ρ
αb (Porg − Pcon)

(
Ab +

Ay

αb

)
︸ ︷︷ ︸
PDV of organic price premium

from ag. base productivity

+
1

ρ
· Pcon · αb · γK · ϵ︸ ︷︷ ︸

PDV of additional value gained from

microbial productivity after adopting

organic management practices,

valued at conventional prices
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8 Key Model Predictions under ”Full” Information

• Some conventional farmers prefer organic management, even if Porg = Pcon (OT5)

• Some will pursue active stewardship (invest in clean soil stock), even if Porg = Pcon (OT4 and

OT5)

• Among those still preferring conventional, some will reduce c(t) use compared to farmer misperception

model, so as to cultivate, and benefit from, b(t) (OT2 and OT4)

• Others will prefer conventional and will choose the maximum level of c(t) use no matter how

large the organic price premium (OT1)

• Farmers who prefer to produce conventionally in absence of organic price premium (OT1, OT2,

OT4) can be induced to prefer organic (via a ’jump’ transition) if organic price premium high

enough
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9 Farmer Misperception (Unaware of effect of soil bacteria)

Next we want to know how optimal behavior under full information compares to optimal behavior

in a model that doesn’t account for soil bacteria. Previous research by Murphy et al. (2020) has

shown that farmers in developing countries usually do not have sufficient information about their

soil nutrient levels to make profit-maximizing decisions about fertilizer usage; and that there can be

potentially large net benefits to providing farmers with soil information .

In order to assess how knowledge about soil microbiomes and the feedback between synthetic

compounds, soil health, pest resistance, and crop yields may affect farmers’ decisions about transitioning

from conventional to organic management, we compare the optimal synthetic fertilizer and pesticide

strategy determined by our model with the synthetic fertilizer and pesticide strategy that solves a

model in which farmers are not aware that soil bacteria have a mediating effect.

Formally, we now consider a model in which farmers are not aware that soil bacteria have a

mediating effect. In this model farmers perceive the following (incorrect) production function:

f̆(c;X) = θ̆(X)c(t) + Θ̆(X) (180)

where the notation x̆ refers to the farmer’s perception of x; and where the farmer infers the perceived

value of θ̆(X) from their observations in a narrow range of values of c(t) typical in conventional

production. Importantly, the farmer believes the marginal product of chemical inputs, θ̆(X), to be

constant and non-negative, conditional on other human and natural inputs X:

∂f̆(c;X)

∂c
= θ̆(X) ≥ 0 (181)

The true production function, however, remains the same as in earlier in this paper:

f(c, C;X) = θ(X)c(t) + Θ(X) (182)

Thus, the true θ(·) is actually a function of not only X, but also c(t) and C(t):

θ(c, C;X) = αc(X) + αb(X)

(
γcc(X)c(t) + γb(X)

(
C − C(t)

)2
c(t)

+ γc(X) + γK(X)

(
C − C(t)

)
c(t)

)
(183)

and the true Θ(·) is given by:

Θ(X) = αb(X)Ab(X) +Ay(X). (184)

Note that since γcc(X) ≤ 0, γb(X) ≥ 0, and γK(X) ≥ 0, the true θ(·) actually decreases as c(t)

increases, all else constant. As previously noted, the farmer is not aware of this relationship between

θ(·), c, and C though, and instead erroneously thinks that he or she faces a constant θ̆(X(t)) given
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by:

θ̆(X(t)) = θ(c0, C0;X(t)) (185)

for all values of c and C, where c0 and C0 are given (we will need to come back and more rigorously

think about how the farmer’s beliefs about θ(c(t), C(t), X(t)) are formed. Presumably c0 and C0 would

have resulted from some prior optimization process during which the farmer could have learned how

θ(·) responds to c and C).

We assume that the farmer’s perceived Θ̆(·) is correct and therefore equal to the true Θ(·):

Θ̆(X) = Θ(X) = αb(X)Ab(X) +Ay(X). (186)

In the case of misperception, the conventional farmer chooses their synthetic compound trajectory

c(t) to maximize the following erroneous optimization problem:

max
{c(t)}

∫ ∞

0
(Pcon· (θ(c0, C0;X(t)) · c(t) + Θ(X))− c(t)) · e−ρtdt

s.t. Ċ(t) = c(t)− µ(X)C(t)

0 ≤ c(t) ≤ c(K(t))

0 ≤ C(t) ≤ C

C(0) = C0,con .

(187)

Let c̆(t)TS∗ be the farmer’s optimal trajectory for transitioning to organic assuming the farmer

faces the production function they erroneously perceive to be true; c̆(t)con∗ , is the farmer’s optimal

stage 1 trajectory assuming the farmer faces the production function they erroneously perceive to

be true; c̆(t)org∗ , is the farmer’s optimal stage 2 trajectory assuming the farmer faces the production

function they erroneously perceive to be true; and T̆ ∗ is the first time at which K(t) = Korg if the

farmer adopts c̆(t)TS∗ .

Note that the solution to the farmer’s erroneous misperceived optimization problem under farmer

misperception can be derived respectively, by setting αb(X) = 0, αc(X) = θ(c0, C0, X), and Ay(X) =

Θ(X) in our previous model. Doing so, we find the following expression for the stationary rate of

return in Stage 1:

R̆con(K) = −µ (188)

which is not a function of capital. Since we are assuming that µ(X) ≥ 0 (the stock of synthetic

chemicals weakly decays on its own), R̆con(K) = −µ ≤ 0. Thus, the farmer will continually disinvest

in clean soils if ρ > 0, since then

R̆con(K) = −µ ≤ 0 < ρ; (189)
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and will forever stay at their initial capital stock if ρ = 0, since then

R̆con(K) = −µ = ρ = 0. (190)

Note that when αb(X) = 0, αc(X) = θ(c0, C0, X), and Ay(X) = Θ(X), then the farmer perceives

the following net gain function:

Ğcon(c(t);x) = Pcon · (θ(c0, C0;X)c(t) + Θ(X))− c(t) (191)

or

Ğcon(c(t);X) = Pcon ·
(
θ(c0, C0;X)

(
µ(X)

(
C −K(t)

)
− I(t)

)
+Θ(X)

)
−
(
µ(X)

(
C −K(t)

)
− I(t)

)
,

(192)

Ğcon(K(t), I(t)) =
(
Pconθ̆ − 1

) (
µ
(
C −K(t)

)
− I(t)

)
+ PconΘ (193)

which is linear in I(t). Therefore the farmer’s perceived optimal policy will be an MRA policy of

disinvestment until K = 0.

Thus, the solution to the misinformed farmer’s erroneously specified optimization problem will

be the same as the fully informed farmer’s solution to their optimization problem when the fully

informed farmer faces OT1 conditions. In particular, the misinformed farmer will adopt the following

trajectories when µ ̸= 0:

K(t) = K(0) · e−µ·t ∀t (194)

I(t) = −µK(t)∀t (195)

c(t) = c = µC ∀t (196)

C(t) = C −K(0) · e−µ·t ∀t (197)

9.1 Local Discrete Analysis of Misperception

Under farmer misperception, the (misperceived) value of adopting organic, V̆org(Korg), is given by:

V̆org(Korg) =

∫ ∞

t=0

(
(µ− Porgθµ)K(t)org + (1− Porgθ) I(t)org + PorgΘ+ PorgθµC − µC

)
· e−ρtdt

(198)

62



and

K(t)org = Korg ∀t (199)

I(t)org = 0∀t (200)

so that we have

V̆org(Korg) =
1

ρ

(
(µ− Porgθµ)Korg + PorgΘ+ PorgθµC − µC

)
(201)

Given Korg = C and c = µC the the misinformed conventional farmer’s (misperceived) value

function for remaining conventional is given by: con(Korg − ϵ)

V̆con(Korg − ϵ) =

∫ ∞

t=0

(
Pcon · f̆ (c(t)con)− c(t)con

)
e−ρtdt (202)

where:

f̆(b(t), c(t);X) = θ̆c(t) + Θ̆. (203)

V̆con(Korg − ϵ) =

1

ρ
·

(Pcon · θ̆ − 1
)
·
(
µC − c

)
·

(
1
µ ·
(
c− µ · C

)
1
µ ·
(
c− µ · C

)
+ (Korg − ϵ)

) ρ
µ

+
(
Pcon · θ̆ − 1

)
· c+ PconΘ̆


(204)

We then want to write out a closed form expression for ∆̆(ϵ), using our solutions for V̆org(Korg)

and V̆con(Korg − ϵ). We do so below:

∆̆(ϵ) = V̆org(Korg)− V̆con(Korg − ϵ) (205)

Given Korg = C, the conventional farmer under misperception faces:

∆̆(ϵ) =
1

ρ
· Θ̆ · (Porg − Pcon)−

1

ρ
·
(
Pcon · θ̆ − 1

)
· µC (206)
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∆̆(ϵ) =
1

ρ
· Θ̆ · (Porg − Pcon)︸ ︷︷ ︸

PDV of organic price premium

on ”level effect”

of other agricultural inputs

− 1

ρ
·
(
Pcon · θ̆ − 1

)
· µC︸ ︷︷ ︸

(misperceived) PDV of using

synthetic compounds at

(misperceived) dynamically

optimal conventional rate µC

For a conventional farmer under misperception, since the farmer is unaware of the effects of

microbes, clean soil stock does not matter except through its effect on the crop price (organic

or conventional). Thus, for a conventional farmer under misperception ∆̆(ϵ) is not a function of

initial clean soil stock and therefore not a function of ϵ (except possibly through the effects of initial

conditions on θ̆.

When Korg = C, the misinformed farmer prefers organic management (∆̆(ϵ) > 0) when they face

price premia satisfying
Porg−Pcon

Pcon
>

(
˘Porg−Pcon

Pcon

)∗
, where:

(
˘Porg − Pcon

Pcon

)∗

=

(
Pcon · θ̆ − 1

)
· µC

Pcon · Θ̆
(207)

Remember that Θ̆(X) = αb(X)Ab(X) + Ay(X), and that θ̆ = αc + αb

(
γccc0 + γc + γK

K0
c0

)
, or

θ̆ = αc + αb

(
γccc0 + γc + γK

C−ϵ
c0

)
.

So we can write

(
˘Porg−Pcon

Pcon

)∗
as:

(
˘Porg − Pcon

Pcon

)∗

=

(
Pcon ·

(
αc + αb

(
γccc0 + γc + γK

C−ϵ
c0

))
− 1
)
· µC

Pcon · (αbAb +Ay)
(208)

(
˘Porg − Pcon

Pcon

)∗

=

(
γccc0 + γc + γK

C−ϵ
c0

+ αc−P−1
con

αb

)
· µC

Ab +
Ay

αb

(209)

(
˘Porg − Pcon

Pcon

)∗

=

(
γccc0 + γc +

αc−P−1
con

αb

)
· µC + γK · µC

c0
·
(
C − ϵ

)
Ab +

Ay

αb

(210)
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9.2 Comparing Value of Conventional and Value of Organic with and without

Farmer Misperception
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Table 1: Conditions Producing Misperception Valuation Errors

Direction of Error by Misinformed Farmer
Misinformed farmer Misinformed farmer
Under-values organic Over-values organic

∆(ϵ) > ∆̆(ϵ) ∆(ϵ) < ∆̆(ϵ)

Conventional OT1 farmer (Case C6)
Porg sufficiently large and αbγKC ̸= 0; or

c0 sufficiently small andPcon · αbγKC · µK0 ̸= 0

Small enough γK and
large enough c0

Conventional OT2/OT3/OT4 farmer (Case A2) K̂con sufficiently close to C
c0 and αc large enough and
γK is also small enough

Conventional OT3’ (Case F14A) Always N/A

66



9.2.1 Conventional OT1 farmer (Case C6)

Case C6 (Conventional Farmer Stationary Solution K̂con does not exist and Organic Farmer Stationary

Solution K̂org does not exist because K̆j < 0 and Rj(K) < ρ ∀K ≥ 0 for j ∈ {con, org})
Given Korg = C, the fully informed conventional C6 farmer faces:

∆C6(ϵ) =
1

ρ
Porg · αbγK C︸︷︷︸

=Korg︸ ︷︷ ︸
PDV of stewarding soil microbiome

at organic-level capital stock and

at organic prices

+
1

ρ
(Porg − Pcon) · (αbAb +Ay)︸ ︷︷ ︸

PDV of organic price premium

on ”level effect”

of other agricultural inputs

− 1

(µ+ ρ)
· Pconαb · γK ·

(
C − ϵ

)︸ ︷︷ ︸
=K0︸ ︷︷ ︸

PDV of microbial productivity

under conventional management

− 1

ρ
·
(
Pcon

(
αb ·

(
1

2
γccµC + γc

)
+ αc

)
− 1

)
· µC︸ ︷︷ ︸

PDV of using synthetic compounds

at dynamically optimal rate µC

Given Korg = C, the conventional farmer under misperception faces:

∆̆(ϵ) =
1

ρ
· Θ̆ · (Porg − Pcon)︸ ︷︷ ︸

PDV of organic price premium

on ”level effect”

of other agricultural inputs

− 1

ρ
·
(
Pcon · θ̆ − 1

)
· µC︸ ︷︷ ︸

(misperceived) PDV of using

synthetic compounds at

(misperceived) dynamically optimal

conventional rate µC

Given Korg = C for a conventional C6 farmer, the dynamically optimal conventional rate and the

(misperceived) dynamically optimal conventional rate is the same: c = µC.
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∆C6(ϵ)− ∆̆(ϵ) =
1

ρ
Porg · αbγK C︸︷︷︸

=Korg︸ ︷︷ ︸
PDV of stewarding soil microbiome

at organic-level capital stock and

at organic prices

− 1

(µ+ ρ)
· Pconαb · γK ·

(
C − ϵ

)︸ ︷︷ ︸
=K0︸ ︷︷ ︸

PDV of microbial productivity

under conventional management

− 1

ρ
Pcon ·

((
αb ·

(
1

2
γccµC + γc

)
+ αc

)
− θ̆

)
· µC︸ ︷︷ ︸

difference between PDV and misperceived PDV

of using synthetic compounds at dynamically optimal rate µC

We summarize the factors determining the sign and value of ∆C6(ϵ)− ∆̆(ϵ) in the table below:
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Main components of: ∆C6(ϵ)− ∆̆(ϵ)

PDV of stewarding soil microbiome

at organic-level capital stock and

at organic prices

1
ρPorg · αbγK C︸︷︷︸

=Korg

≥ 0

PDV of microbial productivity

under conventional management
1

(µ+ρ) · Pconαb · γK ·
(
C − ϵ

)︸ ︷︷ ︸
=K0

≥ 0

Difference between PDV and misperceived

PDV of using synthetic compounds at

dynamically optimal rate µC

1
ρPcon ·

((
αb ·

(
1
2γccµC + γc

)
+ αc

)
− θ̆
)
· µC
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where θ̆ = αc +αb

(
γccc0 + γc + γK · K0

c0

)
. Note that we can simplify the last of the three factors,

1

ρ
Pcon ·


(
αb ·

(
1

2
γccµC + γc

)
+ αc

)
−
(
αc + αb

(
γccc0 + γc + γK · K0

c0

))
︸ ︷︷ ︸

≥0 (by assumption)

 · µC, (211)

as follows:

1

ρ
Pcon ·

(
αb ·

(
1

2
γccµC + γc

)
+ αc − αc − αb

(
γccc0 + γc + γK · K0

c0

))
· µC (212)

1

ρ
Pcon · αb ·

((
1

2
γccµC + γc

)
−
(
γccc0 + γc + γK · K0

c0

))
· µC (213)

1

ρ
Pcon · αb ·

((
1

2
µC − c0

)
· γcc − γK · K0

c0

)
· µC. (214)

We see that for small enough c0 we will have 1
ρPcon · αb ·

((
1
2µC − c0

)
· γcc − γK · K0

c0

)
· µC ≤ 0.

On the other hand, when we have that both c0 is large enough and γK is small enough we will have
1
ρPcon · αb ·

((
1
2µC − c0

)
· γcc − γK · K0

c0

)
· µC ≥ 0

We use these results in our second summary table below, in which we describe the direction of

the misinformed farmer’s valuation error.

Sign of ∆C6(ϵ)− ∆̆(ϵ) Condition

∆C6(ϵ)− ∆̆(ϵ) > 0

(Misinformed farmer under-

estimates value of organic)

Porg sufficiently large and αbγKC ̸= 0; or

c0 sufficiently small andPcon · αbγKC · µK0 ̸= 0.

∆C6(ϵ)− ∆̆(ϵ) < 0

(Misinformed farmer over-

estimates value of organic)

Small enough γK and large enough c0.
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9.2.2 Conventional OT1/OT2/OT3 farmer (Case A2)

Case A2: Conventional Farmer Stationary Solution K̂S1 is below Korg and Organic Farmer Stationary

Solution K̂S2 exists (so is below K̂S1 and therefore below Korg as well), and K̂Sj ∈ [0, C] for j ∈
{con, org}

Given Korg = C the conventional A2 farmer faces:

∆A2(ϵ) =
1

ρ
Porg · αbγK C︸︷︷︸

=Korg︸ ︷︷ ︸
PDV of stewarding soil microbiome

at organic-level capital stock and

at organic prices

+
1

ρ
(Porg − Pcon) · (αbAb +Ay)︸ ︷︷ ︸

PDV of organic price premium

on ”level effect”

of other agricultural inputs

− 1

(µ+ ρ)
· Pconαb · γK ·

(C − ϵ
)︸ ︷︷ ︸

=K0

−K̂con


︸ ︷︷ ︸

PDV of microbial productivity

under conventional management

− 1

ρ
·
(
Pcon

(
αb ·

(
1

2
γccµ

(
C − K̂con

)
+ γc

)
+ αc

)
− 1

)
· µ
(
C − K̂con

)
︸ ︷︷ ︸

PDV of using synthetic compounds

at dynamically optimal rate µ
(
C − K̂con

)

Given Korg = C, the conventional farmer under misperception faces:

∆̆(ϵ) =
1

ρ
· Θ̆ · (Porg − Pcon)︸ ︷︷ ︸

PDV of organic price premium

on ”level effect”

of other agricultural inputs

− 1

ρ
·
(
Pcon · θ̆ − 1

)
· µC︸ ︷︷ ︸

(misperceived) PDV of using

synthetic compounds at

(misperceived) dynamically optimal

conventional rate µC
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∆A2(ϵ)− ∆̆(ϵ) =
1

ρ
Porg · αbγK C︸︷︷︸

=Korg︸ ︷︷ ︸
PDV of stewarding soil microbiome

at organic-level capital stock and

at organic prices

− 1

(µ+ ρ)
· Pconαb · γK ·

(C − ϵ
)︸ ︷︷ ︸

=K0

−K̂con


︸ ︷︷ ︸

PDV of microbial productivity

under conventional management

− 1

ρ
·
(
Pcon

(
αb ·

(
1

2
γccµ

(
C − K̂con

)
+ γc

)
+ αc

)
− 1

)
· µ
(
C − K̂con

)
︸ ︷︷ ︸

PDV of using synthetic compounds at dynamically optimal rate µ
(
C − K̂con

)
+

1

ρ
·
(
Pcon · θ̆ − 1

)
· µC︸ ︷︷ ︸

(misperceived) PDV of using

synthetic compounds at

(misperceived) dynamically optimal

conventional rate µC

We summarize the factors determining the sign and value of ∆A2(ϵ)− ∆̆(ϵ) in the table below:
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Main components of: ∆A2(ϵ)− ∆̆(ϵ)

PDV of stewarding soil microbiome

at organic-level capital stock and

at organic prices

1
ρPorg · αbγK C︸︷︷︸

=Korg

≥ 0

PDV of microbial productivity

under conventional management
1

(µ+ρ) · Pconαb · γK ·

(C − ϵ
)︸ ︷︷ ︸

=K0

−K̂con


PDV of using synthetic compounds

at dynamically optimal rate µ
(
C − K̂con

) 1
ρ ·
(
Pcon

(
αb ·

(
1
2γccµ

(
C − K̂con

)
+ γc

)
+ αc

)
− 1
)
· µ
(
C − K̂con

)
(misperceived) PDV of using synthetic compounds

at (misperceived) dynamically optimal conventional rate µC
1
ρ ·
(
Pcon · θ̆ − 1

)
· µC ≥ 0

73



where θ̆ = αc + αb

(
γccc0 + γc + γK · K0

c0

)
. Note that

∆A2(ϵ)− ∆̆(ϵ) =
1

ρ
Porg · αbγKC − Pconαb ·

1

(µ+ ρ)
· γK ·

(
C − K̂con − ϵ

)
− 1

ρ
·
(
Pcon

(
αb ·

(
1

2
γccµ

(
C − K̂con

)
+ γc

)
+ αc

)
− 1

)
· µ
(
C − K̂con

)
+

1

ρ
·
(
Pcon · θ̆ − 1

)
· µC

(215)

simplifies as follows:

=
1

ρ
Porg · αbγKC + Pconαb ·

1

(µ+ ρ)
· γK · ϵ− Pconαb ·

1

(µ+ ρ)
· γK ·

(
C − K̂con

)
− 1

ρ
·
(
Pcon

(
αb ·

(
1

2
γccµ

(
C − K̂con

)
+ γc

)
+ αc

)
− 1

)
· µ
(
C − K̂con

)
+

1

ρ
·
(
Pcon ·

(
αc + αb

(
γccc0 + γc + γK · K0

c0

))
− 1

)
· µC

(216)

=
1

ρ
· Pcon · αb · γK ·

(
Porg

Pcon
· C − ρ

(µ+ ρ)
·
(
C − K̂con

)
+

ρ

(µ+ ρ)
· ϵ
)

− 1

ρ
·
(
Pcon

(
αb ·

(
1

2
γccµ

(
C − K̂con

)
+ γc

)
+ αc

)
− 1

)
· µ
(
C − K̂con

)
+

1

ρ
·
(
Pcon ·

(
αc + αb

(
γccc0 + γc + γK · K0

c0

))
− 1

)
· µC

(217)

=
1

ρ
· Pcon · αb · γK ·

Porg

Pcon
· C − ρ

(µ+ ρ)
·
(
C − K̂con

)
︸ ︷︷ ︸

≥0

+
ρ

(µ+ ρ)
· ϵ


︸ ︷︷ ︸

≥0

− 1

ρ
·
(
Pcon

(
αb ·

(
1

2
γccµ

(
C − K̂con

)
+ γc

)
+ αc

)
− 1

)
· µ
(
C − K̂con

)
+

1

ρ
·
(
Pcon ·

(
αc + αb

(
γccc0 + γc + γK · K0

c0

))
− 1

)
· µC︸ ︷︷ ︸

≥0

(218)

When K̂con is sufficiently close to C we will therefore have ∆A2(ϵ)− ∆̆(ϵ) ≥ 0. On the other hand

when c0 large enough so that the third term goes to zero, and γK is small enough so that the first term

goes to zero, and also αc is large enough so that
(
Pcon

(
αb ·

(
1
2γccµ

(
C − K̂con

)
+ γc

)
+ αc

)
− 1
)
≥ 0,

then we will have that ∆A2(ϵ)− ∆̆(ϵ) ≤ 0.
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We use these results in our second summary table below, in which we describe the direction of

the misinformed farmer’s valuation error.

Sign of ∆A2(ϵ)− ∆̆(ϵ) Condition

∆A2(ϵ)− ∆̆(ϵ) > 0

(Misinformed farmer under-

estimates value of organic)

K̂con sufficiently close to C

∆A2(ϵ)− ∆̆(ϵ) < 0

(Misinformed farmer over-

estimates value of organic)

c0 and αc large enough and γK is also small enough

9.2.3 Conventional OT3’ farmer (Case F14A)

Next we want to compare how the F14 fully informed farmer’s ∆(ϵ) compares to the misinformed

farmer’s ∆̆(ϵ) .

Since the misinformed farmer is assumed to pursue a lower corner solution, our assumptions about

c become important. In our C6 discrete analysis we had to impose the assumption that c = µC in order

to obtain a closed form solution for the fully informed C6 farmer’s ∆(ϵ). To allow for comparability

between the behavior of C6 ∆(ϵ) and C6 ∆̆(ϵ) , we also imposed the assumption that c = µC when

deriving C6 ∆̆(ϵ), and then to allow for comparability between our C6 findings and our set of findings

for the A2 fully informed and misinformed farmer, we imposed c = µC for our A2 misinformed farmer

as well, who is also assumed to pursue a lower corner solution.

To allow for comparability between our F14 and C6 and A2 findings then, in this analysis we will

also want to study the F14 model under the assumption that c = µC. This will only work for F14 A

(where γcc = 0, µ ̸= 0) however, since µ = 0 in case F14 B.

Given Korg = C, the conventional F14A farmer faces:
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∆F14A(ϵ) =
1

ρ
Porg · αbγK C︸︷︷︸

=Korg︸ ︷︷ ︸
PDV of value of stewarding soil microbiome

at organic-level capital stock and

at organic prices

+
1

ρ
(Porg − Pcon) · (αbAb +Ay)︸ ︷︷ ︸

PDV of organic price premium

on ”level effect”

of other agricultural inputs

(219)

− 1

ρ
· Pcon · αb · γK ·

(
C − ϵ

)︸ ︷︷ ︸
=K0︸ ︷︷ ︸

PDV of microbial productivity

under conventional management

− 1

ρ
· Pcon · αb ·

γK
µ+ ρ

· µ · ϵ︸ ︷︷ ︸
PDV of using synthetic compounds

at dynamically optimal

conventional rate µ · ϵ

Given Korg = C and c = µC the conventional farmer under misperception faces:

∆̆(ϵ) =
1

ρ
· Θ̆ · (Porg − Pcon)︸ ︷︷ ︸

PDV of organic price premium

on ”level effect”

of other agricultural inputs

− 1

ρ
·
(
Pcon · θ̆ − 1

)
· µC︸ ︷︷ ︸

(misperceived) PDV of using

synthetic compounds at

(misperceived) dynamically optimal

conventional rate µC
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∆F14A(ϵ)− ∆̆(ϵ) =
1

ρ
Porg · αbγK C︸︷︷︸

=Korg︸ ︷︷ ︸
PDV of value of stewarding soil microbiome

at organic-level capital stock and

at organic prices

− 1

ρ
· Pcon · αb · γK ·

(
C − ϵ

)︸ ︷︷ ︸
=K0︸ ︷︷ ︸

PDV of microbial productivity

under conventional management

− 1

ρ
· Pcon · αb ·

γK
µ+ ρ

· µ · ϵ︸ ︷︷ ︸
PDV of using synthetic compounds

at dynamically optimal conventional rate µ · ϵ

+
1

ρ
·
(
Pcon · θ̆ − 1

)
· µC︸ ︷︷ ︸

(misperceived) PDV of using synthetic compounds

at (misperceived) dynamically optimal conventional rate µC

We summarize the factors determining the sign and value of ∆F14A(ϵ)− ∆̆(ϵ) in the table below:
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Main components of: ∆A2(ϵ)− ∆̆(ϵ)

PDV of stewarding soil microbiome

at organic-level capital stock and

at organic prices

1
ρPorg · αbγK C︸︷︷︸

=Korg

≥ 0

PDV of microbial productivity

under conventional management
1
ρ · Pcon · αb · γK ·

(
C − ϵ

)︸ ︷︷ ︸
=K0

PDV of using synthetic compounds

at dynamically optimal conventional rate µ · ϵ
1
ρ · Pcon · αb · γK

µ+ρ · µ · ϵ

(misperceived) PDV of using synthetic compounds

at (misperceived) dynamically optimal conventional rate µC
1
ρ ·
(
Pcon · θ̆ − 1

)
· µC ≥ 0
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This equation can be re-written as follows:

∆F14A(ϵ)− ∆̆(ϵ) =

1

ρ
Porg · αbγK C︸︷︷︸

=Korg

− 1

ρ
· Pcon · αb · γK ·

(
C − ϵ

)︸ ︷︷ ︸
=K0

−1

ρ
· Pcon · αb ·

γK
µ+ ρ

· µ · ϵ

+
1

ρ
·
(
Pcon · θ̆ − 1

)
· µC

∆F14A(ϵ)− ∆̆(ϵ) =

1

ρ
Porg · αbγKC − 1

ρ
· Pcon · αb · γK · C

+
1

ρ
· Pcon · αb · γK · ϵ− 1

ρ
· Pcon · αb · γK · µ

µ+ ρ
· ϵ

+
1

ρ
·
(
Pcon · θ̆ − 1

)
· µC

∆F14A(ϵ)− ∆̆(ϵ) =

1

ρ
· αb · γK · C · (Porg − Pcon)

+
1

ρ
· Pcon · αb · γK · ρ

µ+ ρ
· ϵ

+
1

ρ
·
(
Pcon · θ̆ − 1

)
· µC

∆F14A(ϵ)− ∆̆(ϵ) =

1

ρ
· αb · γK · C · (Porg − Pcon)︸ ︷︷ ︸

≥0

+
1

ρ
· Pcon · αb · γK · ρ

µ+ ρ
· ϵ︸ ︷︷ ︸

≥0

+
1

ρ
·
(
Pcon · θ̆ − 1

)
· µC︸ ︷︷ ︸

≥0

≥ 0
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We can summarize these results as follows:

Sign of ∆F14A(ϵ)− ∆̆(ϵ) Condition

∆F14A(ϵ)− ∆̆(ϵ) > 0

(Misinformed farmer under-

estimates value of organic)

Always

∆F14A(ϵ)− ∆̆(ϵ) < 0

(Misinformed farmer over-

estimates value of organic)

N/A

9.3 Comparing threshold organic price premium for adopting organic with and

without Farmer Misperception

To assess when a conventional farmer under misperception chooses incorrectly, we compare the price

premium required to make a misinformed farmer prefer organic management to the premium necessary

to make a fully informed farmer prefer organic management.

Table 2: Comparing Organic Premia Requirements: Full-Information vs Farmer Misperception

Vorg − Vcon(C0) ≥ 0 if
Porg−Pcon

Pcon
greater than:

Case Condition:

OT1

(
1
2
γccµC+γc+

αc−P−1
con

αb

)
·µC− 1

(µ+ρ)
·γK ·(µC+ρ·ϵ)

γK ·C+Ab+
Ay
αb

OT2/OT3/OT4
ρ·
(

1
ρ
· 1
2
·(−γcc)(µ(C−K̂con))

2− 1
µ+ρ

·γK ·ϵ
)

1
αb

·(αb(γKC+Ab)+Ay)

Farmer
Misperception

(
γccc0+γc+

αc−P−1
con

αb

)
·µC+γK ·µC

c0
·(C−ϵ)

Ab+
Ay
αb

We will therefore have:

˘(
Porg − Pcon

Pcon

)∗

≥
(
Porg − Pcon

Pcon

)∗
(220)

such that the misinformed farmer chooses incorrectly and requires a higher price premium than would

the fully informed farmer in order to prefer organic management, when, for example, the misinformed

farmer faces:

• small enough c0 (such that the naive farmer incorrectly perceives θ̆ to be very large), or
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• small enough µ (given γcc ̸= 0 and αb ̸= 0) such that that synthetic compounds are very

persistent, or

• small enough αbAb + Ay, which measures the importance of factors of production other than

synthetic compounds and ”clean” soil (given αbγKC ̸= 0)

9.3.1 Conventional OT1 farmer (Case C6)

The fully informed conventional OT1 farmer prefers organic management when they face price premia

satisfying
Porg−Pcon

Pcon
>
(
Porg−Pcon

Pcon

)∗
, where:

(
Porg − Pcon

Pcon

)∗
=

(
1
2γccµC + γc +

αc−P−1
con

αb

)
· µC − 1

(µ+ρ) · γK ·
(
µC + ρ · ϵ

)
γK · C +Ab +

Ay

αb︸ ︷︷ ︸
ϕinformed

(221)

When the fully informed farmer faces a C6 environment, we will have

(
˘Porg − Pcon

Pcon

)∗

>

(
Porg − Pcon

Pcon

)∗
(222)

or

(
γccc0 + γc +

αc−P−1
con

αb

)
· µC + γK · µC

c0
·
(
C − ϵ

)
Ab +

Ay

αb

>

(
1
2γccµC + γc +

αc−P−1
con

αb

)
· µC − γK · µC+ρ·ϵ

µ+ρ

γK · C +Ab +
Ay

αb

(223)

such that the misinformed farmer chooses incorrectly and requires a higher organic price premium

than the fully informed farmer before adopting organic when, for example:

• γK is large enough, assuming that αb = 0 (such that clean soil is sufficiently important for

maintaining benificial soil bacteria)

• The misinformed farmer’s initial chemical input use, c0, is sufficiently small, relative to the upper

limit on chemical input use, µC (such that the indirect harms that their current chemical usage

imposes through its effects on the soil microbiome is sufficiently small compared to the indirect

harms that the incorrectly identified, “optimal” levels of chemical use under conventional

management would impose through its effects on the soil microbiome)

• When γc and γcc are sufficiently low, and Pcon is sufficiently high, such that
(
γccc0 + γc +

αc−P−1
con

αb

)
≥

0, then

(
˘Porg−Pcon

Pcon

)∗
≥
(
Porg−Pcon

Pcon

)∗
will also be satisfied for large enough c = µC, since
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when c = µC is large enough the convex indirect costs and stock effects that the misinformed

farmer misses will decrease the value of implementing the optimal conventional management

plan relative to the value of organic management.

On the other hand, we will have

(
˘Porg − Pcon

Pcon

)∗

<

(
Porg − Pcon

Pcon

)∗
(224)

or

(
γccc0 + γc +

αc−P−1
con

αb

)
· µC + γK · µC

c0
·
(
C − ϵ

)
Ab +

Ay

αb

≤

(
1
2γccµC + γc +

αc−P−1
con

αb

)
· µC − γK · µC+ρ·ϵ

µ+ρ

γK · C +Ab +
Ay

αb

(225)

such that the misinformed farmer accepts a lower organic price premium than the fully informed

farmer before prefering organic when, for example:

• c0 is sufficiently high (i.e. sufficiently close to c = µC) and γK is sufficiently low.

9.3.2 Conventional OT2/OT3/OT4 farmer (Case A2)

Given Korg = C, for the fully informed conventional A2 farmer we have ∆(ϵ) ≥ 0 when:

(
Porg − Pcon

Pcon

)
≥

ρ ·
(

1
ρ · 1

2 · (−γcc)
(
µ
(
C − K̂con

))2
− 1

µ+ρ · γK · ϵ
)

1
αb

·
(
αb

(
γKC +Ab

)
+Ay

) (226)

Note that since the lower bound on c(t) does not bind in Case A2, the value of c does not affect

the form that
(
Porg−Pcon

Pcon

)
takes.

On the other hand, in Comparing threshold organic price premium for adopting organic with and

without Farmer Misperception for Case C6, we saw that when c = µC and Korg = C the misinformed

farmer will face ∆̆(ϵ) ≥ 0 when:

(
Porg − Pcon

Pcon

)
≥

(
Pcon · θ̆ − 1

)
Pcon · Θ̆

· µC (227)

We can therefore find conditions under which the misinformed farmer requires a higher organic

price premium before prefering to produce organically than does the fully informed A2 farmer by

examining the following inequality:
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˘(
Porg − Pcon

Pcon

)∗

≥
(
Porg − Pcon

Pcon

)∗
(228)

(
Pcon · θ̆ − 1

)
Pcon · Θ̆

· µC ≥ (229)

ρ ·
(

1
ρ · 1

2 · (−γcc)
(
µ
(
C − K̂con

))2
− 1

µ+ρ · γK · ϵ
)

1
αb

·
(
αb

(
γKC +Ab

)
+Ay

)

Pcon · θ̆ − 1

Pcon · Θ̆
· µC︸ ︷︷ ︸

≥0

≥ (230)

αb ·

1

2
· (−γcc)

(
µ
(
C − K̂con

))2
︸ ︷︷ ︸

≥0

− ρ

µ+ ρ
· γK · ϵ︸ ︷︷ ︸

≥0


αbγKC + αbAb +Ay︸ ︷︷ ︸

≥0

Pcon

(
αc + αb

(
γccc0 + γc + γK

K0
c0

))
− 1

Pcon · (αbAb +Ay)

 · µC

︸ ︷︷ ︸
≥0

≥ (231)

αb ·

1

2
· (−γcc)

(
µ
(
C − K̂con

))2
︸ ︷︷ ︸

≥0

− ρ

µ+ ρ
· γK · ϵ︸ ︷︷ ︸

≥0


αbγKC + αbAb +Ay︸ ︷︷ ︸

≥0
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This condition will be satisfied (such that
˘(

Porg−Pcon

Pcon

)∗
≥
(
Porg−Pcon

Pcon

)∗
, and such that the

misinformed farmer therefore requires a higher organic premium in order to prefer organic management

than does the fully informed farmer) when either of the following sets of conditions are satisfied:

1. αbγKC ̸= 0 and (αbAb +Ay) is sufficiently small;

2. c0 is sufficiently small, given αbγK ̸= 0

αbγKC ̸= 0 ensures that as (αbAb +Ay) tends towards zero the LHS expression in our inequality

above will tend towards positive infinity, while the expression on the RHS of our inequality will tend

towards a constant, leading the inequality above to be satisfied. On the other hand, if αbγK ̸= 0 ,

then as c0 tends towards zero, θ̆, and therefore the LHS expression in our inequality, will tend towards

positive infinity, while leaving the RHS expression unchanged. This will also result in our inequality

being satisfied.

10 Comparison of Local Discrete Analyses Across Model Specifications

The results are summarized in the following summary tables:
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Table 3: Summary of ∆(ϵ) and ∆̆(ϵ): Terms we add

PDV of stewarding soil microbiome
at organic-level capital stock and at organic prices

PDV of organic price premium
on ”level effect” of other agricultural inputs

OT1
∆C6(ϵ)

1
ρ
Porg · αbγK C︸︷︷︸

=Korg

1
ρ
(Porg − Pcon) · (αbAb +Ay)

OT2/OT3/OT4
∆A2(ϵ)

1
ρ
Porg · αbγK C︸︷︷︸

=Korg

1
ρ
(Porg − Pcon) · (αbAb +Ay)

OT3’
∆F14A(ϵ)

1
ρ
Porg · αbγK C︸︷︷︸

=Korg

1
ρ
(Porg − Pcon) · (αbAb +Ay)

Misperception

∆̆(ϵ)
1
ρ
· Θ̆ · (Porg − Pcon)
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Table 4: Summary of ∆(ϵ) and ∆̆(ϵ): Terms we subtract

PDV of microbial productivity
under conventional management

PDV of using synthetic compounds
at dynamically optimal rate

OT1
∆C6(ϵ)

1
(µ+ρ)

· Pconαb · γK ·
(
C − ϵ

)︸ ︷︷ ︸
=K0

1
ρ
·
(
Pcon

(
αb ·

(
1
2
γccµC + γc

)
+ αc

)
− 1
)
· µC

OT2/OT3/OT4
∆A2(ϵ)

1
(µ+ρ)

· Pconαb · γK ·

(C − ϵ
)︸ ︷︷ ︸

=K0

−K̂con

 1
ρ
·
(
Pcon

(
αb ·

(
1
2
γccµ

(
C − K̂con

)
+ γc

)
+ αc

)
− 1
)
· µ
(
C − K̂con

)
OT3’

∆F14A(ϵ)
1
ρ
· Pcon · αb · γK ·

(
C − ϵ

)︸ ︷︷ ︸
=K0

1
ρ
· (Pcon (αbγc + αc)− 1) · µ · ϵ︸︷︷︸

=C−K0

(misperceived) PDV of using synthetic compounds
at (misperceived) dynamically optimal conventional rate

Misperception

∆̆(ϵ)
1
ρ
·
(
Pcon · θ̆ − 1

)
· µC
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Table 5: Summary of ∆(ϵ) and ∆̆(ϵ): Rate of synthetic compound use

dynamically optimal rate
(misperceived) dynamically optimal

conventional rate

OT1
∆C6(ϵ)

µC

OT2/OT3/OT4
∆A2(ϵ)

µ
(
C − K̂con

)
OT3’

∆F14A(ϵ)
µ · ϵ︸︷︷︸

=C−K0

Misperception

∆̆(ϵ)
µC

11 Summary of Comparison of Full Information vs. Misperception

When farmers account for soil bacteria:

• Some may transition to organic management ’accidentally’ as their optimal trajectories gradually

take them toward the certification threshold (this can happen even in the absence of an organic

price premium)

• Other transitions may be induced by the organic price premium.

When farmers do not account for soil bacteria:

• They never make an ’accidental’ transition to organic, and will instead disinvest as fast as

possible to K = 0.

• If they transition can only be induced by an organic price premium.

• They will require a higher premium to adopt than a fully informed farmer would when a large

enough proportion of organic farming’s value-added comes from stock effects/soil microbes.

12 Investment Under Uncertainty

In this section we use dynamic programming and investment under uncertainty to derive the optimal

organic switching policy (i.e., the conditions under which a conventional farmer will switch to organic).

Let the action variable a be a dummy for switching to organic.

For now, let the conventional price Pcon be a fixed parameter that is not stochastic.

If the farmer stays conventional, then he gets a current period payoff (which is from the conventional

price, which we assume is a fixed parameter that is not stochastic) plus β times the continuation value

from waiting instead of switching to organic.
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If the farmer switches to organic, let’s assume for now that the farmer can’t switch back, so the

payoff to switching is a lump-sum payoff which is the value function from being organic from that year

t onwards (similarly to the local discrete analysis). Thus, there is no continuation value if the farmer

switches to organic since we model the farmer as having no more decisions to make after switching.

The optimal organic switching policy under uncertainty will be a threshold value of the organic

price premium above which the conventional farmer will switch to organic. This threshold organic

price premium will be a function of K (or ϵ) and of parameters (including parameters in the transition

density for the organic price Porg).

Thus, for our investment under uncertainty model, we are focusing on the switch to organic, not

the quantity of synthetic compound use.

The (infinite horizon) value function for a conventional farmer who has the option to switch to

organic is given by:

Vcon(Porg,K) = max

{
max

I

(
Gcon(K, I) + β · E

[
Vcon(P

′
org,K

′) | Porg,K, I, at = 0
])

, Vorg(Porg,Korg)

}
.

(232)

where Porg is a stochastic state variable, and where the discount factor β ∈ [0, 1). The value function

for a conventional farmer who has the option to switch to organic is the maximum of the PDV payoff

from 2 possible options: (1) stay conventional, or (2) switch to organic. Vorg(Korg) is the value

function from organic production, and is therefore the PDV of the entire stream of net benefits from

having switched to organic production (similar to the Vorg(Korg) we use in the local discrete analysis).

We assume for now that there are no costs to switching, aside from any foregone initial per-period

net benefits (profits) from lower synthetic compound use.

We can write the following expression for Gcon(K, I):

Gcon(K, I) = Pcon · f(ct, bt)− ct (233)

If the farmer remains conventional, they choose ct according to the dynamically optimal chemical-

use policy{c∗t } that solves their value function when managing conventionally is their only option.

{c∗t } can be determined using optimal control theory or dynamic programming, and expressed in

terms of model parameters.

We assume Korg = C.

Right now Vorg(Porg,Korg) is easy to work with when Korg = C̄ since we can factor out Porg and

express Vorg(Porg,Korg) as Porg · f(Korg) for some function f(Korg) of Korg (which makes it easier to

solve for P ∗
org and the threshold organic premium).
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12.1 Case C6

Let’s assume we are in Case C6. Since for Case C6, K̂con < 0, we will try writing everything, including

Gcon(K, I) and the subsequent G∗
con(K), without using K̂con.

In case C6 we have:

Vorg(Porg,Korg) =
1

ρ
Porg·

(
αb

((
1

2
γccµC + γc +

αc − P−1
org

αb
− 1

2
γccµKorg

)
µ
(
C −Korg

)
+ γKKorg +Ab

)
+Ay

)
(234)

Since both K̂org and K̂con are negative, and since K̂org is a function of Porg, we do not write any

of the functions (including Vorg(Porg,Korg), Gcon(K, I), and G∗
con(K), as functions of either K̂org or

K̂con. Later, for other cases in which K̂con ∈ [0, C], we might want to write Gcon(K, I) and G∗
con(K)

as a function of K̂con. Since K̂org is a function of Porg, however, we might not want to use K̂org any

of the functions (including Vorg(Porg,Korg)) even if K̂org > 0.

When Korg = C our expression for Vorg(Porg,Korg) becomes:

Vorg(Porg,Korg) =
1

ρ
Porg ·

(
αb

(
γKC +Ab

)
+Ay

)
(235)

Next we consider

Gcon(K, I) = Pcon · f(ct, bt)− ct (236)

Let’s assume for simplicity that for all periods t for which the farmer chooses to continue producing

conventionally, they will employ the pesticide policy that solves the conventional management problem

conditional on conventional management being thier only option. Then, when the farmer finds

themselves in a C6 parameters space, and when µ ̸= 0 and γcc ̸= 0 , their management plan comes

from the following lower corner (OT1) solution:

Given that c = µC, we have:

K∗(t) = K(0) · e−µ·t, ∀t ≥ 0 (237)

I∗(t) = −µK(t)∀ t (238)

and:

c∗(t) = µC︸︷︷︸
c

, ∀t ≥ 0. (239)

Given I∗(t) = −µK∗(t) from equation (238), and given the following discrete-time version of the

equation of motion:
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I(t) = K ′ −K, (240)

we can derive the discretized value of next period’s capital stock, K ′, as follows:

K ′ −K = −µK (241)

K ′ = (1− µ)K (242)

Similarly, we can derive the discretized value of this period’s capital stock K as a function of next

period’s capital stock, K ′, as follows:

K ′ = (1− µ)K (243)

K =
K ′

(1− µ)
(244)

bt,con =

(
γc · ct +

1

2
γcc · c2t + γK ·Kt +Ab

)
(245)

and:

f(bt, ct) = (αb · bt + αc · ct +Ay) (246)

We can therefore express f as a function of ct and Kt as follows:

f(ct) =

(
αb ·

(
γc · ct +

1

2
γcc · c2t + γK ·Kt +Ab

)
+ αc · ct +Ay

)
. (247)

We can then express Gcon as follows:

Gcon(K, I) = Pcon ·
(
(αb · γc + αc) · ct + αb ·

1

2
γcc · c2t + αb ·

(
γK ·Kt +Ab +

Ay

αb

))
− ct (248)

Gcon(K, I) = Pcon · αb ·
((

γc +
αc − P−1

con

αb

)
· ct +

1

2
γcc · c2t +

(
γK ·Kt +Ab +

Ay

αb

))
(249)

Gcon(K, I) = Pcon · αb ·
((

γcc · c+ γc +
αc − P−1

con

αb

)
· c− 1

2
γcc · c2 +

(
γK ·K +Ab +

Ay

αb

))
(250)

Substituting in the optimal c∗(t) from equation (239) for c(t), we get:
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Gcon(K, I∗) = Pcon · αb ·
((

γcc · c∗ + γc +
αc − P−1

con

αb

)
· c∗ − 1

2
γcc · c∗2 +

(
γK ·K +Ab +

Ay

αb

))
(251)

Gcon(K, I∗) = Pcon ·αb ·
((

γcc · µC + γc +
αc − P−1

con

αb

)
· µC − 1

2
γcc ·

(
µC
)2

+

(
γK ·K +Ab +

Ay

αb

))
(252)

Gcon(K, I∗) = Pcon · αb ·
((

γcc · µC + γc +
αc − P−1

con

αb

)
· µC + γK ·K +Ab +

Ay

αb

)
(253)

When net investment I(t) (and synthetic compound use c(t)) is chosen optimally, Gcon(K, I∗) is

no longer a function of I (or c), so we can define the optimized net gain G∗
con(K) as:

G∗
con(K) ≡ Gcon(K, I∗) (254)

G∗
con(K) = Pcon · αb ·

((
γcc · µC + γc +

αc − P−1
con

αb

)
· µC + γK ·K +Ab +

Ay

αb

)
(255)

Note that since the optimal trajectories for OT1 are not piecewise despite being MRA (since we

approach K = 0 asymptotically), the optimized net gain G∗
con(K) is not piecewise.

Since both K̂org and K̂con are negative, and since K̂org is a function of Porg, we do not write any

of the functions (including Vorg(Porg,Korg), Gcon(K, I), and G∗
con(K), as functions of either K̂org or

K̂con. Later, for other cases in which K̂con ∈ [0, C], we might want to write Gcon(K, I) and G∗
con(K)

as a function of K̂con. Since K̂org is a function of Porg, however, we might not want to use K̂org any

of the functions (including Vorg(Porg,Korg)) even if K̂org > 0.

Taking the derivative of G∗
con(K) with respect to K, we get:

dG∗
con(K)

dK
= Pcon · αb · γK ≥ 0 (256)

Evaluating optimized net gain G∗
con(K) at next period’s state K ′, we get:

G∗
con(K

′) = Pcon · αb ·
((

γcc · µC + γc +
αc − P−1

con

αb

)
· µC + γK ·K ′ +Ab +

Ay

αb

)
(257)

Substituting in equation (243) into G∗
con(K

′) to write G∗
con(K

′) in terms of K, instead of K ′, we

get:
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G∗
con(K

′) = Pcon · αb ·
((

γcc · µC + γc +
αc − P−1

con

αb

)
· µC + γK · (1− µ)K +Ab +

Ay

αb

)
(258)

G∗
con(K

′) =Pcon · αb ·
((

γcc · µC + γc +
αc − P−1

con

αb

)
· µC + γK ·K +Ab +

Ay

αb

)
(259)

− Pcon · αb · γK · µK

G∗
con(K

′) = G∗
con(K)− dG∗

con(K)

dK
· µ ·K (260)

If the farmer pursues the optimal C6 conventional management plan as long as they remain

conventional, then we can simplify our notation for Vcon(Porg,K) and write:

Vcon(Porg,K) = max
{
G∗

con(K) + β · E
[
Vcon(P

′
org,K

′) | Porg,K, at = 0
]
, Vorg(Porg,Korg)

}
, (261)

Let’s assume that Porg is distributed iid with pdf ϕ(Porg), cdf Φ(Porg), and support Porg ∈
[Porg, P org].

For simplicity we also assume that at = 0 does not give the farmer information about the

distribution of Porg because, for example, the distribution of Porg is known to the farmer ahead

of the starting period and is not affected by their adoption decision in the current period. In this

case we can write that

Vcon(Porg,K) = max
at∈{0,1}

{
G∗

con(K) + β · E
[
Vcon(P

′
org,K

′) | K
]
, Vorg(Porg,Korg)

}
, (262)

Now, the value of continuing to produce conventionally, G∗
con(K)+β ·E

[
Vcon(P

′
org,K

′) | K
]
is not

a function of Porg. The value of producing organically, Vorg(Porg,Korg), though, is strictly increasing

with respect to Porg (assuming αb

(
γKC +Ab +

Ay

αb

)
̸= 0.)

Therefore, assuming that αb

(
γKC +Ab +

Ay

αb

)
̸= 0, we can find a value of Porg for each K at

which the value of continuing to produce conventionally is equal to the value of producing organically.

We will denote this value as P ∗
org(K). At P ∗

org(K) we therefore have that:

92



G∗
con(K) + β · E

[
Vcon(P

′
org,K

′) | K
]
= Vorg(Porg,Korg | Porg = P ∗

org(K)) (263)

G∗
con(K) + β · E

[
Vcon(P

′
org,K

′) | K
]
=

1

ρ
P ∗
org(K) · αb

(
γKC +Ab +

Ay

αb

)
(264)

Next we can write E
[
Vcon(P

′
org,K

′) | K
]
as an integral, using Porg and P org as our lower and

upper bounds on P ′
org, respectively:

G∗
con(K) + β ·

[∫ P ∗
org(K

′)

Porg

(
G∗

con(K
′) + β · E

[
Vcon(P

′′
org,K

′′) |K ′])ϕ(P ′
org)dP

′
org (265)

+

∫ P org

P ∗
org(K

′)

1

ρ
P ′
orgαb

(
γKC +Ab +

Ay

αb

)
· ϕ(P ′

org)dP
′
org

]

=
1

ρ
P ∗
org(K) · αb

(
γKC +Ab +

Ay

αb

)

Note that if we evaluate equation (12.1) at K ′, we can can write :

G∗
con(K) + β ·


∫ P ∗

org(K
′)

Porg

(
G∗

con(K
′) + β · E

[
Vcon(·,K ′′)

])︸ ︷︷ ︸
1
ρ
P ∗
org(K

′)·αb

(
γKC+Ab+

Ay
αb

) ϕ(P ′
org)dP

′
org (266)

+

∫ P org

P ∗
org(K

′)

1

ρ
P ′
orgαb

(
γKC +Ab +

Ay

αb

)
· ϕ(P ′

org)dP
′
org

]

=
1

ρ
P ∗
org(K) · αb

(
γKC +Ab +

Ay

αb

)

or:

P ∗
org(K) =

G∗
con(K)

1
ραb

(
γKC +Ab +

Ay

αb

) +
β

1
ραb

(
γKC +Ab +

Ay

αb

) (267)

·

[∫ P ∗
org(K

′)

Porg

(
1

ρ
P ∗
org(K

′) · αb

(
γKC +Ab +

Ay

αb

))
· ϕ(P ′

org)dP
′
org

+

∫ P org

P ∗
org(K

′)

1

ρ
P ′
orgαb

(
γKC +Ab +

Ay

αb

)
· ϕ(P ′

org)dP
′
org

]
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P ∗
org(K) =

G∗
con(K)

1
ραb

(
γKC +Ab +

Ay

αb

) (268)

+
β

1
ραb

(
γKC +Ab +

Ay

αb

) ·

[∫ P ∗
org(K

′)

Porg

(
1

ρ
P ∗
org(K

′) · αb

(
γKC +Ab +

Ay

αb

))
· ϕ(P ′

org)dP
′
org

+

∫ P org

P ∗
org(K

′)

1

ρ
P ′
orgαb

(
γKC +Ab +

Ay

αb

)
· ϕ(P ′

org)dP
′
org

]

P ∗
org(K) =

G∗
con(K)

1
ραb

(
γKC +Ab +

Ay

αb

) + β · P ∗
org(K

′) ·
∫ P ∗

org(K
′)

Porg

ϕ(P ′
org)dP

′
org + β ·

∫ P org

P ∗
org(K

′)
P ′
org · ϕ(P ′

org)dP
′
org

(269)

P ∗
org(K) =

G∗
con(K)

1
ραb

(
γKC +Ab +

Ay

αb

) + β · P ∗
org(K

′) · Φ(P ∗
org(K

′)) + β ·
∫ P org

P ∗
org(K

′)
P ′
org · ϕ(P ′

org)dP
′
org

(270)

P ∗
org(K) =

G∗
con(K)

1
ραb

(
γKC +Ab +

Ay

αb

) + β · P ∗
org(K

′) · Pr(P ′
org ≤ P ∗

org(K
′)) + β · E[P ′

org|P ′
org > P ∗

org(K
′)]

(271)

P ∗
org(K) =

G∗
con(K)

1
ραb

(
γKC +Ab +

Ay

αb

) + β ·
(
P ∗
org(K

′) · Pr(P ′
org ≤ P ∗

org(K
′)) + E[P ′

org|P ′
org > P ∗

org(K
′)]
)

(272)

where:

Pr(P ′
org ≤ P ∗

org(K
′)) = Φ(P ∗

org(K
′)) =

∫ P ∗
org(K

′)

Porg

ϕ(P ′
org)dP

′
org (273)

E[P ′
org|P ′

org > P ∗
org(K

′)] =

∫ P org

P ∗
org(K

′)
P ′
org · ϕ(P ′

org)dP
′
org (274)

Since Porg is iid, we have:
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P ∗
org(K) =

G∗
con(K)

1
ραb

(
γKC +Ab +

Ay

αb

) + β ·
(
P ∗
org(K

′) · Pr(Porg ≤ P ∗
org(K

′)) + E[Porg|P ′
org > P ∗

org(K
′)]
)

(275)

where:

Pr(Porg ≤ P ∗
org(K

′)) = Pr(P ′
org ≤ P ∗

org(K
′)) = Φ(P ∗

org(K
′)) =

∫ P ∗
org(K

′)

Porg

ϕ(Porg)dPorg (276)

E[Porg|Porg > P ∗
org(K

′)] = E[P ′
org|P ′

org > P ∗
org(K

′)] =

∫ P org

P ∗
org(K

′)
Porg · ϕ(Porg)dPorg (277)

If K = 0 we will have K ′ = 0, and thus K will be 0 in all subsequent time periods. In this case

P ∗
org(K) = P ∗

org(K
′) = P ∗

org(0), and we can write:

P ∗
org(0) =

G∗
con(0)

1
ραb

(
γKC +Ab +

Ay

αb

) +β ·P ∗
org(0) ·Pr(Porg ≤ P ∗

org(0))+β ·E[Porg|Porg > P ∗
org(0)] (278)

When there is no uncertainty about Porg and Porg is not stochastic, then the threshold P ∗
orgdet(K)

is given by:

P ∗
orgdet(K) =

G∗
con(K)

1
ραb

(
γKC +Ab +

Ay

αb

) (279)

Previously we found that when there is no uncertainty and Korg = C, the range of
(
Porg−Pcon

Pcon

)
yielding ∆(ϵ) ≥ 0 for Case C6 is

Porg−Pcon

Pcon
≥
(
Porg−Pcon

Pcon

)∗
deterministic

, where:

(
Porg − Pcon

Pcon

)∗

deterministic

=

(
1
2γccµC + γc +

αc−P−1
con

αb

)
· µC − 1

(µ+ρ) · γK ·
(
µC + ρ · ϵ

)
γK · C +Ab +

Ay

αb

(280)

We now confirm that when Korg = C, P ∗
orgdet(K) yields the same threshold organic premium(

Porg−Pcon

Pcon

)∗
deterministic

above (which we previous derived for Case C6 when there is no uncertainty
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and when Korg = C in the full derivations).

From condition , we would then finish writing out our expression for P ∗
org(K) when there is no

uncertainty over the value of P ∗
org and when Korg = C as follows:

Σ∞
t=0β

tG∗
con(K

(t)) =
1

ρ
P ∗
org(K) · αb

(
γKC +Ab +

Ay

αb

)
(281)

P ∗
org(K) =

Σ∞
t=0β

tG∗
con(K

(t))

1
ρ · αb

(
γKC +Ab +

Ay

αb

) (282)

Note though that our denominator comes from a continuous time calculation, while our numerator

comes from a discrete time calculation. For consistency, it would be better to have our assertions

about discrete vs continous time match across the two. So we would in fact either want to write

P ∗
org(K) =

Σ∞
t=0β

tG∗
con(K

(t))

Σ∞
t=0β

tαb

(
γKC +Ab +

Ay

αb

) (283)

or

P ∗
org(K) =

∫∞
0 Gcon(K

∗(t), I∗(t)) · e−ρ·tdt

1
ρ · αb

(
γKC +Ab +

Ay

αb

) (284)

where K∗(t) and I∗(t) are our solutions to the conventional C6 problem. From our C6 analysis we

know that:

∫ ∞

0
Gcon(K

∗(t), I∗(t)) · e−ρ·tdt (285)

=
1

ρ
· Pconαb ·

(
ρ

(µ+ ρ)
· γK · (K0) +

(
1

2
γccµC + γc +

αc − P−1
con

αb

)
· µC +Ab +

Ay

αb

)

and so P ∗
org(K) can be written as

P ∗
org(K) =

1
ρ · Pconαb ·

(
ρ

(µ+ρ) · γK · (K0) +
(
1
2γccµC + γc +

αc−P−1
con

αb

)
· µC +Ab +

Ay

αb

)
1
ρ · αb

(
γKC +Ab +

Ay

αb

) (286)

P ∗
org(K) =

Pcon

(
ρ

(µ+ρ) · γK ·K +
(
1
2γccµC + γc +

αc−P−1
con

αb

)
· µC +Ab +

Ay

αb

)
γKC +Ab +

Ay

αb

(287)

From this equation we can derive an organic price premium needed to induce a preference for

organic management:
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P ∗
org(K) =

Pcon

(
ρ

(µ+ρ) · γK ·K +
(
1
2γccµC + γc +

αc−P−1
con

αb

)
· µC +Ab +

Ay

αb

)
γKC +Ab +

Ay

αb

(288)

P ∗
org(K)

Pcon
=

(
ρ

(µ+ρ) · γK ·K +
(
1
2γccµC + γc +

αc−P−1
con

αb

)
· µC +Ab +

Ay

αb

)
γKC +Ab +

Ay

αb

(289)

P ∗
org(K)

Pcon
− 1 =

(
ρ

(µ+ρ) · γK ·K +
(
1
2γccµC + γc +

αc−P−1
con

αb

)
· µC +Ab +

Ay

αb

)
γKC +Ab +

Ay

αb

− 1 (290)

P ∗
org(K)− Pcon

Pcon
=

ρ
(µ+ρ) · γK ·K +

(
1
2γccµC + γc +

αc−P−1
con

αb

)
· µC +Ab +

Ay

αb
− γKC −Ab − Ay

αb

γKC +Ab +
Ay

αb

(291)

P ∗
org(K)− Pcon

Pcon
=

(
1
2γccµC + γc +

αc−P−1
con

αb

)
· µC − γKC + ρ

(µ+ρ) · γK ·K

γKC +Ab +
Ay

αb

(292)

P ∗
org(K)− Pcon

Pcon
=

(
1
2γccµC + γc +

αc−P−1
con

αb

)
· µC − γK ·

(
C − ρ

(µ+ρ) ·K
)

γKC +Ab +
Ay

αb

(293)

If we define K in terms of its distance from C, ϵ, such that K = C − ϵ we then have:

P ∗
org(K)− Pcon

Pcon
=

(
1
2γccµC + γc +

αc−P−1
con

αb

)
· µC − γK ·

(
C − ρ

µ+ρ ·
(
C − ϵ

))
γKC +Ab +

Ay

αb

(294)

P ∗
org(K)− Pcon

Pcon
=

(
1
2γccµC + γc +

αc−P−1
con

αb

)
· µC − γK ·

(
µ+ρ
µ+ρ · C − ρ

µ+ρ ·
(
C − ϵ

))
γKC +Ab +

Ay

αb

(295)

P ∗
org(K)− Pcon

Pcon
=

(
1
2γccµC + γc +

αc−P−1
con

αb

)
· µC − γK ·

(
µ

µ+ρ · C + ρ
µ+ρ · ϵ

)
γKC +Ab +

Ay

αb

(296)

P ∗
org(K)− Pcon

Pcon
=

(
1
2γccµC + γc +

αc−P−1
con

αb

)
· µC − 1

µ+ρ · γK ·
(
µ · C + ρ · ϵ

)
γKC +Ab +

Ay

αb

(297)

Note that this organic price premium is the same as the
(
Porg−Pcon

Pcon

)∗
deterministic

that we derived

in our C6 local discrete analysis when Korg = C.
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When there is uncertainty, we find that since
(
P ∗
org(K

′) · Pr(Porg ≤ P ∗
org(K

′)) + E[Porg|P ′
org > P ∗

org(K
′)]
)
≥

0, the threshold organic premium
(
Porg−Pcon

Pcon

)∗
uncertainty

is higher, and is given by the following when

Korg = C:

From condition (12.1) we have that at P ∗
org(K) the following condition holds when Korg = C:

G∗
con(K) + β · E

[
Vcon(P

′
org,K

′) | K
]
=

1

ρ
P ∗
org(K) · αb

(
γKC +Ab +

Ay

αb

)
(298)

where the RHS comes from the continouous time value of Vorg(C), conditional on remaining organic

and conditional on Korg = C.

Re-arranging terms, from this equation we can write

P ∗
org(K) = ·

∫∞
t=0G

∗
con(K

∗(t))e−ρ·tdt

1
ρ · αb

(
γKC +Ab +

Ay

αb

) (299)

+ ·
∫∞
t=0 (Vorg(Porg,Korg)−G∗

con(K
∗(t))) · a(K) · e−ρ·tdt

1
ρ · αb

(
γKC +Ab +

Ay

αb

)

where a conventional farmer will adopt organic (a = 1) if:

a(Porg,K;Korg) = 1{Vorg(Porg,Korg) > G∗
con(K) + β · E

(
Vcon(P

′
org,K

′)K
)
} (300)

continuous C6 optimal control problem. Based on our solution to that problem, we know that we

can write:

P ∗
org(K) =

1
ρ · Pconαb ·

(
ρ

(µ+ρ) · γK · (K) +
(
1
2γccµC + γc +

αc−P−1
con

αb

)
· µC +Ab +

Ay

αb

)
1
ρ · αb

(
γKC +Ab +

Ay

αb

) (301)

+

∫∞
t=0 (Vorg(Porg,Korg)−G∗

con(K
∗(t))) · a(Porg,K;Korg) · e−ρ·tdt

1
ρ · αb

(
γKC +Ab +

Ay

αb

) (302)

P ∗
org(K) =

Pcon

(
ρ

(µ+ρ) · γK · (K) +
(
1
2γccµC + γc +

αc−P−1
con

αb

)
· µC +Ab +

Ay

αb

)
γKC +Ab +

Ay

αb

(303)

+

∫∞
t=0 (Vorg(Porg,Korg)−G∗

con(K
∗(t)))) · a(Porg,K;Korg) · e−ρ·tdt

1
ρ · αb

(
γKC +Ab +

Ay

αb

)
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From this equation we can write an expression for the organic price premium required to induce

adoption of organic management when the farmer faces uncertainty in the value of Porg:

P ∗
org(K)

Pcon
=

(
ρ

(µ+ρ) · γK · (K) +
(
1
2γccµC + γc +

αc−P−1
con

αb

)
· µC +Ab +

Ay

αb

)
γKC +Ab +

Ay

αb

(304)

+

∫∞
t=0 (Vorg(Porg,Korg)−G∗

con(K
∗(t))) · a(Porg,K;Korg) · e−ρ·tdt

Pcon · 1
ρ · αb

(
γKC +Ab +

Ay

αb

)

P ∗
org(K)

Pcon
− 1 =

(
ρ

(µ+ρ) · γK · (K) +
(
1
2γccµC + γc +

αc−P−1
con

αb

)
· µC +Ab +

Ay

αb

)
γKC +Ab +

Ay

αb

− 1 (305)

+

∫∞
t=0 (Vorg(Porg,Korg)−G∗

con(K
∗(t))) · a(Porg,K;Korg) · e−ρ·tdt

Pcon · 1
ρ · αb

(
γKC +Ab +

Ay

αb

)

P ∗
org(K)

Pcon
− Pcon

Pcon
=

((
1
2γccµC + γc +

αc−P−1
con

αb

)
· µC + ρ

(µ+ρ) · γK ·
(
C − ϵ

)
+Ab +

Ay

αb

)
γKC +Ab +

Ay

αb

(306)

−
γKC +Ab +

Ay

αb

γKC +Ab +
Ay

αb

+

∫∞
t=0 (Vorg(Porg,Korg)−G∗

con(K
∗(t))) · a(Porg,K;Korg) · e−ρ·tdt

Pcon · 1
ρ · αb

(
γKC +Ab +

Ay

αb

)

P ∗
org(K)− Pcon

Pcon
=

(
1
2γccµC + γc +

αc−P−1
con

αb

)
· µC − γKC + 1

(µ+ρ) · γK ·
(
ρC − ρϵ

)
γKC +Ab +

Ay

αb

(307)

+

∫∞
t=0 (Vorg(Porg,Korg)−G∗

con(K
∗(t))) · a(Porg,K;Korg) · e−ρ·tdt

Pcon · 1
ρ · αb

(
γKC +Ab +

Ay

αb

)

(
Porg(K)− Pcon

Pcon

)∗

uncertainty

=

(
1
2γccµC + γc +

αc−P−1
con

αb

)
· µC − 1

(µ+ρ) · γK ·
(
µC + ρϵ

)
γKC +Ab +

Ay

αb

(308)

+

∫∞
t=0 (Vorg(Porg,Korg)−G∗

con(K
∗(t))) · a(Porg,K;Korg) · e−ρ·tdt

Pcon · 1
ρ · αb

(
γKC +Ab +

Ay

αb

)
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(
Porg(K)− Pcon

Pcon

)∗

uncertainty

=

(
Porg − Pcon

Pcon

)∗

deterministic

(309)

+

∫∞
t=0 (Vorg(Porg,Korg)−G∗

con(K
∗(t))) · a(Porg,K;Korg) · e−ρ·tdt

Pcon · 1
ρ · αb

(
γKC +Ab +

Ay

αb

)

(
Porg(K)− Pcon

Pcon

)∗

uncertainty

=

(
Porg − Pcon

Pcon

)∗

deterministic

(310)

+

∫ ∞

t=0
(Vorg(Porg,Korg)−G∗

con(K
∗(t))) · a(Porg,K;Korg) · e−ρ·tdt︸ ︷︷ ︸

≥0

Pcon · 1
ρ
· αb

(
γKC +Ab +

Ay

αb

)
︸ ︷︷ ︸

≥0︸ ︷︷ ︸
≥0

We therefore have that:(
Porg(K)− Pcon

Pcon

)∗

uncertainty

≥
(
Porg − Pcon

Pcon

)∗

deterministic

(311)

To see why ∫ ∞

t=0
(Vorg(Porg,Korg)−G∗

con(K
∗(t))) · a(Porg,K;Korg) · e−ρ·tdt ≥ 0 (312)

is satisfied, note the following. From our solution to the C6 conventional optimization problem, we

had that when the farmer follows their optimal management plan Gcon(K
∗(t), I∗(t)) decreases in value

over time as the farmer’s capital stock falls. For all periods of time at which Gcon(K
∗(t), I∗(t)) >

Vorg(Porg,Korg), and at which we therefore have Vorg(Porg,Korg) − Gcon(K
∗(t), I∗(t)) < 0, our

indicator function equals zero, and Vorg(Porg,Korg) − Gcon(K
∗(t), I∗(t)) < 0 does not contribute

to the value of our integral. On the otherhand for all periods of time t > TVorg , where TVorg is the

first moment in time at which Gcon(K
∗(t), I∗(t)) ≤ Vorg(Porg,Korg), we will have Vorg(Porg,Korg) −

Gcon(K
∗(t), I∗(t)) ≥ 0 and a(Porg,K;Korg) = 0, such that Vorg(Porg,Korg) − Gcon(K

∗(t), I∗(t)) ≥ 0

contributes positively (or at least non-negatively) to the value of our integral.

Thus, when there is uncertainty, the threshold organic price premium is higher by the following

amount when Korg = C:
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(
Porg(K)− Pcon

Pcon

)∗

uncertainty

−
(
Porg − Pcon

Pcon

)∗

deterministic

= (313)∫∞
t=0 (Vorg(Porg,Korg)−G∗

con(K
∗(t))) · a(Porg,K;Korg) · e−ρ·tdt

Pcon · 1
ρ · αb

(
γKC +Ab +

Ay

αb

)

where a conventional farmer will adopt organic (a = 1) if:

a(Porg,K;Korg) = 1{Vorg(Porg,Korg) > G∗
con(K) + β · E

[
Vcon(P

′
org,K

′) | K
]
} (314)

13 Application to Organic Standards in US and elsewhere

13.1 Application to USDA Organic Standards

In the United States, the National Organic Program (NOP), which is directed by the U.S. Department

of Agriculture (USDA) Agricultural Marketing Service (AMS) and became effective on February 20,

2001, oversees and enforces the integrity of the rigorous USDA organic standards and the accreditation

of organic certifiers (USDA Agricultural Marketing Service, 2000b; Organic Produce Network, 2022).Organic

is one of the most heavily regulated and closely monitored food systems in the U.S. Any product

labeled as organic must be USDA certified (Organic Produce Network, 2022). The National Organic

Program (NOP) establishes national standards for the production and handling of organically produced

products, including a National List of substances approved for and prohibited from use in organic

production and handling; as well as requirements for labeling products as organic and containing

organic ingredients. Under the National Organic Program (NOP), certifying agents certify production

and handling operations in compliance with the requirements of this regulation and initiate compliance

actions to enforce program requirements (USDA Agricultural Marketing Service, 2000b).

The organic production and handling requirements of the National Organic Program (NOP)

include the requirement that production practices implemented must maintain or improve the natural

resources of the operation, including soil and water quality, as well as the requirement that the field or

farm parcel must have had no prohibited substances applied to it for a period of 3 years immediately

preceding harvest of the crop. The on-side inspection must verify that prohibited substances have

not been and are not being applied to the operation through means which, at the discretion of the

certifying agent, may include the collection and testing of soil; water; waste; seeds; plant tissue; and

plant, animal, and processed products samples (USDA Agricultural Marketing Service, 2000a). Thus,
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becoming certified organic under the USDA National Organic Program may entail being subject to soil

testing (USDA Agricultural Marketing Service, 2000a; Baier and Ahramjian, 2012; USDA Agricultural

Marketing Service, 2018).

In our model, we model organic certification requirements as a clean soil stock threshold Korg(or,

equivalently, a threshold for the stock of synthetic compounds in the soil Corg). Our choice to make

certification contingent on a stock threshold at least partially captures the main features of the US

National Organic Program, including the requirements that practices implemented must maintain or

improve the natural resources of the operation, including soil and water quality, and that the field or

farm parcel must have had no prohibited substances applied to it for a period of 3 years immediately

preceding harvest of the crop. In order to verify that practices implemented must maintain or improve

the natural resources of the operation, including soil and water quality and that prohibited substances

have not been applied by a period of 3 years, the certifying agent may collect and test the soil; as a

consequence, the certification requirement essentially amounts to the requirement that the stock of

synthetic compounds in the soil must not exceed a threshold Corg (or, equivalently, clean soil stock

must meet a clean soil stock threshold Korg).

To see this, consider that a farmer’s organic certification agent ultimately reserves the right to

reject a farmer’s application if they find evidence of prohibited substances in the farmer’s soils (as

per the USDA’s certification requirements) that exceed a threshold Corg (or, equivalently, a clean soil

stock that does not meet a clean soil stock threshold Korg). Therefore, the farmer needs to ensure

that the stock of synthetic residues remaining in their soils meets this threshold Corg. If the stock of

synthetic residues remaining in a farmer’s soils after the required 3-year period of not using synthetic

compounds has not fallen below the threshold Corg, the farmer’s application will be rejected, even if

the farmer claims to have not used prohibited substances for the last three years. Therefore, our use

of a capital stock threshold is justified, because satisfying this synthetic residue stock requirement is

a meaningful/necessary part of becoming eligible for certification.

We can additionally impose the requirement that the field or farm parcel must have had no

prohibited substances applied to it for a period of 3 years immediately preceding harvest of the crop

as a requirement that the optimal trajectory for synthetic compound input use c(t) = 0 for all t.

Continuous transitions to organic management that can involve c(t) = 0 for at least 3 years include:

1. Optimal Trajectories 5 (OT5): Invest as fast as possible until K = C

2. Optimal Trajectories 4 (OT4) if K̂j = C: Approach K̂j = C at moderate speed; and

3. Optimal Trajectories 4 (OT4, Approach K̂j at moderate speed) if µ = 0 (i.e., the stock of

synthetic compounds in the soil does not decay on its own) and K̂j ≥ Korg.

For discrete ’jump’ transitions, we can additionally impose the requirement that any discrete

’jump’ transition must have c(t) for at least 3 years as part of the discrete ’jump’.
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For the majority of our analysis, we also assume (as we approximately have in all real-world

organic certification programs known to the authors) that organic certification requires that a farmer

fully remediate their soils, such that they will be certified organic if and only if K = C. In this case

we have that Korg = C.

13.2 Application to Organic Standards Elsewhere

Great Britain’s organic standards are currently the same as EU standards. Basically, no synthetic

fertilizers or pesticides may be used. Approved fertilizers and pesticides can only be use if other

management methods are not working by themselves. Even then their use has to be justified. The

certification program establishes nutrient caps (such that farmers cannot apply more than X amount

of nitrogen equivalents per Y area of land ). Farmers must also demonstrate that they are making

efforts to increase the ecological/environmental soundness of their operation (e.g. by minimizing the

destruction of important natural habitats, etc) (Soil Association, 2023a). There is a 2- to 3-year

transition period before organic premium can be claimed (Soil Association, 2023a). Testing will be

performed at the end of the transition period to determine whether farmers need to pursue a longer

transition period, and soil samples may be taken to determine if the conversion period need to be

extended (Soil Association, 2023b).

In Australia, ACO Certification LTD, Australia’s largest organic certifier, tests farmers’ soils for

pesticide residues (ACO Certification Ltd, 2023a,b)1.

1This was also confirmed via personal communication with ACO’s Technical Officer, Ruwi Jayasuriya, January 2024
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14 Discussion and Conclusion

When farmers account for soil bacteria:

• Some may transition to organic management ’accidentally’ as their optimal trajectories gradually

take them toward the certification threshold (this can happen even in the absence of an organic

price premium)

• Other transitions may be induced by the organic price premium.

When farmers do not account for soil bacteria:

• They never make an ’accidental’ transition to organic, and will instead disinvest as fast as

possible to K = 0.

• If they transition can only be induced by an organic price premium.

• They will require a higher premium to adopt than a fully informed farmer would when a large

enough proportion of organic farming’s value-added comes from stock effects/soil microbes.

Not being informed about soil bacteria could change behavior in a way that leads farmers to adopt

sub-optimal, and even detrimental management practices.

⇒ Implications for welfare improving policy initiatives
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Appendix

A-1



A Optimal Solution for Each Stage

A.1 Stock of clean soils K̃j below which there is no trade-off involved with net

investment

The stationary rate of return on capital Rj(K) is undefined when ∂G(K,0)
∂I = 0. The condition that

∂G(K,0)
∂I = 0 simplifies to:

(
Pj ·

(
αb

(
γc + γccµ

(
C −K

))
+ αc

)
− 1
)
= 0 (A.1)

Let K̃j be defined as the stock of clean soils at which ∂G(K,0)
∂I = 0. In other words, at the stock

of clean soils K̃j , the marginal effect of net investment I on the net gain function G(K, I) when net

investment is 0 is 0. K̃j is given by:

K̃j =

αc−P−1
j

αb
+ γc

γccµ
+ C (A.2)

K̃j =

αc︸︷︷︸
≥0

−P−1
j︸︷︷︸
≥0

αb︸︷︷︸
≥0

+ γc

γccµ︸︷︷︸
≤0

+ C︸︷︷︸
>0

(A.3)

For K < K̃j ,
∂G(K,0)

∂I > 0 (i.e., net investment has a positive effect on contemporaneous net gain

starting from a net investment of I = 0), and for K ≤ K̃j ,
∂G(K,0)

∂I ≥ 0 (i.e., net investment has a

non-negative effect on contemporaneous net gain starting from a net investment of I = 0). Since

our analysis using the stationary rate of return on capital R(K) assumes that ∂G(K,I)
∂I < 0 (i.e., net

investment has a strictly negative effect on contemporaneous net gain), we cannot use the stationary

rate of return on capital Rj(K) and the comparison between the stationary rate of return on capital

Rj(K) and ρ to describe the optimal solution when K ≤ K̃j .

To see this, we find that for K < K̃j , Rj(K) ≤ −µ ≤ 0:

Rj(K) = −µ︸︷︷︸
≤0

+

γK︸︷︷︸
≥0

γccµ
(
C −K

)
+ γc +

αc − P−1
j

αb︸ ︷︷ ︸
<0

≤ −µ ≤ 0, (A.4)

which would suggest that for K < K̃j , since K < K̃j , Rj(K) ≤ −µ < ρ, the farmer will always

disinvest in clean soil until K is driven down to K = 0. But disinvesting would not make sense when
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∂G(K,I)
∂I > 0 (i.e., net investment has a positive effect on contemporaneous net gain), which is the case

when K < K̃j , since net investment increases the future stock K of clean soil and the stock K of

clean soil has a positive effect on net gain (i.e., ∂G(K,0)
∂K ≥ 0):

∂G(K, 0)

∂K
= µ

∂G(K, 0)

∂I︸ ︷︷ ︸
≥0

+Pj · αbγK︸ ︷︷ ︸
≥0

≥ 0. (A.5)

Thus, since our analysis using the stationary rate of return on capital Rj(K) makes the assumption

of the prototype economic control model that ∂G(K,I)
∂I < 0 (i.e., net investment has a strictly negative

effect on contemporaneous net gain), we cannot use the stationary rate of return on capital Rj(K)

and the comparison between the stationary rate of return on capital R(K) and ρ to describe the

optimal solution when K ≤ K̃j .

Instead, based on the feature that for K ≤ K̃j , net investment I has a non-negative effect on

contemporaneous net gain starting from a net investment of I = 0, ∂G(K,0)
∂I ≥ 0, and moreover that

net investment increases the future stock K of clean soil and the stock K of clean soil has a positive

effect on net gain (i.e., ∂G(K,0)
∂K ≥ 0), then we would expect that a farmer with K ≤ K̃j would invest

in the stock of clean soil, not disinvest, since there is no trade-off involved with net investment: net

investment not only increases future net gain, but also current net gain as well.

Thus, for K ≤ K̃j , the farmer will invest in clean soil.

Although K̃j does not actually matter that much for describing investment behavior, it has

important economic content and intuition, since K̃j (if it exists) is the threshold below which net

investment has a non-negative effect on contemporaneous net gain starting from a net investment

of I = 0. A farmer with K ≤ K̃j does not face any trade-off involved with net investment: net

investment not only increases future net gain, but also current net gain as well. In addition, another

important thing about K̃j was to note that our standard interpretation of how the relative value of

R(K) determines investment behavior becomes invalid for K < K̃j . Another important aspect of K̃j

is it determines which parameter space we are in.

We confirm that K̂j ≥ K̃j :

K̂j = K̃j −
γK

(ρ+ µ) γccµ
(A.6)

K̂j = K̃j −

γK︸︷︷︸
≥0

(ρ+ µ)︸ ︷︷ ︸
≥0

γcc︸︷︷︸
≤0

µ︸︷︷︸
≥0︸ ︷︷ ︸

≤0

≥ K̃j (A.7)
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Thus, since for K ≤ K̃j , the farmer will invest in clean soil, this means that for K0j ≤ K̃j , if

the stationary solution K̂j exists, the farmer will continue to invest in clean soil until he reaches the

stationary solution K̂j .

The value of Pj determines the value of K̃j , all other parameters held constant:

K̃j =

αc−P−1
j

αb
+ γc

γccµ
+ C (A.8)

K̃j =

αc︸︷︷︸
≥0

−P−1
j︸︷︷︸
≥0

αb︸︷︷︸
≥0

+ γc

γccµ︸︷︷︸
≤0

+ C︸︷︷︸
>0

, (A.9)

where
∂K̃j

∂Pj
is given by:

∂K̃j

∂Pj
=

1

αbγccµP
2
j

(A.10)

∂K̃j

∂Pj
=

1

αb︸︷︷︸
≥0

γcc︸︷︷︸
≤0

µ︸︷︷︸
≥0

P 2
j︸︷︷︸

>0

≤ 0 (A.11)

Thus K̃j is a decreasing function of prices Pj .

The intuition is as follows. The threshold K̃j is such that for all K ≤ K̃j ,
∂G(K,0)

∂I ≥ 0 (i.e., net

investment has a non-negative effect on contemporaneous net gain starting from a net investment

of I = 0). A higher level of net investment I(t) in the stock of clean soil affects the farmer in the

following ways. In the current period t, given the clean soil stock K(t) for that period t, a higher

level of net investment I(t) means a lower level of chemical input use c(t). The time-t benefits of

chemical input use c(t) (which a farmer who wishes to increase net investment I(t) in the stock of

clean soil would forego) come through the beneficial effects of chemical input use c(t) on crop output

f(·). There are two time-t costs of chemical input use c(t) (which a farmer who wishes to increase

net investment I(t) in the stock of clean soil would no longer incur). First, there is a unit price to

chemical input use, which we normalize to 1. Second, chemical input use decreases beneficial soil

microbes b(t), and this decrease in beneficial soil microbes b(t) may then have an adverse impact to
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crop output f(·). In addition to the time-t costs and benefits of a lower level of chemical input use

c(t), a higher level of net investment I(t) also means a higher level of future clean soil stock K.

When prices Pj are lower, the threshold K̃j below which net investment has a non-negative effect

on contemporaneous net gain starting from a net investment of I = 0 is higher because with lower

prices Pj , a farmer who net invests would have less revenue to forego from the foregone beneficial

effects of chemical input use c(t) on crop revenue f(·), and thus the costs of net investing are lower

and more likely to be outweighed by its benefits, which include foregoing the price of chemical input

use as well as the adverse effect of chemical input use on soil microbes.

Neither K̃j nor K̂j will exist if either γcc = 0 (i.e., the negative effects of chemical input use c(t)

on beneficial soil microbes b(t) are linear rather than convex) or µ = 0 (i.e., synthetic compounds in

the soil do not decay on their own).

If either γcc = 0 or µ = 0, then the condition that ∂G(K,I)
∂I ≥ 0 (i.e., net investment has a

non-negative effect on contemporaneous net gain) simplifies to:

P−1
j ≥ αbγc + αc (A.12)

A.2 Effects of Price Pj on Optimal Solution for each stage j ∈ {con, org}

The value of Pj determines the value of K̃j , all other parameters held constant:

K̃j =

αc−P−1
j

αb
+ γc

γccµ
+ C (A.13)

K̃j =

αc︸︷︷︸
≥0

−P−1
j︸︷︷︸
≥0

αb︸︷︷︸
≥0

+ γc

γccµ︸︷︷︸
≤0

+ C︸︷︷︸
>0

, (A.14)

where
∂K̃j

∂Pj
is given by:

∂K̃j

∂Pj
=

1

αbγccµP
2
j

(A.15)
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∂K̃j

∂Pj
=

1

αb︸︷︷︸
≥0

γcc︸︷︷︸
≤0

µ︸︷︷︸
≥0

P 2
j︸︷︷︸

>0

≤ 0 (A.16)

Thus K̃j is a decreasing function of prices Pj .

The intuition is as follows. The threshold K̃j is such that for all K ≤ K̃j ,
∂G(K,0)

∂I ≥ 0 (i.e., net

investment has a non-negative effect on contemporaneous net gain starting from a net investment

of I = 0). A higher level of net investment I(t) in the stock of clean soil affects the farmer in the

following ways. In the current period t, given the clean soil stock K(t) for that period t, a higher

level of net investment I(t) means a lower level of chemical input use c(t). The time-t benefits of

chemical input use c(t) (which a farmer who wishes to increase net investment I(t) in the stock of

clean soil would forego) come through the beneficial effects of chemical input use c(t) on crop output

f(·). There are two time-t costs of chemical input use c(t) (which a farmer who wishes to increase

net investment I(t) in the stock of clean soil would no longer incur). First, there is a unit price to

chemical input use, which we normalize to 1. Second, chemical input use decreases beneficial soil

microbes b(t), and this decrease in beneficial soil microbes b(t) may then have an adverse impact to

crop output f(·). In addition to the time-t costs and benefits of a lower level of chemical input use

c(t), a higher level of net investment I(t) also means a higher level of future clean soil stock K.

When prices Pj are lower, the threshold K̃j below which net investment has a non-negative effect

on contemporaneous net gain starting from a net investment of I = 0 is higher because with lower

prices Pj , a farmer who net invests would have less revenue to forego from the foregone beneficial

effects of chemical input use c(t) on crop revenue f(·), and thus the costs of net investing are lower

and more likely to be outweighed by its benefits, which include foregoing the price of chemical input

use as well as the adverse effect of chemical input use on soil microbes.

If either γcc = 0 (i.e., the negative effects of chemical input use c(t) on beneficial soil microbes

b(t) are linear rather than convex) or µ = 0 (i.e., synthetic compounds in the soil do not decay on

their own) so that Rj(K) is a constant (that does not depend on K), then
∂K̃j

∂Pj
is given by:

∂Rj(K)

∂Pj
= − γK(

γc +
αc−P−1

j

αb

)2

P−2
j

αb
(A.17)

∂Rj(K)

∂Pj
= −

γK︸︷︷︸
≥0(

γc +
αc − P−1

j

αb

)2

︸ ︷︷ ︸
≥0

P−2
j

αb︸︷︷︸
≥0

≤ 0 (A.18)
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Thus, if either γcc = 0 (i.e., the negative effects of chemical input use c(t) on beneficial soil

microbes b(t) are linear rather than convex) or µ = 0 (i.e., synthetic compounds in the soil do not

decay on their own) so that Rj(K) is a constant (that does not depend on K), then the constant

Rj(K) is lower when prices are higher.

A.2.1 Very low Pj

If γcc ̸= 0 and µ ̸= 0 so that both K̃j and K̂j exist, then since K̃j is a decreasing function of Pj , for

very low Pj we will have K̃j > C, and therefore K ≤ K̃j ≤ K̂j for all feasible K, and the farmer will

continue to invest such that K approaches K̂j until K reaches its upper bound C.

The condition for K̃j > C simplifies to:

P−1
j > −αb (γccµ− γc) + αc (A.19)

If either γcc = 0 (i.e., the negative effects of chemical input use c(t) on beneficial soil microbes

b(t) are linear rather than convex) or µ = 0 (i.e., synthetic compounds in the soil do not decay on

their own) so that Rj(K) is a constant (that does not depend on K), then if prices are low enough to

satisfy the following condition for net investment to have a non-negative effect on contemporaneous

net gain (so that Rj(K) is not useful for analyzing net investment):

P−1
j ≥ αbγc + αc, (A.20)

then the farmer will again invest in clean soil until K = C.

A.2.2 Very high Pj

Alternatively, if γcc ̸= 0 and µ ̸= 0 so that both K̃j and K̂j exist, then for very high Pj , we will have

K̃j < 0 , and therefore K ≥ K̃j for all feasible K.

In this case, the farmer’s capital stock will approach the stationary solution and reaches it if

K̂j ∈ [0, C]. If K̂j > C, then the farmer will approach K̂j from below until they reach the blocked

state K = C, where they will stay indefinitely. If K̂j < 0 (and therefore does not exist since it is less

than 0), the farmer will approach K̂j from above until they reach the blocked state K = 0 , where

they will stay indefinitely.

The condition for K̃j < 0 simplifies to:

P−1
j < −αb

(
−γccµC − γc

)
+ αc (A.21)

If either γcc = 0 (i.e., the negative effects of chemical input use c(t) on beneficial soil microbes

b(t) are linear rather than convex) or µ = 0 (i.e., synthetic compounds in the soil do not decay on
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their own) so that Rj(K) is a constant (that does not depend on K), then if prices are high enough

to satisfy the condition that net investment has a negative effect on contemporaneous net gain (so

that Rj(K) is useful for analyzing net investment):

P−1
j < αbγc + αc (A.22)

as well as the following condition for Rj(K) < ρ:

P−1
j <

αb

ρ+ µ
((ρ+ µ)γc − γK) (A.23)

then the farmer will always disinvest until he reaches K = 0 since Rj(K) < ρ.

A.2.3 Intermediate Pj

Finally, if γcc ̸= 0 and µ ̸= 0 so that both K̃j and K̂j exist, then for certain intermediate values of

Pj , it will be possible to have K̃j ∈ [0, C]. For K0j ≤ K̃j , the farmer will continue to invest in clean

soil and approach the stationary solution K̂j until he reaches the stationary solution K̂j ≤ C. For

K0j > K̃j , the farmer will approach and eventually reach the stationary solution K̂j ≤ C by either

investing, as in the case in which K0j < K̂j ; or by disinvesting, as in the case in which K0j > K̂j .

The condition for K̃j ∈ [0, C] is given by:

−αb (γccµ− γc) + αc ≤ P−1
j ≤ −αb

(
−γccµC − γc

)
+ αc (A.24)

If either γcc = 0 (i.e., the negative effects of chemical input use c(t) on beneficial soil microbes

b(t) are linear rather than convex) or µ = 0 (i.e., synthetic compounds in the soil do not decay on

their own) so that Rj(K) is a constant (that does not depend on K), then if prices are low enough

that Rj(K) > ρ:

P−1
j >

αb

ρ+ µ
((ρ+ µ)γc − γK) (A.25)

but also high enough that net investment has a negative effect on contemporaneous net gain (so that

Rj(K) is useful for analyzing net investment):

P−1
j < αbγc + αc, (A.26)

then the farmer will always invest until he reaches K = C since Rj(K) > ρ.

If either γcc = 0 (i.e., the negative effects of chemical input use c(t) on beneficial soil microbes b(t)

are linear rather than convex) or µ = 0 (i.e., synthetic compounds in the soil do not decay on their

own) so that Rj(K) is a constant (that does not depend on K), then if prices satisfy the condition

that Rj(K) = ρ:
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P−1
j =

αb

ρ+ µ
((ρ+ µ)γc − γK) (A.27)

but are also high enough that net investment has a negative effect on contemporaneous net gain (so

that Rj(K) is useful for analyzing net investment):

P−1
j < αbγc + αc, (A.28)

then the farmer will will stay at K = K0j since Rj(K) = ρ.

A.3 Comparative Statics for K̂j

K̂j =

(ρ+ µ)

(
γccµC + γc +

αc−P−1
j

αb

)
− γK

(ρ+ µ) γccµ
(A.29)

We evaluate the effect of each parameter on K̂j by calculating the partials of K̂j :

∂K̂j

∂Pj
=

µ+ ρ

P 2
j αb (µ(µ+ ρ)γcc)

=
1

P 2
j αbµγcc

(A.30)

∂K̂j

∂µ
=
γccµC + γc +

αc−P−1
j

αb
+ (ρ+ µ) γccC

(ρ+ µ) γccµ

−
(ρ+ µ)

(
γccµC + γc +

αc−P−1
j

αb

)
− γK

((ρ+ µ) γccµ)
2 · ((ρ+ µ) γcc + γccµ)

(A.31)

∂K̂j

∂µ
=

 1

ρ+ µ
+

1

µ︸ ︷︷ ︸
≥0


C − K̂j︸ ︷︷ ︸

≥0

+
γc +

αc−P−1
j

αb

(ρ+ µ) γccµ
(A.32)
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We can put a sign on
γc+

αc−P−1
j

αb
(ρ+µ)γccµ

by remembering that the capital stock must be less than or equal

to C for all t. This constraint yields:

C ≥ K̂j (A.33)

⇒ C ≥
(ρ+ µ)

(
γccµC + γc +

αc−P−1
j

αb

)
− γK

(ρ+ µ) γccµ
(A.34)

(ρ+ µ) γccµC + γK ≤ (ρ+ µ)

(
γccµC + γc +

αc − P−1
j

αb

)
(A.35)

γccµC +
γK

(ρ+ µ)
≤ γccµC + γc +

αc − P−1
j

αb
(A.36)

γK
(ρ+ µ)

≤ γc +
αc − P−1

j

αb
(A.37)

γK

(ρ+ µ)2 γccµ︸ ︷︷ ︸
≤0

≥
γc +

αc−P−1
j

αb

(ρ+ µ) γccµ
(A.38)

so we know that

0 ≥
γc +

αc−P−1
j

αb

(ρ+ µ) γccµ
(A.39)

Note also that

γK
(ρ+ µ)︸ ︷︷ ︸

≥0

≤ γc +
αc − P−1

j

αb
(A.40)

0 ≤ γc +
αc − P−1

j

αb
(A.41)

−γc︸︷︷︸
≥0

≤
αc − P−1

j

αb
(A.42)

0 ≤
αc − P−1

j

αb
(A.43)
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P−1
j ≤ αc (A.44)

We see that
γc+

αc−P−1
j

αb
(ρ+µ)γccµ

must be weakly less than a non-positive number, and will therefore be

non-positive. Note that our non-negativity constraint on K does not help us more precisely sign
∂K̂j

∂µ .

So our expression for
∂K̂j

∂µ can be written as

∂K̂j

∂µ
=

 1

ρ+ µ
+

1

µ︸ ︷︷ ︸
≥0


C − K̂j︸ ︷︷ ︸

≥0

+
γc +

αc−P−1
j

αb

(ρ+ µ) γccµ︸ ︷︷ ︸
≤0

(A.45)

∂K̂j

∂ρ
=

γK

γccµ (ρ+ µ)2
(A.46)

∂K̂j

∂C
=

µ(µ+ ρ)γcc
µ(µ+ ρ)γcc

= 1

(A.47)

∂K̂j

∂αb
= −

(µ+ ρ)
(
− 1

Pj
+ αc

)
α2
b (µ(µ+ ρ)γcc)

= −

(
− 1

Pj
+ αc

)
α2
bµγcc

=

(
1
Pj

− αc

)
µα2

bγcc

(A.48)

∂K̂j

∂αc
=

µ+ ρ

αb (µ(µ+ ρ)γcc)

=
1

µαbγcc

(A.49)

∂K̂j

∂γcc
=

1

αb

(
P−1
j − αc

)
+

γK
(ρ+ µ)

− γcµγ
2
cc (A.50)
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∂K̂j

∂γc
=

µ+ ρ

µ(µ+ ρ)γcc

=
1

µγcc

(A.51)

We interpret the resulting expressions below.

∂K̂j

∂Pj
=

1

P 2
j αb︸ ︷︷ ︸
≥0

µ γcc︸︷︷︸
≤0

(A.52)

So we see that the effect of crop price on the stationary solution depends on the sign on µ. As

seen above, in order for K → K̂, we must have µ ≥ 0. When µ ≥ 0, such that the stock of synthetic

chemicals decays on its own, we have
∂K̂j

∂Pj
≤ 0 so that stock of clean soil at the stationary solution is

smaller at higher crop prices. Thus, when the farmer faces greater incentives to produce, the organic

stationary solution K̂j at which the stationary rate of return of clean stock capital equals the interest

rate ρ is lower.

Note that
∂K̂j

∂Pj
becomes more negative, and therefore we have a greater decrease in the stock of

clean soil at the stationary solution for a unit increase in crop prices, when: the direct effect that soil

bacteria have on crop production (αb) is smaller, the rate at which synthetic compounds decompose

(µ) is smaller, synthetic compounds are less derimental to soil bacteria (γcc is less negative), and

when crop prices Pj are lower.

∂K̂j

∂µ
=

 1

ρ+ µ
+

1

µ︸ ︷︷ ︸
≥0


C − K̂j︸ ︷︷ ︸

≥0

+
γc +

αc−P−1
j

αb

(ρ+ µ) γccµ︸ ︷︷ ︸
≤0

(A.53)

We will have
∂K̂j

∂µ ≥ 0 when

 1

ρ+ µ
+

1

µ︸ ︷︷ ︸
≥0


C − K̂j︸ ︷︷ ︸

≥0

 ≥ −

γc +
αc−P−1

j

αb

(ρ+ µ) γccµ︸ ︷︷ ︸
≤0

 (A.54)
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This condition is more likely to be satisfied when: γc (the linear part of synthetic compounds’

effects on soil bacteria) is more negative (but still less than
αc−P−1

j

αb
in magnitude, as required by our

upper bound constraint on K) such that our non-negative numerator inside the parenthesis on the

RHS is smaller in magnitude; αc (the productive effect of synthetic compounds on crop yields) is lower

in magnitude, Pj is smaller in magnitude (but still satisfies P−1
j ≤ αc, as required by our upper bound

constraint on K); αb (soil bacteria’s productive effect on crop yields) is greater in magnitude; γcc (the

quadratic part of synthetic compounds’ effects on soil bacteria) is more negative; C (soil’s ability to

absorb synthetic compounds without becoming infertile) is more positive; and γK (the benefit of the

stock of clean soil to soil bacterias’ health) is more positive.

∂K̂j

∂ρ
=

γK︸︷︷︸
≥0

µγcc(µ+ ρ)2︸ ︷︷ ︸
≤0

(A.55)

So we see that the effect that the interest rate ρ has on the stock of clean soil at the stationary

solution depends on the sign of µ. As seen above, in order for K → K̂j , we must have µ ≥ 0. When

µ ≥ 0, such that the stock of synthetic chemicals decays on its own, we have then
∂K̂j

∂ρ ≤ 0, and

the stock of clean soil at the stationary solution decreases as the interest rate increases. This is as

expected, since as the payoff from the best alternative investment increases, we would expect the

farmer to invest a greater amount in the best alternative investment, and therefore a lesser amount

in the stock of clean soil.

Note that
∂K̂j

∂ρ becomes more negative, and therefore increasing ρ reduces K̂j more, when the

benefit of the clean soil stock to the soil microbiome (γK) is greater. This is likely because when γK is

greater the farmer requires less clean soil in order to have a desired positive effect of any given size on

the soil bacteria.
∂K̂j

∂ρ also becomes more negative, and therefore increasing ρ reduces K̂j more, when

the quadratic part of synthetic compound use’s effect on soil bacteria (γcc) is less detrimental (such

that γcc is smaller in magnitude). This is because as γcc grows smaller in magnitude, not investing

in the stock of clean soils (by increasing per-period synthetic compound use) becomes less costly,

allowing the farmer to forgo greater amounts of K as the outside option becomes more attractive.
∂K̂j

∂ρ becomes more negative, and therefore increasing ρ reduces K̂j more, as µ ≥ 0 becomes smaller.

This is as expected, since as soils become less able to clean themselves up on their own it becomes

more costly for the farmer to achieve a stock of clean soils of any given size, since the farmer no longer

benefits from as much “free capital” as the capital stock’s ability to grow on its own shrinks. Finally
∂K̂j

∂ρ is more negative, and therefore increasing ρ reduces K̂j more, when ρ is smaller in magnitude.

Thus the effect of increasing ρ is higher when ρ is smaller.
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∂K̂j

∂C
= 1 (A.56)

A one unit increase in the soil’s ability to tolerate synthetic compounds results in a one unit

increase in the stock of clean soil, or a one unit decrease in the stock of synthetic compounds, at

the stationary solution. This result stems from the fact that the amount of clean soil is defined as

the difference between the soil’s ability to tolerate synthetic compounds and the actual stock of dirty

soil. Therefore increasing the soils ability to tolerate synthetics, even while keeping actual stocks of

synthetic compounds fixed, will by definition result in an 1 to 1 increase in the stock of clean soil.

∂K̂j

∂αb
=

1

Pj
− αc︸ ︷︷ ︸

≤0 by hypothesis

µα2
bγcc︸ ︷︷ ︸
≤0

(A.57)

We see that soil bacteria’s effect αb on crop production has an ambiguous effect on the stock K̂j of

clean soil at the stationary solution. Its effect is mediated by crop prices Pj, the effect αc of per-period

synthetic compound application has on crop production, and the rate µ at which synthetic compounds

decompose from soils on their own. As seen above, in order for K → K̂j , we must have µ ≥ 0. When

the stock of synthetic compounds decays on its own (µ ≥ 0) we are more likely to have
∂K̂j

∂αb
≥ 0

such that the stock of clean soils at the stationary solution increases as soil bacteria become more

important to production, when crop prices Pj are higher, since a greater crop price incentivizes the

farmer to produce more, and since as αb increases they are better able to produce more by increasing

their stock of clean soils. The stock of clean soils at the stationary solution also increases as soil

bacteria become more important to production when the effect αc of per-period synthetic compound

use on production is higher, since then a farmer does not have to apply as much fertilizer or pesticide

in order to produce at any given level of production.

Given a large enough αc so that 1
Pj

− αc ≤ 0, then
∂K̂j

∂αb
is also more positive when the effect αb of

soil bacteria on crop production is smaller in magnitude. Intuitively, this means that when synthetic

compounds are sufficiently important to production, then the stock of clean soil at the stationary

solution increases, but at a diminishing rate, as soil bacteria’s effect on production increases. This

diminishing nature of
∂K̂j

∂αb
arises because as αb increases the farmer does not have to increase the

stock of clean soil by as much in order to achieve a given level of productivity gain from their soil
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bacteria. The farmer has an incentive not to increase K̂j by too much, because this would mean

losing out on the productive effects of their synthetic compounds, which are significant, since we have

assumed αc to be large.

Given a large enough αc so that 1
Pj

− αc ≤ 0,
∂K̂j

∂αb
is also more positive when the effect γcc of

chemical inputs on soil microbe production is smaller in magnitude. Thus, when chemical inputs

have less of a detrimental effect γcc on soil microbe production, then the larger the effect αb that soil

microbes have on crop production, the higher the stock of clean soils at the stationary solution. This

is because the grower can still benefit from the productive effects of chemical inputs without harming

soil microbe production as much, and also benefit from the productive effects of soil microbes.

We hypothesize that the stock of synthetic compounds decays on its own (µ ≥ 0), and that the

effect of per-period synthetic compound use on production (αc) is high, such that the stock of clean

soils at the stationary solution will increase as soil bacteria become more important to production

(
∂K̂j

∂αb
≥ 0 ).

∂K̂j

∂αb
≥ 0 makes sense intuitively since, all else equal, if soil bacteria become more

important for production, and if clean soil stocks benefit soil bacteria, then farmers will want to

increase their stock of clean soils so as to make better use of their soil bacteria.

∂K̂j

∂αc
=

1

µαbγcc︸ ︷︷ ︸
≤0

(A.58)

The effect that the effect αc of per-period synthetic compound use has on crop production has on the

stock of clean soil at the stationary solution depends on the rate µ at which synthetic compounds

decompose from the soil. As seen above, in order for K → K̂j , we must have µ ≥ 0. When the

stock of synthetic compounds decays on its own (µ ≥ 0) then
∂K̂j

∂αc
≤ 0 and the stock of clean soil at

the stationary solution decreases as the effect that per-period synthetic compound use has on crop

production increases. This makes intuitive sense, since if, all else equal, fertilizers and pesticides yield

greater productivity boosts the farmer will choose to use more of these compounds. This results in

a smaller stock of clean soils. Note that
∂K̂j

∂αc
becomes less negative as αb increases in value. This

makes sense, since if soil bacteria, which depend on the stock of clean soils, are more important

to crop production, then we should be less willing to erode our stock of clean soils as synthetic

compounds become more productive. Note also that
∂K̂j

∂αc
becomes less negative as γcc becomes more

negative. Again, this makes sense, since if per-period application of synthetic compounds becomes

more detrimental to soil bacteria, which help crop production, then we should be less willing to apply

synthetic compounds, and thus erode our stock of clean soils, as synthetic compounds become more

productive.
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∂K̂j

∂γcc
=

1

µγ2cc

 1

αb︸︷︷︸
≥0

(
1

Pj
− αc

)
+

γK︸︷︷︸
≥0

(µ+ ρ)
− γc︸︷︷︸

≤0

 (A.59)

The effect on the stock of clean soil at the stationary solution of the quadratic part γcc of the

effect that per-period synthetic compound use has on soil bacteria production is ambiguous.

We hypothesize that µ ≥ 0, that αc is relatively large, and therefore that we will have
∂K̂j

∂γcc
≤ 0.

∂K̂j

∂γcc
≤ 0 makes sense intuitively, because if per-period application of synthetic compounds becomes

less harmful to soil bacteria, which are themselves beneficial to crop production, then in any given

period farmers will face less of an incentive not to use synthetic compounds, and will therefore choose

to apply these compounds at greater rates. All else equal this should, in turn, result in greater stocks

of synthetic compound at any given period, including the in the period at which the farmer reaches

the stationary solution. If the farmer accumulates a greater stock of synthetic compounds at the

stationary solution, by definition they accumulate smaller stocks of clean soils.

When the stock of synthetic compounds decays on its own (µ ≥ 0) then we are more likely to have
∂K̂j

∂γcc
≤ 0, which means that our stock of clean soil at the stationary solution increases as the negative

effect that synthetic compound use has on soil bacteria production becomes more convex (i.e., as the

quadratic part γcc of the effect that synthetic compound use has on soil bacteria production becomes

more negative), when crop prices (Pj) are higher, because a farmer is incentivized to produce more,

and because a higher stock of clean soil is needed to offset the more convex costs of chemical input

use on soil bacteria production, and both chemical input use and soil bacteria are important for crop

production.

Our stock of clean soil at the stationary solution is also more likely to increase as the negative

effect that synthetic compound use has on soil bacteria production becomes more convex (i.e., as the

quadratic part γcc of the effect that synthetic compound use has on soil bacteria production becomes

more negative) when the effect αc that synthetic compound use has on crop production is higher,

because then we can use less of our synthetic compounds while still having the desired effect on

production.

Our stock of clean soil at the stationary solution is also more likely to increase as the negative

effect that synthetic compound use has on soil bacteria production becomes more convex (i.e., as the

quadratic part γcc of the effect that synthetic compound use has on soil bacteria production becomes

more negative) when the effect γK that clean soil stocks have on soil bacteria health is lower, because

then we need a greater stock of clean soils to achieve a desired level of effect on soil bacteria.

Our stock of clean soil at the stationary solution is also more likely to increase as the negative

effect that synthetic compound use has on soil bacteria production becomes more convex (i.e., as the

quadratic part γcc of the effect that synthetic compound use has on soil bacteria production becomes

more negative) when the rate at which synthetic compounds decompose on their own (µ) is higher,
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since the natural decay of synthetic compounds offsets its use in the evolution of the stock of clean

soil.

Our stock of clean soil at the stationary solution is also more likely to decrease as the negative

effect that synthetic compound use has on soil bacteria production becomes less convex (i.e., as the

quadratic part γcc of the effect that synthetic compound use has on soil bacteria production becomes

less negative) when the interest rate (ρ) is higher, since farmers will care less about the future and

in any given period farmers will face less of an incentive not to use synthetic compounds, and will

therefore choose to apply these compounds at greater rates, leading to a lower stock of clean soil at

the stationary solution.

Our stock of clean soil at the stationary solution is also more likely to decrease as the negative

effect that synthetic compound use has on soil bacteria production becomes less convex (i.e., as the

quadratic part γcc of the effect that synthetic compound use has on soil bacteria production becomes

less negative) when the linear part γc of the detrimental effect that per-period synthetic compound

use has on soil bacteria production is smaller in magnitude, since in any given period farmers will

face less of an incentive not to use synthetic compounds, and will therefore choose to apply these

compounds at greater rates, leading to a lower stock of clean soil at the stationary solution.

∂K̂j

∂γc
=

1

µ γcc︸︷︷︸
≤0

(A.60)

The effect on the stock of clean soil at the stationary solution of the linear part γc of the effect

that per-period synthetic compound use has on soil bacteria depends on the rate at which synthetic

compounds decompose from the soil. When the stock of synthetic compounds decays on its own

(µ ≥ 0) then
∂K̂j

∂γc
≤ 0 and the stock of clean soil at the stationary solution decreases as per-period

synthetic compound use becomes less detrimental to soil bacteria health.
∂K̂j

∂γc
≤ 0 makes sense intuitively, because if per-period application of synthetic compounds becomes

less harmful to soil bacteria, which are themselves beneficial to crop production, then in any given

period farmers will face less of an incentive not to use synthetic compounds, and will therefore choose

to apply these compounds at greater rates. All else equal this should, in turn, result in greater stocks

of synthetic compound at any given period, including the in the period at which the farmer reaches

the stationary solution. If the farmer accumulates a greater stock of synthetic compounds at the

stationary solution, by definition they accumulate smaller stocks of clean soils.
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A.4 Unconstrained Solution for Stage j when K̂j Exists: Deriving using Taylor

series expansion

We now solve for the farmer’s optimal stage j trajectories.

We start by solving for the unconstrained solution for each stage j by using second-order Taylor

series approximations of the net gain function G(K, I). Since the net gain function G(K, I) is

quadratic, these second-order Taylor series approximations and the solutions derived using them

are exact. In other words, the second-order Taylor series approximations of the net gain function

G(K, I) is an exact second-order Taylor series expansion of the net gain function G(K, I).

We then solve for the constrained optimal solution for each stage j by solving for an exact solution

via direct derivation.

When K̂j exists, we can write a Taylor Series approximation of G(K, I) around the stationary

solution
(
K̂j , 0

)
, and use this approximation to solve for K∗ and I∗.

The net gain function G(K, I) is quadratic, so the second-order Taylor series approximation and

the solutions derived using it are exact. In other words, the second-order Taylor series approximations

of the net gain function G(K, I) is an exact second-order Taylor series expansion of the net gain

function G(K, I).

We define the following values:

G1 =
∂G(K̂j , 0)

∂K
= −µ

(
Pj ·

(
αb

(
γccµ

(
C − K̂j

)
+ γc

)
+ αc

)
− 1
)
+ Pj · αb (γK) (A.61)

G2 =
∂G(K̂j , 0)

∂I
= −

(
Pj ·

(
αb

(
γccµ

(
C − K̂j

)
+ γc

)
+ αc

)
− 1
)

(A.62)

G11 =
∂2G(K̂j , 0)

∂K2
= Pj · αb

(
γccµ

2
)

(A.63)

G22 =
∂2G(K̂j , 0)

∂I2
= Pjαbγcc (A.64)

G12 = G21 =
∂2G(K̂j , 0)

∂K∂I
= Pj · αbµγcc (A.65)

With the first and second order partials of G in now hand, the second order Taylor series

approximation of the gain function G(K, I) around a stationary solution (K̂j , 0) can be written as:
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G(K, I) ≈ G(K̂j , 0)+G1 ·(K−K̂j)+G2 ·(I−0)+G11 ·
(K − K̂j)

2

2
+G22 ·

(I − 0)2

2
+G12 ·(K−K̂j)·(I−0)

(A.66)

With this Taylor series approximation of the gain function we can, in turn, derive an explicit

closed-form solution to the second-order approximation of the optimal control problem for K(t) and

I(t). To this end, we begin by noting that the Hamiltonian can now be approximated as:

H = G(K̂j , 0)+G1 ·(K−K̂j)+G2 ·(I)+G11 ·
(K − K̂j)

2

2
+G22 ·

(I)2

2
+G12 ·(K−K̂j) ·(I)+pI (A.67)

Where p is the shadow price of capital. Letting

X = K − K̂j , (A.68)

we can re-write the Hamiltonian as

H = G(K̂j , 0) +G1 ·X +G2 · I +G11 ·
X2

2
+G22 ·

I2

2
+G12 ·X · I + pI. (A.69)

The first criteria of the maximum principle,

∂H

∂I
= 0 (A.70)

implies

G2 +G22 · I +G12 ·X + p = 0 (A.71)

So that

Ĩ(X, p) = −(G2 +G12 ·X + p)

G22
(A.72)

From this expression for the maximized investment value we get the maximized Hamiltonian:

H̃ = G(K̂j , 0)+G1 ·X+G2 · Ĩ(X, p)+G11 ·
X2

2
+G22 ·

Ĩ(X, p)2

2
+G12 ·X · Ĩ(X, p)+pĨ(X, p) (A.73)
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In preparation for examining the second criteria of the maximum principle, we’ll first derive

expressions for ∂H̃
∂K , p(t), ṗ(t), and ρ. Beginning with ∂H̃

∂K , note that ∂H̃
∂K = ∂H̃

∂X · ∂X
∂K = ∂H̃

∂X , since

∂X
∂K =

∂(K−K̂j)
∂K = 1. Then we have

∂H̃

∂K
= G1+G2 ·

∂Ĩ(X, p)

∂X
+G11 ·X+G22 ·Ĩ(X, p)

∂Ĩ(X, p)

∂X
+G12 ·Ĩ(X, p)+G12 ·X · ∂Ĩ(X, p)

∂X
+p

∂Ĩ(X, p)

∂X
(A.74)

or

∂H̃

∂K
= G1 +G11 ·X +G12 · Ĩ(X, p) + [

G2 +G12 ·X + p

G22
+ Ĩ(X, p)]

∂Ĩ(X, p)

∂X
·G22 (A.75)

But from (A.72) we know that G2+G12·X+p
G22

+ Ĩ(X, p) = 0. So we have

∂H̃

∂K
= G1 +G11 ·X +G12 · Ĩ(X, p) (A.76)

To get our expressions for p(t), and ṗ(t) we solve (A.72) for p(t):

p(t) = −(G2 +G22 · I(t) +G12 ·X(t)) (A.77)

and taking the time derivative of (A.77) we get

ṗ(t) = −G22 · İ(t)−G12 · Ẋ(t) (A.78)

And to get an expression for ρ remember that a stationary solution must satisfy

R(K̂j) = ρ (A.79)

or

−∂G(K̂j ,0)
∂K

∂G(K̂j ,0)
∂I

= ρ (A.80)

so

ρ = −G1

G2
(A.81)
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Now, we continue by examining the second criteria of the maximum principle. Remember this

criteria requires that:

ṗ(t) = −∂H̃

∂K
+ ρp(t) (A.82)

Plugging in (A.76), (A.77), and (A.78) gives:

−G22 · İ(t)−G12 · Ẋ(t) = (A.83)

−(G1 +G11 ·X +G12 · Ĩ(X, p))− ρ(G2 +G22 · I(t) +G12 ·X(t)) (A.84)

or

G22 · İ(t) +G12 · Ẋ(t) = (A.85)

(G1 +G11 ·X +G12 · Ĩ(X, p)) + ρ(G2 +G22 · I(t) +G12 ·X(t)) (A.86)

Note that Ẋ = d(K−K̂)
dt = d(K)

dt = K̇ = I. Evaluating at I = Ĩ gives

G22 ·
˙̃
I(t) +G12 · Ĩ(t) = (A.87)

(G1 +G11 ·X +G12 · Ĩ(X, p)) + ρ(G2 +G22 · Ĩ(t) +G12 ·X(t)) (A.88)

plugging (A.81) into the RHS and simplifying then gives

G22 ·
˙̃
I(t) = G11 ·X + ρG22 · Ĩ(t) + ρG12 ·X(t) (A.89)

or

˙̃
I(t)− ρĨ(t)− G11 ·X + ρG12 ·X(t)

G22
= 0 (A.90)

But remembering

Ĩ(t) =
∂K

∂t
=

∂(K − K̂)

∂t
=

∂X

∂t
(A.91)

A-21



and that therefore also

˙̃I(t) =
∂Ĩ(t)

∂t
=

∂2X

∂t2
(A.92)

we can rewrite (A.90) as the following second-order linear ODE

∂2X(t)

∂t2
− ρ

∂X(t)

∂t
− G11 + ρG12

G22
X(t) = 0 (A.93)

We guess a solution to (A.93) of the form:

X(t) = X(0)e−at (A.94)

then (A.93) becomes

X(0)e−ata2 + ρX(0)e−ata− G11 + ρG12

G22
X(0)e−at = 0 (A.95)

Note that if we assume a finite t and a, and that K0j ̸= K̂ so that X(0) ̸= 0, then we can divide

both sides of the above equation by X(0)e−at to get

a2 + ρa− G11 + ρG12

G22
= 0 (A.96)

Applying the quadratic formula, we get the following solution for a:

a =

√(ρ
2

)2
+

G11 + ρG12

G22
− ρ

2
(A.97)

(we take the positive root since we want X(t) = K(t)− K̂j to converge to 0 as K → K̂j .)

a =

√(ρ
2

)2
+ µ2 + ρµ− ρ

2
(A.98)

a =

√(ρ
2
+ µ

)2
− ρ

2
(A.99)
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a =
(ρ
2
+ µ

)
− ρ

2
(A.100)

a = µ (A.101)

The rate of approach to the stationary solution equals the rate at which synthetic compounds

decompose from the farmer’s soils. Since the speed of approach a ≥ 0 in order for X(t) = K(t)− K̂j

to converge to 0 as K → K̂j , this means that, in order for K → K̂j , we must have µ ≥ 0. Moreover,
∂a
∂µ = 1 > 0, which means that the farmer will reach the stationary solution faster when the rate of

decay is greater.

Given our solution for a we can now solve for the optimal policy for capital by rearranging equation

(A.94) as follows:

X(t) = X(0)e−at (A.102)

K(t)− K̂j = (K0Sj
− K̂j)e

−at (A.103)

Kj(t) = K̂j + (K0Sj
− K̂j)e

−at (A.104)

Kj(t) = K̂j + (K0Sj
− K̂j)e

−µt (A.105)

We get our optimal policy for investment by taking the time derivative of the equation above and

simplifying as follows:

Ij(t) =
dKj(t)

dt
= −a(K0Sj

− K̂j)e
−at (A.106)

Ij(t) = −a(K̂j + (K0Sj
− K̂j)e

−at − K̂j) (A.107)

Ij(t) = −a(K(t)org − K̂j) (A.108)

Ij(t) = a(K̂j −Kj(t)) (A.109)
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Ij(t) = µ(K̂j −Kj(t)) (A.110)

Since our gain function is quadratic, our Taylor series approximation of the farmer’s interior

solution is the same as the exact interior solution. Therefore our unconstrained Taylor series approximation

will be the same as our unconstrained exact solution.

In the next section we derive the exact solution and also apply the upper and lower bound

constraints that the farmer faces on I(t). These are the same constrained trajectories that we

would get from applying the upper and lower bound constraints on investment to our Taylor series

approximation of the farmer’s interior solution, since, again, we assume our gain function to be

quadratic, and therefore our Taylor series approximation is exact.

A.5 Solution for Stage j when K̂j Exists: Directly Deriving Exact Solution and

Imposing Lower and Upper Bound Constraints

We also derive the exact solution directly when K̂j exists, show that the exact unconstrained solution

is the same as what we derived using a second-order Taylor series approximation, and then impose

the lower and upper bound constraints on I(t).

The net gain function G(K, I) is quadratic, so the second-order Taylor series approximation and

the solutions derived using it are exact. In other words, the second-order Taylor series approximations

of the net gain function G(K, I) is an exact second-order Taylor series expansion of the net gain

function G(K, I).

The upper-bound constraintM(K) on net investment I comes from constraint that chemical input

use c(t) is non-negative.

The lower-bound constraint m(K) on net investment I comes from upper bound c to chemical

input use c(t). The upper bound c to chemical input use c(t) may depend on the total stock of

synthetic compounds present in the soil C(t), and which may represent, for example, the maximum

recommended dose for any given application; the maximum chemical input dose that is not lethal to

crops and/or humans; the maximum chemical dose above which consumers will no longer purchase

the crop; and/or the maximum chemical input flow at any point in time that does not destroy the

farmer’s land and soil.

A-24



We assume that c = µ(X)C when µ(X) > 0 and c > 0 when µ(X) = 0. Since investment is

bounded from below by µ(X)(C −K(t))− c, the trajectory for net investment must satisfy:

I(t) ≥ −µ(X)K(t) if µ(X) > 0

I(t) > µ(X)(C −K(t)) if µ(X) = 0
(A.111)

Our derivation of the exact solution is as follows:

H =Pj · f
(
(g(K, I)) ,

(
µ(C −K)− I

))
−
(
µ(X)(C −K)− I

)
+ pI (A.112)

+ λ1

(
I −

(
µ(C −K)− c

))
+ λb

(
µ(C −K)− I

)
(A.113)

(A.114)

where

λ1

(
I −

(
µ(C −K)− c

))
= 0

λb

(
µ(C −K)− I

)
= 0

A.5.1 Interior solution for I(t)

When I(t) is interior we will have λ1 = 0 and λb = 0. In this case the Maximum Principle will yield:

∂H

∂I
= Pj ·

(
∂f

∂b

∂g

∂I
+

∂f

∂c
(−1)

)
+ 1 + p = 0

−
(
Pj ·

(
∂f

∂b

∂g

∂I
− ∂f

∂c

)
+ 1

)
= p (A.115)

and
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−∂H

∂K
= −

(
Pj ·

(
∂f

∂b

∂g

∂K
+

∂f

∂c
(−µ)

)
+ µ

)

so that

ṗ(t) = −
(
Pj ·

(
∂f

∂b

∂g

∂K
− µ · ∂f

∂c

)
+ µ

)
+ ρp(t) (A.116)

and the transversality condition requires that

lim
t→∞

p(t)K∗(t)e−ρt = 0 (A.117)

With

f(b, c) = αbb+ αcc+Ay

so that ∂f
∂b = αb and

∂f
∂c = αc, and

g(K, I) =
1

2
γcc
(
µ
(
C −K

)
− I
)2

+ γc
(
µ
(
C −K

)
− I
)
+ γKK +Ab

so that

∂g(K, I)

∂K
=
(
−µγcc

(
µ
(
C −K

)
− I
)
− γcµ+ γK

)
and

∂g(K, I)

∂I
=
(
−γcc

(
µ
(
C −K

)
− I
)
− γc

)

the first two conditions of the maximum principle can be re-expressed as follows:

∂H

∂I
= Pj ·

(
∂f

∂b

∂g

∂I
+

∂f

∂c
(−1)

)
+ 1 + p = 0

−
(
Pj ·

(
∂f

∂b

∂g

∂I
− ∂f

∂c

)
+ 1

)
= p (A.118)
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(
−
(
Pj ·

(
αb

(
−γcc

(
µ
(
C −K

)
− I
)
− γc

)
− αc

)
+ 1
))

= p (A.119)

and

ṗ(t) = −
(
Pj ·

(
∂f

∂b

∂g

∂K
− µ · ∂f

∂c

)
+ µ

)
+ ρp(t) (A.120)

ṗ(t) = −
(
Pj ·

(
αb

(
−µγcc

(
µ
(
C −K

)
− I
)
− γcµ+ γK

)
− µ · αc

)
+ µ

)
+ ρp(t) (A.121)

We solve this system of equations as follows. Note that taking the time derivative of the first

condition of the maximum principle we get

ṗ = −Pj · αbγcc

(
µK̇ + İ

)
(A.122)

We can substitute this new identity for ṗ, as well as our identity for p from the first condition of

the maximum principle, into our expression for ṗ from the second condition of the maximum principle,

we get the following second order differential equation for K(t):

(µ+ ρ)µ
(
K(t)− K̂j

)
+ ρ · K̇(t)− K̈(t) = 0 (A.123)

This is a second order differential equation with solution:

K(t) = c1e
−µ·t + c2e

(µ+ρ)·t + K̂j (A.124)

Our initial condition requires that:

K0j = c1e
−µ·0 + c2e

(µ+ρ)·0 + K̂j = K0j

c1 + c2 + K̂j = K0j
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c1 + c2 = K0j − K̂j (A.125)

Note that we can take the time derivative of our preliminary solution for K(t) to derive the

following preliminary equation for K̇(t):

K̇(t) = −µ · c1e−µ·t + (µ+ ρ) · c2e(µ+ρ)·t

K(t) = c1e
−µ·t + c2e

(µ+ρ)·t + K̂j

This, combined with this:

c1 + c2 = K0j − K̂j (A.126)

c2 = K0j − K̂j − c1 (A.127)

gives us:

K(t) =
(
c1e

−µ·t +
(
K0j − K̂j − c1

)
e(µ+ρ)·t + K̂j

)

and

I(t) = K̇(t) =
(
−µ · c1e−µ·t + (µ+ ρ) ·

(
K0j − K̂j − c1

)
e(µ+ρ)·t

)

Therefore

p(t) =
(
−
(
Pj ·

(
αb

(
−γcc

(
µ
(
C −K

)
− I
)
− γc

)
− αc

)
+ 1
))

(A.128)
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can now be written as:

p(t) =
(
−Pjαbγcc (2µ+ ρ) ·

(
K0j − K̂j − c1

)
e(µ+ρ)·t − Pj ·

(
αb

(
−γcc

(
µC − µK̂j

)
− γc

)
− αc

)
− 1
)

(A.129)

We can use this expression, together with

K(t) =
(
c1e

−µ·t +
(
K0j − K̂j − c1

)
e(µ+ρ)·t + K̂j

)

to determine the range of values for c1 that satisfy the transversality condition:

lim
t→∞

p(t)K∗(t)e−ρt = 0 (A.130)

lim
t→∞

(
c1a
(
K0j − K̂j − c1

)
+ a

(
K0j − K̂j − c1

)2
e(2µ+ρ)·t + aK̂j

(
K0j − K̂j − c1

)
eµ·t +

(
K0j − K̂j − c1

)
eµ·t · b

)
(A.131)

with a = −Pjαbγcc (2µ+ ρ). Assuming a ̸= 0, then the transversality condition is satisfied if and only

if

c1 =
(
K0j − K̂j

)
(A.132)

So the farmer’s optimal trajectory is:

K(t) =
((

K0j − K̂j

)
e−µ·t +

(
K0j − K̂j −

(
K0j − K̂j

))
e(µ+ρ)·t + K̂j

)

K(t) =
(
K0j − K̂j

)
e−µ·t + K̂j

Kj(t) = K̂j + (K0Sj
− K̂j)e

−µt (A.133)
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Ij(t) = µ(K̂j −Kj(t)) (A.134)

To derive trajectories for c(t) and C(t) under an interior solution for I(t), we can write:

c(K, I) = µ
(
C −K(t)

)
− I(t) (A.135)

c(K, I) = µ
(
C −K(t)

)
− µ

(
K̂j −K(t)

)

c(K, I) = µ
(
C − K̂j

)
∀t ≥ 0, (A.136)

and

C(K, I) = C −K(t) (A.137)

C(K, I) = C − K̂j −
(
K0j − K̂j

)
· e−µ·t. (A.138)

We also have the following expressions for soil microbes b(t) and crop output y(t) under an interior

solution for I(t):

g(K, I;X) = γc(X)c+
1

2
γcc(X)c2 + γK(X)K +Ab(X)

g(K, I;X) =

(
γcµ

(
C − K̂j

)
+

1

2
γcc

(
µ
(
C − K̂j

))2
+ γKK̂j +Ab + γK

(
K0j − K̂j

)
· e−µ·t

)
,

(A.139)

and

f̃(b, c;X) = αb(X)b+ αc(X)c+Ay(X) (A.140)
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f̃(b, c;X) = αb

(
γcµ

(
C − K̂j

)
+

1

2
γcc

(
µ
(
C − K̂j

))2
+ γKK̂j +Ab

)
(A.141)

+ αcµ
(
C − K̂j

)
+Ay + αbγK

(
K0j − K̂j

)
· e−µ·t

A.5.2 Lower corner solution for I(t)

On the other hand if I(t) has a lower corner solution (such that the lower bound constraint on I(t)

binds, but the upper bound constraint does not) we will have λ1 ≥ 0 and λb = 0.

In this case, the Hamiltonian is given by:

H =Pj · f
(
(g(K, I)) ,

(
µ(C −K)− I

))
−
(
µ(X)(C −K)− I

)
+ pI (A.142)

+ λ1

(
I −

(
µ(C −K)− c

))
(A.143)

(A.144)

The Maximum Principle will then yield:

[#1]:

∂H

∂I
= Pj ·

(
∂f

∂b

∂g

∂I
+

∂f

∂c
(−1)

)
+ 1 + p+ λ1 = 0 (A.145)

⇒ Pj ·
(
∂f

∂b

∂g

∂I
+

∂f

∂c
(−1)

)
+ 1 + p = −λ1 ≤ 0

and

∂H

∂λ1
= (I + (µ− κ)K) = 0 (A.146)

[#2]:

Given:

−∂H

∂K
= −

(
Pj ·

(
∂f

∂b

∂g

∂K
+

∂f

∂c
(−µ)

)
+ µ+ λ1µ

)
(A.147)
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[#2] yields:

ṗ(t) = −
(
Pj ·

(
∂f

∂b

∂g

∂K
− µ · ∂f

∂c

)
+ µ+ λ1µ

)
+ ρp(t) (A.148)

and [#3]: the transversality condition requires that

lim
t→∞

p(t)K∗(t)e−ρt = 0. (A.149)

With

f(b, c) = αbb+ αcc+Ay (A.150)

so that ∂f
∂b = αb and

∂f
∂c = αc, and

g(K, I) =
1

2
γcc
(
µ
(
C −K

)
− I
)2

+ γc
(
µ
(
C −K

)
− I
)
+ γKK +Ab (A.151)

so that

∂g(K, I)

∂K
=
(
−µγcc

(
µ
(
C −K

)
− I
)
− γcµ+ γK

)
(A.152)

and

∂g(K, I)

∂I
=
(
−γcc

(
µ
(
C −K

)
− I
)
− γc

)
(A.153)

the first condition of the maximum principle can be re-expressed as follows:

∂H

∂I
= Pj ·

(
∂f

∂b

∂g

∂I
+

∂f

∂c
(−1)

)
+ 1 + p+ λ1 = 0 (A.154)

⇒ −
(
Pj ·

(
∂f

∂b

∂g

∂I
− ∂f

∂c

)
+ 1

)
− λ1 = p (A.155)
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⇒
(
−
(
Pj ·

(
αb

(
−γcc

(
µ
(
C −K

)
− I
)
− γc

)
− αc

)
+ 1
)
− λ1

)
= p (A.156)

and

∂H

∂λ1
⇒ −

(
µ(C −K)− c

)
= 0. (A.157)

We can use (A.157) to find the farmer’s optimal trajectories when the lower bound constraint on

I(t) binds as follows:

I(t) =
(
µ(C −K)− c

)
(A.158)

Remember that the upper bound constraint on per-period synthetic compound use, c, is assumed

to satisfy the following conditions:

• c = µ(X)C when µ(X) > 0

• and c > 0 when µ(X) = 0

When µ(X) = 0, then K̂j does not exist, so the case when µ(X) = 0 does not apply when K̂j

exists.

When µ ̸= 0 the farmer’s optimal constrained trajectory is:

K(t) = K(0) · e−µ·t ∀ t (A.159)

I(t) = −µK(t)∀ t (A.160)

c(t) = c = µC ∀ t (A.161)
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C(t) = C −K(0) · e−µ·t ∀ t (A.162)

Given g̃(C(t), c(t)) = γcc+
1
2γccc

2 + γK
(
C − C(t)

)
+Ab:

b(t) = max{γcc+
1

2
γccc

2 + γK ·
(
K(0) · e−µ·t)+Ab, 0} ∀ t (A.163)

Given f(c(t), b(t)) = αcc(t) + αbb(t) +Ay:

y(t) = αc · c+ αb · b(t)LC +Ay ∀ t (A.164)

The lower bound to I binds when the optimal unconstrained synthetic compound level c∗∗j exceeds

the upper bound for synthetic compound use (i.e., if c∗∗j > c). If the optimal unconstrained synthetic

compound level c∗∗j exceeds the upper bound for synthetic compound use (i.e., if c∗∗j > c), this means

that the PDV of the entire stream of MNB of an additional unit of synthetic compound c(t) today is

still greater than 0 at c = c.

When K̂j exists, the optimal unconstrained synthetic compound level c∗∗j is given by c∗∗ = ĉj . If

c∗∗ = ĉj > c, this means K̂j < 0. A negative K̂j means that even at K = 0, the marginal net benefit

of synthetic compound use at c = c is positive.

So a sufficient condition for the farmer to adopt a lower corner solution when µ ̸= 0 and K̂j exists,

assuming that K0j ̸= K̂j , is for the marginal net benefit of synthetic compound use to be positive,

even when we are accounting for convex costs, and even when those convex costs are evaluated at

c(t) = c.

When the lower bound constraint on investment binds, the multiplier λ1 on the lower bound

constraint is given by:

λ1(t) = Pj ·
(
αc + αb

(
γcc · c(t) + γc −

1

(µ+ ρ)
γK

))
− 1︸ ︷︷ ︸

MNB of c(t)

(A.165)
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A.5.3 When lower bound on I(t) binds or not

If K̂j is positive and greater than K(t), then the farmer is never at the lower corner solution for I(t).

This makes sense since if K̂j > K(t), then means we will be investing in the stock of clean soil to

increase K(t) and approach K̂j from below.

The lower bound binds when K̂j < 0. A negative K̂j means that even at K = 0, the marginal net

benefit of synthetic compound use at c = c is positive. In this case the farmer is always at the lower

corner solution for I(t), and the farmer’s capital trajectory converges to K(t) = 0 from above.

So a sufficient condition for the farmer to adopt a lower corner solution when µ ̸= 0, assuming

that K0j ̸= K̂j , is for the marginal net benefit of synthetic compound use to be positive, even when

we are accounting for convex costs, and even when those convex costs are evaluated at c(t) = c.

A.5.4 Upper corner solution for I(t)

On the other hand if I(t) has an upper corner solution (such that the upper bound constraint on I(t)

binds, but the lower bound constraint does not) we will have λ1 = 0 and λb ≥ 0. Then the Maximum

Principle will yield:

[#1]:

∂H

∂I
= Pj ·

(
∂f

∂b

∂g

∂I
+

∂f

∂c
(−1)

)
+ 1 + p− λb = 0 (A.166)

⇒ Pj ·
(
∂f

∂b

∂g

∂I
+

∂f

∂c
(−1)

)
+ 1 + p = λb ≥ 0 (A.167)

and
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∂H

∂λb
=
(
µ(C −K)− I

)
= 0 (A.168)

[#2]:

−∂H

∂K
= −

(
Pj ·

(
∂f

∂b

∂g

∂K
+

∂f

∂c
(−µ)

)
+ µ− λbµ

)
(A.169)

so that

ṗ(t) = −
(
Pj ·

(
∂f

∂b

∂g

∂K
− µ · ∂f

∂c

)
+ µ− λbµ

)
+ ρp(t) (A.170)

and [#3]: the transversality condition requires that

lim
t→∞

p(t)K∗(t)e−ρt = 0 (A.171)

With

f(b, c) = αbb+ αcc+Ay (A.172)

so that ∂f
∂b = αb and

∂f
∂c = αc, and

g(K, I) =
1

2
γcc
(
µ
(
C −K

)
− I
)2

+ γc
(
µ
(
C −K

)
− I
)
+ γKK +Ab (A.173)

so that

∂g(K, I)

∂K
=
(
−µγcc

(
µ
(
C −K

)
− I
)
− γcµ+ γK

)
(A.174)

and

∂g(K, I)

∂I
=
(
−γcc

(
µ
(
C −K

)
− I
)
− γc

)
(A.175)
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the first condition of the maximum principle can be re-expressed as follows:

∂H

∂I
= Pj ·

(
∂f

∂b

∂g

∂I
+

∂f

∂c
(−1)

)
+ 1 + p− λb = 0 (A.176)

⇒ −
(
Pj ·

(
∂f

∂b

∂g

∂I
− ∂f

∂c

)
+ 1

)
+ λb = p (A.177)

⇒
(
−
(
Pj ·

(
αb

(
−γcc

(
µ
(
C −K

)
− I
)
− γc

)
− αc

)
+ 1
)
+ λb

)
= p (A.178)

and

µ
(
C −K(t)

)
− I(t) = 0 (A.179)

We can use (A.179) to find the farmer’s optimal trajectories when the upper bound constraint on

I(t) binds as follows:

µC − µK(t)− I(t) = 0 (A.180)

µK(t) + K̇(t) = µC (A.181)

(
µK(t) + K̇(t)

)
· eµ·t = µC · eµ·t (A.182)

∫ t

s=0

(
µK(s) + K̇(s)

)
· eµ·sds =

∫ t

s=0
µC · eµ·sds (A.183)

K(s) · eµ·s]t0 = C · eµ·s
]s
0

(A.184)

K(t) · eµ·t −K0j = C · eµ·t − C (A.185)

K(t) · eµ·t = C · eµ·t +K0j − C (A.186)
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K(t) =
(
C +

(
K0j − C

)
e−µ·t) (A.187)

K(t) = C −
(
C −K0j

)
e−µ·t (A.188)

I(t) = µ ·
(
C −K0j

)
e−µ·t (A.189)

I(t) = µ ·
(
C −K(t)

)
(A.190)

A.5.5 When upper bound for I(t) binds or not

Next we compare the interior solution for I(t):

I(K(t))Int = µ(K̂j −K(t)Int) (A.191)

to the upper corner solution for I(t):

I(K(t))UC = µ ·
(
C −K(t)UC

)
(A.192)

in order to determine the conditions under which the interior solution falls above the upper corner

solution, at which point the upper bound constraint on I(t) will bind: we examine the following

inequality

I(K(t))UC < I(K(t))Int (A.193)

µ ·
(
C −K(t)UC

)
< µ(K̂j −K(t)Int) (A.194)

C −K(t)UC < K̂j −K(t)Int (A.195)

C −K(t) < K̂j −K(t) (A.196)

⇒ C < K̂j (A.197)
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Note that if C < K̂j , then we have I(t)UC < I(t)Int for all t . In this case the farmer is stuck at

the upper corner solution indefinitely. On the other hand if C ≥ K̂j , then we have I(t)UC ≥ I(t)Int

for all t . In this case the farmer’s investment trajectory will never be constrained by its upper bound,

and we will have λb = 0∀t.

If C < K̂j , then we are stuck at the upper corner solution indefinitely such that we will have

λb(t) ≥ 0 indefinitely, so we are able to use the transversality condition to get more information

about λb(t) and derive the closed form solution above.

A.5.6 Case: Upper bound on I(t) always binds

When K̂j > C, the optimal solution is to continue to invest as fast as possible until K = C. In this

case, the farmer’s optimal solutions take the form:

K∗
j (t) = K(t)UC, Sj = C −

(
C −K0j

)
e−µ·t (A.198)

I∗j (t) = I(t)UC, Sj = µ ·
(
C −K(t)UC, Sj

)
(A.199)

c∗j (t) = 0 (A.200)

C∗
j (t) =

(
C −K0j

)
e−µ·t (A.201)

b∗j (t) =
(
γK
(
C −

(
C −K0j

)
e−µ·t)+Ab

)
(A.202)

y∗j (t) = αb

(
γK
(
C −

(
C −K0j

)
e−µ·t)+Ab

)
+Ay (A.203)

We can derive trajectories for c(t) and C(t) as follows:

c(K, I) = µ
(
C −K(t)

)
− I(t) (A.204)

c(K, I) = µ
(
C −K(t)UC, Sj

)
− µ

(
C −K(t)UC, Sj

)
(A.205)
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c(K, I) = 0, (A.206)

and

C(K, I) = C −K(t) (A.207)

C(K, I) = C −
(
C −

(
C −K0j

)
e−µ·t) (A.208)

C(K, I) =
(
C −K0j

)
e−µ·t. (A.209)

We can derive trajectories for soil microbes b(t) and output y(t) as follows:

g(K, I;X) = γc(X)c+
1

2
γcc(X)c2 + γK(X)K +Ab(X) (A.210)

g(K, I;X) =
(
γK(X)

(
C −

(
C −K0j

)
e−µ·t)+Ab(X)

)
(A.211)

b(t) =
(
γK
(
C −

(
C −K0j

)
e−µ·t)+Ab

)
, (A.212)

and

f̃(b, c;X) = αb(X)b+ αc(X)c+Ay(X) (A.213)

f̃(b, c;X) = αb(X)
(
γK(X)

(
C −

(
C −K0j

)
e−µ·t)+Ab(X)

)
+Ay(X) (A.214)

y(t) = αb

(
γK
(
C −

(
C −K0j

)
e−µ·t)+Ab

)
+Ay. (A.215)

To determine λb:
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For the intervals of time over which we have an upper corner solution for I(t), we have a continuous

λb(t). In that we can solve for λb(t) as follows:

From (A.178) we have:

p(t) =
(
−
(
Pj ·

(
αb

(
−γcc

(
µ
(
C −K(t)

)
− I(t)

)
− γc

)
− αc

)
+ 1
)
+ λb(t)

)
(A.216)

or, given (A.188) and (A.190):

p(t) = (Pj · (αbγc + αc)− 1 + λb(t)) (A.217)

Taking the time derivative of both sides of the equation above we get:

ṗ(t) = λ̇2(t) (A.218)

But from the second condition of the maximum principle, [#2], we have:

ṗ(t) = −∂H

∂K
+ ρp(t) (A.219)

where

−∂H

∂K
= −

(
Pj ·

(
∂f

∂b

∂g

∂K
+

∂f

∂c
(−µ)

)
+ µ− λbµ

)
,

so that

ṗ(t) = −
(
Pj ·

(
∂f

∂b

∂g

∂K
− µ · ∂f

∂c

)
+ µ− λbµ

)
+ ρp(t). (A.220)

Given our assumed functional forms for f and g, the equation above can be written as:

ṗ(t) = −
(
Pj ·

(
αb

(
−µγcc

(
µ
(
C −K

)
− I
)
− γcµ+ γK

)
− µ · αc

)
+ µ− λbµ

)
+ ρp(t) (A.221)
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We can substitute (A.188), (A.190), (A.217) and (A.218) into the above to get:

λ̇2(t) = −
(
Pj ·

(
αb

(
−µγcc

(
µ
(
C −

(
C +

(
K0j − C

)
e−µ·t)) (A.222)

−µ ·
(
C −K0j

)
e−µ·t)− γcµ+ γK

)
− µ · αc

)
+ µ− λbµ

)
+ ρ (Pj · (αbγc + αc)− 1 + λb(t))

We simplify the equation above and solve the resulting second order ODE for λb(t):

λb(t) =
(
Pjαbγccµ

(
K̂j − C

)(
·e(µ+ρ)·t − 1

)
+ λb(0) · e(µ+ρ)·t

)
(A.223)

Remember that the transversality condition requires that:

lim
t→∞

p(t)K(t)e−ρt = 0

Note that we can make use of the transversality condition to find λb(0) because as we previously

(later) show(ed), whenever the upper bound on investment binds, it will bind for all t ≥ 0.

So, substituting p(t) = (Pj · (αbγc + αc)− 1 + λb(t)), (A.223), andK(t)UC =
(
C +

(
K0j − C

)
· e−µ·t)

into our transversality condition, we get

lim
t→∞

(
CPjαb

(
γc +

αc − P−1
j

αb
− γccµ

(
K̂j − C

))
e−ρt + C

(
Pjαbγccµ

(
K̂j − C

)
+ λb(0)

)
· eµ·t

+Pjαb

(
K0j − C

)(
γc +

αc − P−1
j

αb
− γccµ

(
K̂j − C

))
e−(ρ+µ)t

+
(
K0j − C

) (
Pjαbγccµ

(
K̂j − C

)
+ λb(0)

))
= 0

which is equivalent to:
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lim
t→∞

(
C
(
Pjαbγccµ

(
K̂j − C

)
+ λb(0)

)
· eµ·t

+
(
K0j − C

) (
Pjαbγccµ

(
K̂j − C

)
+ λb(0)

))
= 0

which is satisfied if

λb(0) = −Pjαbγccµ
(
K̂j − C

)

So we have

λb(t) =
(
Pjαbγccµ

(
K̂j − C

)(
·e(µ+ρ)·t − 1

)
− Pjαbγccµ

(
K̂j − C

)
· e(µ+ρ)·t

)
(A.224)

λb(t) = −Pjαbγccµ
(
K̂j − C

)
∀t ≥ 0 (A.225)

p(t) =
(
Pj · (αbγc + αc)− 1− Pjαbγccµ

(
K̂j − C

))

p(t) = αb

(
γc +

αc − P−1
j

αb
− γccµ

(
K̂j − C

))
(A.226)

A.6 Optimal Solution for Stage j When R(K) is Constant Because µ = 0

If µ = 0 (i.e., synthetic compounds in the soil do not decay on their own) then Rj(K) is a constant

(that does not depend on K).

There are 3 possible types of optimal trajectories that arise when R(K) is constant because µ = 0,

depending on the parameters.

A.6.1 Optimal Trajectories 1: Disinvest as fast as possible to K = 0

If µ = 0 (i.e., synthetic compounds in the soil do not decay on their own) so that Rj(K) is a

constant (that does not depend on K), then if prices are high enough to satisfy the condition that net

investment has a negative effect on contemporaneous net gain (so that Rj(K) is useful for analyzing

net investment):

P−1
j < αbγc + αc (A.227)
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as well as the following condition for Rj(K) < ρ:

P−1
j <

αb

ρ+ µ
((ρ+ µ)γc − γK) (A.228)

then the farmer will always disinvest until he reaches K = 0 since Rj(K) < ρ.

When µ = 0, if we have a lower corner solution for I(t) (i.e., if c∗∗j > c), then

The lower bound to I binds when the optimal unconstrained synthetic compound level c∗∗j exceeds

the upper bound for synthetic compound use (i.e., if c∗∗j > c). If the optimal unconstrained synthetic

compound level c∗∗j exceeds the upper bound for synthetic compound use (i.e., if c∗∗j > c), this means

that the PDV of the entire stream of MNB of an additional unit of synthetic compound c(t) today is

still greater than 0 at c = c.

The condition c∗∗j > c implies the following when µ = 0:

−
Pj ·

(
αc + αb

(
γc − 1

ρ · γK
))

− 1

Pjαbγcc
> c (A.229)

⇒= Pj · αc > −Pjαbγccc+
PjαbγK
µ+ ρ

+ Pjαb (−γc) + 1 (A.230)

In this case our optimal trajectories are as follows:

K(t) =

K(0)− c · t t < T (µ)K=0

0 t ≥ T (µ)K=0

(A.231)

I(t) =

−c t < T (µ)K=0

0 t ≥ T (µ)K=0

(A.232)

c(t) =

c t < T (µ)K=0

0 t ≥ T (µ)K=0

(A.233)

C(t) =

C −K(0) + c · t t < T (µ)K=0

C t ≥ T (µ)K=0

(A.234)
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b(t) =

max{γcc+ 1
2γccc

2 + γK (K(0)− c · t) +Ab, 0} t < T (µ)K=0

Ab t ≥ T (µ)K=0

(A.235)

y(t) =

αcc+ αbb(t) +Ay t < T (µ)K=0

αbb(t) +Ay t ≥ T (µ)K=0

(A.236)

TK=0 =
K(0)

c
(A.237)

A.6.2 Optimal Trajectories 1’: Disinvest to K = 0

If µ = 0 (i.e., synthetic compounds in the soil do not decay on their own) so that Rj(K) is a

constant (that does not depend on K), then if prices are high enough to satisfy the condition that net

investment has a negative effect on contemporaneous net gain (so that Rj(K) is useful for analyzing

net investment):

P−1
j < αbγc + αc (A.238)

as well as the following condition for Rj(K) < ρ:

P−1
j <

αb

ρ+ µ
((ρ+ µ)γc − γK) (A.239)

then the farmer will always disinvest until he reaches K = 0 since Rj(K) < ρ.

When γcc ̸= 0 but µ = 0 the gain function is non-linear in I, and therefore the optimal policy

will not be MRA. If the lower corner solution for I does not bind (because c∗∗j ≤ c), we will have an

interior soluion.

The condition c∗∗j > c implies the following when µ = 0:

−
Pj ·

(
αc + αb

(
γc − 1

ρ · γK
))

− 1

Pjαbγcc
> c (A.240)

⇒= Pj · αc > −Pjαbγccc+
PjαbγK
µ+ ρ

+ Pjαb (−γc) + 1 (A.241)
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If neither constraint on I(t) binds and I(t)∗ is interior, the conditions of the Maximum Principle

yield:

[#1]:

∂H

∂I
= Pj ·

(
∂f

∂b

∂g

∂I
+

∂f

∂c
(−1)

)
+ 1 + p = 0 (A.242)

⇒ p(t) = −
(
Pj ·

(
∂f

∂b

∂g

∂I
+

∂f

∂c
(−1)

)
+ 1

)
(A.243)

[#2]:

−∂H

∂K
= −

(
Pj ·

(
∂f

∂b

∂g

∂K
+

∂f

∂c
(−µ)

)
+ µ

)
(A.244)

or, given µ = 0,

−∂H

∂K
= −Pj ·

(
∂f

∂b

∂g

∂K

)
(A.245)

so that

ṗ(t) = −Pj ·
(
∂f

∂b

∂g

∂K

)
+ ρp(t) (A.246)

and [#3]: the transversality condition requires that

lim
t→∞

p(t)K∗(t)e−ρt = 0 (A.247)

With

f(b, c) = αbb+ αcc+Ay (A.248)

so that ∂f
∂b = αb and

∂f
∂c = αc, and

g(K, I) =
1

2
γcc (I)

2 − γc (I) + γKK +Ab (A.249)
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so that

∂g(K, I)

∂K
= γK (A.250)

and

∂g(K, I)

∂I
= (γccI − γc) (A.251)

the first condition of the maximum principle can be re-expressed as follows:

∂H

∂I
= Pj ·

(
∂f

∂b

∂g

∂I
+

∂f

∂c
(−1)

)
+ 1 + p = 0 (A.252)

⇒ −
(
Pj ·

(
∂f

∂b

∂g

∂I
− ∂f

∂c

)
+ 1

)
= p (A.253)

⇒ p(t) = − (Pj · (αb (γcc · I(t)− γc)− αc) + 1) (A.254)

⇒ p(t) = −Pj · (αb (−γc)− αc)− Pjαbγcc · I(t)− 1 (A.255)

⇒ Pjαbγcc · I(t) = −Pj · (αb (−γc)− αc)− 1− p(t) (A.256)

⇒ I(t) =
−Pj · (αb (−γc)− αc)− 1

Pjαbγcc
− 1

Pjαbγcc
p(t) (A.257)

⇒ I(t) =
γc +

αc−P−1
j

αb

γcc
− 1

Pjαbγcc
p(t) (A.258)

The second condition of the maximum principle can be re-expressed as follows:

ṗ(t) = −
(
Pj ·

(
∂f

∂b

∂g

∂K

))
+ ρp(t) (A.259)

ṗ(t) = − (Pj · (αbγK)) + ρp(t) (A.260)
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Using (A.260), we can solve for p(t) as follows:

ṗ(t)− ρp(t) = −PjαbγK (A.261)

p(t) =
PjαbγK

ρ
+

(
p(0)− PjαbγK

ρ

)
· eρ·t (A.262)

Substituting (A.262) into (A.258) yields:

I(t) =
γc +

αc−P−1
j

αb
− 1

ργK

γcc
−
(

p(0)

Pjαbγcc
− γK

ργcc

)
· eρ·t (A.263)

And integrating the above yields:

K(t) =

γc +
αc−P−1

j

αb
− 1

ργK

γcc
t− 1

ρ

(
p(0)

Pjαbγcc
− γK

ργcc

)
· eρ·t (A.264)

+
1

ρ

(
p(0)

Pjαbγcc
− γK

ργcc

)
+K0j

)

where K0j is given.

We then substitute (A.258) and (A.264) into our transversality condition to see if we can learn

more about p(0).

lim
t→∞

p(t)K∗(t)e−ρt = 0 (A.265)
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lim
t→∞

PjαbγK
ρ

γc +
αc−P−1

j

αb
− 1

ργK

γcc
t+

1

ρ

(
p(0)

Pjαbγcc
− γK

ργcc

)
+K0j

 e−ρt (A.266)

−PjαbγK
ρ

1

ρ

(
p(0)

Pjαbγcc
− γK

ργcc

)

+

(
p(0)− PjαbγK

ρ

)γc +
αc−P−1

j

αb
− 1

ργK

γcc
t+

1

ρ

(
p(0)

Pjαbγcc
− γK

ργcc

)
+K0j

 e−2ρt

− 1

ρPjαbγcc

(
p(0)− PjαbγK

ρ

)2

· e−ρ·t

)
= 0

Applying l’Hospital’s rule we see that this limit is equivalent to:

⇒ lim
t→∞

(
−PjαbγK

ρ

1

ρ

(
p(0)

Pjαbγcc
− γK

ργcc

))
= 0 (A.267)

So we see that the transversality condition will be satisfied if:

⇒ p(0) =
PjαbγK

ρ
(A.268)

Let’s make this assumption. Then we have that

p(t) =
PjαbγK

ρ
(A.269)

I(t) =
γc +

αc−P−1
j

αb
− 1

ργK

γcc
(A.270)

I(t) =

γK

γc+
αc−P−1

j
αb

γK
− 1

ρ


γcc

(A.271)

I(t) =
γK
γcc

(
R(K)−1 − ρ−1

)
(A.272)
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I(t) =
γK

(−γcc)

(
ρ−1 −R(K)−1

)
(A.273)

and

K(t) =


γK

γc+
αc−P−1

j
αb

γK
− 1

ρ


γcc

t+K0j

 (A.274)

K(t) =
γK
γcc

(
R(K)−1 − ρ−1

)
· t+K0j (A.275)

K(t) =
γK

(−γcc)

(
ρ−1 −R(K)−1

)
· t+K0j (A.276)

In this case the optimal trajectories are as follows:

p(t) =
PjαbγK

ρ
(A.277)

I(t) =
γc +

αc−P−1
j

αb
− 1

ργK

γcc
(A.278)

I(t) =

γK

γc+
αc−P−1

j
αb

γK
− 1

ρ


γcc

(A.279)

I(t) =
γK
γcc

(
R(K)−1 − ρ−1

)
(A.280)

I(t) =
γK

(−γcc)

(
ρ−1 −R(K)−1

)
(A.281)

and
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K(t) =


γK

γc+
αc−P−1

j
αb

γK
− 1

ρ


γcc

t+K0j

 (A.282)

K(t) =
γK
γcc

(
R(K)−1 − ρ−1

)
· t+K0j (A.283)

K(t) =
γK

(−γcc)

(
ρ−1 −R(K)−1

)
· t+K0j (A.284)

However, note that if R(K) is constant (as when µ = 0), and R(K) ≤ ρ, as we’ve assumed, then

the equation for K(t) that we have derived above implies K is weakly decreasing in t, and strictly

decreasing when R(K) < ρ and γK ̸= 0. When this is the case, K(t)∗ will eventually fall below zero,

and the farmer will have to switch to a constrained optimal solution so as to prevent K from violating

our non-negativity condition. We solve for the first moment at which K(t)∗ = 0, which we will denote

T (µ)K=0, below:

K(T (µ)K=0) =
γK

(−γcc)

(
ρ−1 −R(K)−1

)
· T (µ)K=0 +K0j = 0 (A.285)

T (µ)K=0 =
−K0j

γK
(−γcc)

(ρ−1 −R(K)−1)
(A.286)

T (µ)K=0 =
K0j

γK
(−γcc)

· (R(K)−1 − ρ−1)
≥ 0 (A.287)

or

T (µ)K=0 =
K0j

γK
(−γcc)

·

γc+
αc−P−1

j
αb

γK
− 1

ρ

 ≥ 0 (A.288)

So ∀t ≤ T (µ)K=0 the farmer adopts the unconstrained optimal solution:

K(t)∗ =

(
γK

(−γcc)

(
ρ−1 −R(K)−1

)
· t+K0j

)
∀t ≤ T (µ)K=0 (A.289)
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and

I(t)∗ =
γK

(−γcc)

(
ρ−1 −R(K)−1

)
∀t ≤ T (µ)K=0. (A.290)

Otherwise, when t > T (µ)K=0 the farmer adopts the constrained optimal solution:

K(t) = 0, ∀t > T (µ)K=0 (A.291)

and

I(t) = 0, ∀t > T (µ)K=0. (A.292)

We therefore have the overall solution:

K(t) =


γK

(−γcc)

(
ρ−1 −R(K)−1

)
· t+K0j , ∀t ≤ T (µ)K=0

0, ∀t > T (µ)K=0

(A.293)

and

I(t) =


γK

(−γcc)

(
ρ−1 −R(K)−1

)
, ∀t ≤ T (µ)K=0

0, ∀t > T (µ)K=0

(A.294)

Given this solution, we can solve for c(t), C(t), b(t), and y(t) as follows:

c(t) = µ︸︷︷︸
=0

(
C −K(t)

)
− I(t) (A.295)

c(t) = −I(t) (A.296)
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c(t) =

−
γK

 γc+
αc−P−1

j
αb

γK
− 1

ρ


γcc

, ∀t ≤ T (µ)K=0

0, ∀t > T (µ)K=0

(A.297)

or:

c(t) =


γK
γcc

·
(
ρ−1 −R(K)−1

)
, ∀t ≤ T (µ)K=0

0, ∀ > T (µ)K=0

(A.298)

We solve for C(t) as follows:

C(t) = C −K(t) (A.299)

C(t) =


C −


γK

 γc+
αc−P−1

j
αb

γK
− 1

ρ


γcc

t+K0j

 , ∀t ≤ T (µ)K=0

C, ∀t > T (µ)K=0

(A.300)

We can also write:

C(t) = C −
(

γK
(−γcc)

(
ρ−1 −R(K)−1

)
· t+K0j

)
, ∀t ≤ T (µ)K=0 (A.301)

C(t) = C −K0j︸ ︷︷ ︸
≡C0j

+
γK
γcc

(
ρ−1 −R(K)−1

)
· t, ∀t ≤ T (µ)K=0 (A.302)

or

C(t) = C0j +
γK
γcc

(
ρ−1 −R(K)−1

)
· t, ∀t ≤ T (µ)K=0 (A.303)

so that:

C(t) =

C0j +
γK
γcc

(
ρ−1 −R(K)−1

)
· t ∀t ≤ T (µ)K=0

C ∀t > T (µ)K=0

(A.304)
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We solve for b(t) as follows:

b(t) = γcc(t) +
1

2
γccc(t)

2 + γKK(t) +Ab (A.305)

b(t) = γc

−

γK

γc+
αc−P−1

j
αb

γK
− 1

ρ


γcc

+
1

2
γcc

−

γK

γc+
αc−P−1

j
αb

γK
− 1

ρ


γcc



2

(A.306)

+ γK


γK

γc+
αc−P−1

j
αb

γK
− 1

ρ


γcc

t+K0j

+Ab ∀t ≤ T (µ)K=0

On the other hand, when ∀t > T (µ)K=0, we will have

b(t) = Ab, (A.307)

so that overall the farmer will face:
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b(t) =



γc

−
γK

 γc+
αc−P−1

j
αb

γK
− 1

ρ


γcc

+ 1
2γcc

−
γK

 γc+
αc−P−1

j
αb

γK
− 1

ρ


γcc


2

+γK


γK

 γc+
αc−P−1

j
αb

γK
− 1

ρ


γcc

t+K0j

+Ab, ∀t ≤ T (µ)K=0

Ab, ∀t > T (µ)K=0

(A.308)

b(t) = γc ·
γK
γcc

·
(
ρ−1 −R(K)−1

)
(A.309)

+
1

2
γcc ·

(
γK
γcc

·
(
ρ−1 −R(K)−1

))2

+ γK ·
(

γK
(−γcc)

(
ρ−1 −R(K)−1

)
· t+K0j

)
+Ab, ∀t ≤ T (µ)K=0

b(t) = γc ·
γK
γcc

·
(
ρ−1 −R(K)−1

)
(A.310)

+
1

2
· (−γcc)

−1 ·
(
γK ·

(
ρ−1 −R(K)−1

))2
+

γ2K
(−γcc)

(
ρ−1 −R(K)−1

)
· t

+ γK ·K0j +Ab, ∀t ≤ T (µ)K=0

b(t) =

(
γc − γK · t

γcc

)
· γK ·

(
ρ−1 −R(K)−1

)
(A.311)

+
1

2
· (−γcc)

−1 ·
(
γK ·

(
ρ−1 −R(K)−1

))2
+ γK ·K0j +Ab, ∀t ≤ T (µ)K=0
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b(t) =

((
γc − γK · t

γcc

)
− 1

2
· (γcc)−1 · γK ·

(
ρ−1 −R(K)−1

))
· γK ·

(
ρ−1 −R(K)−1

)
(A.312)

+ γK ·K0j +Ab, ∀t ≤ T (µ)K=0

b(t) = γK ·
(((

γc − γK · t
γcc

)
− 1

2
· (γcc)−1 · γK ·

(
ρ−1 −R(K)−1

))
·
(
ρ−1 −R(K)−1

)
(A.313)

+K0j) +Ab, ∀t ≤ T (µ)K=0

Overall then, the farmer will face:

b(t) =



γK ·
(((

γc−γK ·t
γcc

)
− 1

2 · (γcc)−1 · γK ·
(
ρ−1 −R(K)−1

))
·
(
ρ−1 −R(K)−1

)
+K0j) +Ab, ∀t ≤ T (µ)K=0

Ab, ∀t > T (µ)K=0

(A.314)

We solve for y(t) as follows:

y(t) = αcc(t) + αbb(t) +Ay (A.315)
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y(t) = αc ·

−

γK

γc+
αc−P−1

j
αb

γK
− 1

ρ


γcc

+ αb ·

γc

−

γK

γc+
αc−P−1

j
αb

γK
− 1

ρ


γcc

 (A.316)

+
1

2
γcc

−

γK

γc+
αc−P−1

j
αb

γK
− 1

ρ


γcc



2

+γK


γK

γc+
αc−P−1

j
αb

γK
− 1

ρ


γcc

t+K0j

+Ab

+Ay, ∀t ≤ T (µ)K=0

On the other hand, when ∀t > T (µ)K=0, we will have

y(t) = αbAb +Ay (A.317)

so that overall the farmer will face:
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y(t) =



αc ·

−
γK

 γc+
αc−P−1

j
αb

γK
− 1

ρ


γcc

+ αb ·

γc

−
γK

 γc+
αc−P−1

j
αb

γK
− 1

ρ


γcc



+1
2γcc

−
γK

 γc+
αc−P−1

j
αb

γK
− 1

ρ


γcc


2

+γK


γK

 γc+
αc−P−1

j
αb

γK
− 1

ρ


γcc

t+K0j

+Ab

+Ay, ∀t ≤ T (µ)K=0

αbAb +Ay, ∀t > T (µ)K=0

(A.318)

We can also write that

y(t) = αc ·
γK
γcc

·
(
ρ−1 −R(K)−1

)
(A.319)

+ αb ·
(
γK ·

(((
γc − γK · t

γcc

)
− 1

2
· (γcc)−1 · γK ·

(
ρ−1 −R(K)−1

))
·
(
ρ−1 −R(K)−1

)
+K0j

)
+Ab) +Ay, ∀t ≤ T (µ)K=0

y(t) = αc ·
γK
γcc

·
(
ρ−1 −R(K)−1

)
(A.320)

+ αb · γK ·
((

γc − γK · t
γcc

)
− 1

2
· (γcc)−1 · γK ·

(
ρ−1 −R(K)−1

))
·
(
ρ−1 −R(K)−1

)
+ αb · γK ·K0j + αb ·Ab +Ay, ∀t ≤ T (µ)K=0
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y(t) =

(
αc ·

γK
γcc

(A.321)

+αb · γK ·
((

γc − γK · t
γcc

)
− 1

2
· (γcc)−1 · γK ·

(
ρ−1 −R(K)−1

)))
·
(
ρ−1 −R(K)−1

)
+ αb · γK ·K0j + αb ·Ab +Ay, ∀t ≤ T (µ)K=0

y(t) = γK ·
(
αc + αbγc − αbγK · t

γcc
(A.322)

−1

2
· αb (γcc)

−1 γK ·
(
ρ−1 −R(K)−1

))
·
(
ρ−1 −R(K)−1

)
+ αb · γK ·K0j + αb ·Ab +Ay, ∀t ≤ T (µ)K=0

or

y(t) = αbγK

(( αc
αb

+ γc − γK · t
γcc

(A.323)

−1

2
· (γcc)−1 · γK ·

(
ρ−1 −R(K)−1

))
·
(
ρ−1 −R(K)−1

)
+K0j +

Ab +
Ay

αb

γK

)
, ∀t ≤ T (µ)K=0.

y(t) = αbγK

(
1

γcc
·
(
αc

αb
+ γc − γK ·

(
t+

1

2
·
(
ρ−1 −R(K)−1

)))
·
(
ρ−1 −R(K)−1

)
(A.324)

+K0j +
Ab +

Ay

αb

γK

)
, ∀t ≤ T (µ)K=0.

Overall then the farmer will face
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y(t) =



αbγK

(
1
γcc

·
(
αc
αb

+ γc − γK ·
(
t+ 1

2 ·
(
ρ−1 −R(K)−1

)))
·
(
ρ−1 −R(K)−1

)
+K0j +

Ab+
Ay
αb

γK

)
, ∀t ≤ T (µ)K=0

αbAb +Ay, ∀t > T (µ)K=0

(A.325)

A.6.3 Optimal Trajectories 3”: Stay at initial clean soil stock and do not invest or

disinvest

We always set I(t) = 0 (for all t) and stay at the initial clean soil stock when µ = 0 and Rj(K) is

constant and greater than or equal to ρ.

If Rj(K) is constant and equal to ρ, it is optimal to stay at initial clean soil stock and not to

invest or disinvest.

When µ = 0, the condition Rj(K) ≥ ρ implies the following:

Pjαc ≤
PjαbγK
µ+ ρ

+ Pjαb (−γc) + 1 (A.326)

If µ = 0 and Rj(K) is greater than ρ, the farmer is constrained by upper bound on I to stay at

K0j (Optimal Trajectory Type 3’). This is because the upper bound constraint on I(t) was given by:

I(t)UC = µ ·
(
C −K(t)

)
(A.327)

or, given µ = 0

I(t)UC = 0 (A.328)

Thus, when µ = 0 the upper bound constraint on investment is equal to zero, and will always

bind when Rj(K) is greater than ρ. In this case, the farmer will remain at their initial capital stock

indefinitely.

Thus, for OT3”, the optimal synthetic compound use c(t) is constant at the amount that exactly

offsets how much the initial stock of chemicals in the soil decays on its own. Since the stock of
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chemicals in the soil does not decay on its own when µ = 0, this means the optimal synthetic

compound use c(t) is constant at zero.

The optimal trajectories are therefore the following:

K(t) = K0j ∀t (A.329)

I(t) = 0∀t (A.330)

c(t) = 0∀t (A.331)

C(t) = C −K0j = C(0)∀t (A.332)

b(t) =

(
γcµ

(
C −K0j

)
+

1

2
γccµ

2
(
C −K0j

)2
+ γKK0j +Ab

)
∀t (A.333)

Whern µ = 0, the equation above simplifies to:

b(t) = γKK0j +Ab ∀t. (A.334)

f̃(t) = αb

(
γcµ

(
C −K0j

)
+

1

2
γccµ

2
(
C −K0j

)2
+ γKK0j +Ab

)
+ αcµ

(
C −K0j

)
+Ay ∀t (A.335)

When µ = 0, the equation above simplifies to:

f̃(t) = αb (γKK0j +Ab) +Ay ∀t.

Since y(t) = f̃(t), we can therefore write that

y(t) = αb (γKK0j +Ab) +Ay ∀t. (A.336)
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B Discrete Transitions

B.1 Discrete Analysis for OT1 (Case C6, Case B4; Case C7 when γcc = 0)

Discrete Analysis for Case C6: Both the Stage 1 conventional farmer and the Stage 2 organic farmer

disinvest to K = 0 because K̂con < 0 (and therefore K̂org < 0 as well).

Recall that in Case C6 the optimal solution for each stage j ∈ {con, org} is to disinvest as fast as

possible until K = 0.

A conventional farmer facing C6 conditions will adopt OT1 solutions.

Case B4: Conventional Farmer Stationary Solution K̂con is below Korg and Organic Farmer

disinvests to K = 0 because K̂org < 0.

Case B4 ends up being exactly the same as Case C6 because these two cases only differ in K̂org,

but not in their stage 2 trajectories (in both cases we will have K(t)org = Korg and I(t)org = 0 for

all t).

A conventional farmer facing B4 or C6 conditions will adopt OT1 solutions.

Case C7: Both the Stage 1 conventional farmer and the Stage 2 organic farmer disinvest to K = 0

because Rj(K) is constant and less than ρ

Similarly, Case C7 when γcc = 0 ends up being the same as Case C6 because the conventional

farmer adopts OT1 solutions while for the stage 2 trajectories we have K(t)org = Korg∀t and I(t)org =

0∀t, except that the interpretation for ϵ∗ based on K̂con in Figure B.1 no longer applies, since K̂con

does not exist.

Similarly, Case C7 when γcc = 0 ends up being exactly the same as Case C6 because the

conventional farmer adopts OT1 solutions, while for the stage 2 trajectories we have K(t)org = Korg

and I(t)org = 0 for all t.

A conventional farmer facing B4 or C6 conditions, or C7 conditions when γcc = 0, will adopt OT1

solutions.

In this case, a farmer who starts off organic will disinvest until they reach Korg. They then choose

to remain organic if and only if

Vorg(Korg) > Vcon(Korg − ϵ). (B.1)

Vorg(Korg) is the present discounted value of the entire stream of net benefits that a farmer will

receive from the moment they have switched to organic management, into perpetuity, assuming the

organic farmer stays organic indefinitely. Vorg(Korg) assumes that once in stage 2, the farmer follows

the following constrained trajectories:

K̄(t)org = Korg ∀t (B.2)
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Ī(t)org = 0∀t (B.3)

C(t)org = µ
(
C −Korg

)
∀t (B.4)

The value Vorg(Korg) of the farmer’s optimal program for stage 2 following this constrained capital

trajectory can be written as follows:

Vorg(Korg) =

∫ ∞

t=0

(
Porg ·

(
αb

(
1

2
γcc
(
µ
(
C −Korg

))2
+ γcµ

(
C −Korg

)
+ γK (Korg) +Ab

)
+αcµ

(
C −Korg

)
+Ay

)
− µ

(
C −Korg

))
e−ρtdt

(B.5)

Vorg(Korg) =
1

ρ
Porg·

(
αb

((
1

2
γccµC + γc +

αc − P−1
org

αb
− 1

2
γccµKorg

)
µ
(
C −Korg

)
+ γKKorg +Ab

)
+Ay

)
(B.6)

On the other hand, Vcon(Korg − ϵ) is the present discounted value of the entire stream of net

benefits that a farmer will receive if they continue to produce conventionally indefinitely. When the

conventional farmer adopts OT1 solutions, Vcon(Korg − ϵ) is given by:

Vcon(Korg − ϵ) =
1

ρ
· Pconαb ·

(
ρ

(µ+ ρ)
· γK · (Korg − ϵ) +

(
1

2
γccµC + γc +

αc − P−1
con

αb

)
· µC +Ab +

Ay

αb

)
(B.7)

To further simplify our analysis, let’s also assume (as we approximately have in all real-world

organic certification programs known to the authors) that organic certification requires that a farmer

fully remediate their soils, such that they will be certifiied organic if and only if K = C. In this case

we have that Korg = C, and our analytical solution for Vcon(Korg − ϵ) becomes further to:

Vcon(Korg − ϵ) =
1

ρ
· Pconαb ·

(
ρ

(µ+ ρ)
· γK ·

(
C − ϵ

)
+

(
1

2
γccµC + γc +

αc − P−1
con

αb

)
· µC +Ab +

Ay

αb

)
(B.8)

With Korg = C our expression for Vorg(Korg) becomes:

Vorg(Korg) =
1

ρ
Porg ·

(
αb

(
γKC +Ab

)
+Ay

)
(B.9)

With expressions for Vorg(Korg) and Vcon(Korg − ϵ) we can now write the following expressions:
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∆(ϵ) = Vorg(Korg)− Vcon(Korg − ϵ) (B.10)

as follows

∆(ϵ) =
1

ρ
· Pcon · αb ·

(
γK · C +Ab +

Ay

αb

)
︸ ︷︷ ︸

≥0

·
(
Porg − Pcon

Pcon

)

+ Pcon · αb ·
1

(µ+ ρ)
· γK︸ ︷︷ ︸

≥0

·ϵ

− 1

ρ
· Pcon · αb ·

(
1

2
γccµC + γc +

αc − P−1
con

αb
− 1

(µ+ ρ)
· γK

)
· µC

Given Korg = C and c = µC the conventional C6 farmer faces:

∆C6(ϵ) =
1

ρ
Porg · αbγK C︸︷︷︸

=Korg︸ ︷︷ ︸
PDV of stewarding soil microbiome

at organic-level capital stock and

at organic prices

+
1

ρ
(Porg − Pcon) · (αbAb +Ay)︸ ︷︷ ︸

PDV of organic price premium

on ”level effect”

of other agricultural inputs

− Pconαb ·
1

(µ+ ρ)
· γK ·

(
C − ϵ

)︸ ︷︷ ︸
=K0︸ ︷︷ ︸

PDV of microbial productivity

under conventional management

− 1

ρ
·
(
Pcon

(
αb ·

(
1

2
γccµC + γc

)
+ αc

)
− 1

)
· µC︸ ︷︷ ︸

PDV of using synthetic compounds

at dynamically optimal rate µC

The sign of ∂∆(ϵ)
∂ϵ is given by:

∂∆(ϵ)

∂ϵ
≥ Pcon · αb ·

1

(µ+ ρ)
· γK︸ ︷︷ ︸

≥0

(B.11)

Thus, ∆(ϵ) is linear and weakly increasing in ϵ.

Let ϵ∗ be the value of ϵ such that ∆(ϵ∗) = 0. Note that ∆(ϵ∗) = 0.

The range of ϵ yielding ∆(ϵ) ≥ 0 is ϵ ≥ ϵ∗ where:
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ϵ∗ =

(
µ+ ρ

γK
·
(
1

2
γccµC + γc +

αc − P−1
con

αb

)
− 1

)
· µ
ρ
· C

− 1

γK
· µ+ ρ

ρ
·
(
γK · C +Ab +

Ay

αb

)
︸ ︷︷ ︸

≥0

·
(
Porg − Pcon

Pcon

)

ϵ∗ = − µ+ ρ

PconγK
· 1
ρ︸ ︷︷ ︸

≤0

(Porg − Pcon)

(
Ab +

Ay

αb

)
︸ ︷︷ ︸

≥0

−Pcon


(
1

2
γccµC + γc +

αc − P−1
con

αb

)
µ−

(
Porg

Pcon
− ρ

µ+ ρ

)
γK︸ ︷︷ ︸

≥0

C


(B.12)

This means that when ϵ∗ ≤ 0 the farmer will face Vorg(Korg)−Vcon(Korg − ϵ) > 0∀ϵ ≥ 0, and will

therefore prefer to produce organically for all feasible initial capital stocks (i.e. they always prefer to

produce organically).

Given ∂∆(ϵ∗)
∂ϵ ≥ 0, we will have that:

• The lower the threshold ϵ∗, the larger the set {K0,con = Korg − ϵ : ∆(ϵ) > 0}

• The higher the threshold ϵ∗, the smaller the {K0,con = Korg − ϵ : ∆(ϵ) > 0}
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Figure B.1: Condition for ∆(ϵ) ≥ 0 for Case C6

1

µ+ ρ
· PconαbγK︸ ︷︷ ︸

PDV of entire stream of
marginal benefit

of additional unit of
clean soil stock K(t)
via its direct effect
on soil microbes
(stock effect)

·ϵ ≥ 1

ρ
Pconαb

(
1

2
γcc
(
µC
)2)

︸ ︷︷ ︸
negative of PDV of entire stream of

nonlinear component of indirect benefits

of clean soil stock K(t)
when evaluated at K=0

via its indirect positive effect
on soil microbes

through its negative effect

on synthetic compound use c(t)

−1

ρ
Pconαb

(
γccµ

(
C − K̂con

))
µ︸ ︷︷ ︸

PDV of entire stream
of nonlinear component of

indirect marginal benefits of clean soil stock K(t)

when evaluated at K=K̂con
via its indirect positive effect

on soil microbes
through its negative effect

on synthetic compound use c(t)

C︸︷︷︸
clean soil stock

at organic threshold

K=C

− 1

ρ
(Porg − Pcon)

(
αb

(
γKC +Ab

)
+Ay

)︸ ︷︷ ︸
crop output at the organic threshold︸ ︷︷ ︸

PDV of entire stream of additional crop revenue

at the organic threshold K=C
due to organic price premium

(B.13)
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B.1.1 Comparative statics for ∆(ϵ)

First we do a comparative static exercise for ∆ (ϵ) = Vorg(Korg) − Vcon(Korg − ϵ). The results are

summarized in Table B.1 and derived below.

∂∆(ϵ)

∂Pcon
=

1

ρ
· αb ·

−
(
Ab +

Ay

αb

)
︸ ︷︷ ︸

≤0

+ γK ·
(

ρ

(µ+ ρ)
· ϵ− C

)
︸ ︷︷ ︸

≤0

(B.14)

+

−

µγcc · K̂con︸ ︷︷ ︸
≤0︸ ︷︷ ︸

≥0

+
1

2
(−γcc)µC︸ ︷︷ ︸

≥0

+
P−1
con

αb︸ ︷︷ ︸
≥0



 · µC

︸ ︷︷ ︸
≤0


≤ 0

∂∆(ϵ)

∂Porg
=

1

ρ
· αb ·

(
γK · C +Ab +

Ay

αb

)
︸ ︷︷ ︸

≥0

≥ 0 (B.15)

∂∆(ϵ)

∂ρ
= −Pcon · αb ·

1

ρ2
·


(
γK · C +Ab +

Ay

αb

)
︸ ︷︷ ︸

≥0

·
(
Porg − Pcon

Pcon

)
︸ ︷︷ ︸

≥

+
ρ

(µ+ ρ)
· γK ·

(
ρ

µ+ ρ
· ϵ+ µC ·

(
1

ρ
+

1

(µ+ ρ)

))
︸ ︷︷ ︸

≥0

−
(
1

2
γccµC + γc +

αc − P−1
con

αb

)
· µC︸ ︷︷ ︸

≥0



So that for large enough
(
Porg−Pcon

Pcon

)
we will have ∂∆(ϵ)

∂ρ ≤ 0, and for small enough
(
Porg−Pcon

Pcon

)
and large enough αc we will have ∂∆(ϵ)

∂ρ ≥ 0.
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∂∆(ϵ)

∂µ
= −1

ρ
· Pcon · αb ·

 1

(µ+ ρ)2
· γK︸ ︷︷ ︸

≥0

·
(
ρ · ϵ+ µ · C

)
+ µγcc · K̂con︸ ︷︷ ︸

≥0

·C


︸ ︷︷ ︸

≥0

≤ 0

∂∆(ϵ)

∂C
=

1

ρ
· Pcon · αb︸ ︷︷ ︸

≥0

·

(γK)︸︷︷︸
≥0

·
(
Porg − Pcon

Pcon

)
︸ ︷︷ ︸

≥0

+(−γcc)µ
2K̂con︸ ︷︷ ︸

≤0

 (B.16)

So we will have ∂∆(ϵ)

∂C
≥ 0 for large enough

Porg−Pcon

Pcon
, and ∂∆(ϵ)

∂C
≤ 0 for negative enough K̂con (as

we might have when αc is sufficiently large)

∂∆(ϵ)

∂αb
=

1

ρ
· Pcon ·

(
γK · C +Ab

)
︸ ︷︷ ︸

≥0

·
(
Porg − Pcon

Pcon

)
︸ ︷︷ ︸

≥0

+Pcon · 1

(µ+ ρ)
· γK︸ ︷︷ ︸

≥0

·ϵ

+
1

ρ
· Pcon ·

(
1

2
(−γcc)µC + (−γc) +

1

(µ+ ρ)
· γK

)
· µC︸ ︷︷ ︸

≥0

≥ 0

∂∆(ϵ)

∂γcc
= −1

ρ
· Pcon · αb ·

1

2
·
(
µC
)2 ≤ 0 (B.17)

∂∆(ϵ)

∂γc
= −1

ρ
· Pcon · αb · µC ≤ 0 (B.18)

∂∆(ϵ)

∂γK
=

1

ρ
· Pcon · αb ·

C ·
(
Porg − Pcon

Pcon

)
+

1

(µ+ ρ)︸ ︷︷ ︸
≥0

·
(
ρϵ+ µC

)
 ≥ 0 (B.19)
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which means that as the marginal product γK of an additional unit of clean soil increases, the farmer

becomes more likely to prefer organic production.

∂∆(ϵ)

∂Ay
= (−Pcon · αb) ·

Pcon − Porg

ρPconαb
≥ 0 (B.20)

∂∆(ϵ)

∂Ab
= (−Pcon · αb) ·

Pcon − Porg

ρPcon
≥ 0 (B.21)

∂∆(ϵ)

∂ϵ
= (−Pcon · αb) ·

(
− γK
µ+ ρ

)
≥ 0 (B.22)
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Table B.1: Comparative Statics for ∆ (ϵ) When Conventional Farmer Adopts OT1

Parameter Full Information: C6 (OT1)

ρ

+

−

Small enough
(
Porg−Pcon

Pcon

)
and large

enough αc.

Large enough
(
Porg−Pcon

Pcon

)
µ −

Porg +

Pcon −
αb +

αc −
γc −
γcc −
γK +

Ay +

Ab +

C

+

−
Large enough

Porg−Pcon

Pcon
.

Large enoughαc

ϵ +

Notes: Table reports comparative statics for ∆ (ϵ) = Vorg(Korg)−Vcon(Korg− ϵ) when the
optimal solution for the conventional farmer is to disinvest as fast as possible until K = 0.
A conventional farmer will prefer producing organically when ∆ (ϵ) > 0.
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B.1.2 Comparative statics for ϵ∗

Now we do comparative statics of ϵ∗ for the parameters: µ, ρ, γcc, γc, γK , α1,αc, Pcon, and Porg.

The results are summarized in Table B.2.

∂ϵ∗

∂Porg
= − µ+ ρ

PconγK
· 1
ρ︸ ︷︷ ︸

≤0


(
Ab +

Ay

αb

)
︸ ︷︷ ︸

≥0

+ γKC︸︷︷︸
≥0︸ ︷︷ ︸

≥0


≤ 0 (B.23)

∂ϵ∗

∂C
= − µ+ ρ

PconγK
· 1
ρ︸ ︷︷ ︸

≤0

(Porg − Pcon) γK︸ ︷︷ ︸
≥0

−µ2PconγccK̂con

 (B.24)

So for sufficiently large organic price premiums ((Porg − Pcon) large) we’ll have ∂ϵ∗

∂C
≤ 0. On the

other hand when synthetic compounds are very effective at increasing yields (such that we have very

large µ2PconγccK̂con), we’ll have
∂ϵ∗

∂C
≥ 0.

∂ϵ∗

∂µ
=

(
1

µ+ ρ

)
ϵ∗ +

(
µ+ ρ

PconγK

)
· 1
ρ

(
Pcon

((
γccµC + γc +

αc − P−1
con

αb

)
−
(

ρ

(µ+ ρ)2

)
γK

)
C

)
(B.25)

Since in case C6 we have that K̂con < 0 (and K̂org < 0), we have that in case C6:

K̂con =
(ρ+ µ)

(
γccµC + γc +

αc−P−1
con

αb

)
− γK

(ρ+ µ) γccµ
≤ 0 (B.26)

Since ρ > 0, µ ≥ 0, and γcc ≤ 0, we know that (ρ+ µ) γccµ ≤ 0 (and in particular if K̂con is well

defined and satisfies K̂con ≤ 0, it must be the case that (ρ+ µ) γccµ < 0). Then if K̂con ≤ 0 and

(ρ+ µ) γccµ ≤ 0 it must be the case that:

(ρ+ µ)

(
γccµC + γc +

αc − P−1
con

αb

)
− γK ≥ 0 (B.27)

Given γK ≥ 0, we know that γK ≥ ρ
ρ+µ · γK ≥ 0 (since 0 ≤ ρ

ρ+µ ≤ 1). Thus
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(ρ+ µ)

(
γccµC + γc +

αc − P−1
con

αb

)
− ρ

(ρ+ µ)
γK ≥ 0 (B.28)

Thus:

∂ϵ∗

∂µ
=

(
1

µ+ ρ

)
ϵ∗ +

(
C

γK

)
· 1
ρ︸ ︷︷ ︸

≥0

·

(µ+ ρ)

(
γccµC + γc +

αc − P−1
con

αb

)
− ρ

(µ+ ρ)
γK︸ ︷︷ ︸

≥0

 ≥ 0 (B.29)

where:

ϵ∗ =

(
µ+ ρ

γK
·
(
1

2
γccµC + γc +

αc − P−1
con

αb

)
− 1

)
· µ
ρ
· C

− 1

γK
· µ+ ρ

ρ
·
(
γK · C +Ab +

Ay

αb

)
︸ ︷︷ ︸

≥0

·
(
Porg − Pcon

Pcon

)

∂ϵ∗

∂µ
=

1

ρ
·
(

1

γK
·
(
1

2
· (−γcc) · C − 1

(µ+ ρ)2
· γK

)
· µ2 · C (B.30)

+

− 1

γK
·
(
γKC +Ab +

Ay

αb

)
︸ ︷︷ ︸

≥0

·
(
Porg − Pcon

Pcon

)
︸ ︷︷ ︸

≥0


︸ ︷︷ ︸

≤0

+
2µ+ ρ

µ+ ρ
·
(

C

γK

)
·
(
(µ+ ρ)

(
γccµC + γc +

αc − P−1
con

αb

)
− ρ

(µ+ ρ)
γK

)
︸ ︷︷ ︸

≥0



We have then that ∂ϵ∗

∂µ ≤ 0 for large enough organic price premia
Porg−Pcon

Pcon
, or large enough

Ab +
Ay

αb
, such that factors of production other than synthetic compounds and soil bacteria are

sufficiently important in determining yields. We will have ∂ϵ∗

∂µ ≥ 0, on the other hand, if both the

organic price premia
Porg−Pcon

Pcon
are sufficiently small and also (µ+ ρ) is sufficiently large.
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∂ϵ∗

∂ρ
=

(
1

ρ
− 1

µ+ ρ

)
︸ ︷︷ ︸

≥0

(
C − ϵ∗

)
(B.31)

The sign of
(
C − ϵ∗

)
is ambiguous, and will depend on other parameter values. What we can say

is that
(
C − ϵ∗

)
≥ 0 is a necessary condition for the feasible set of initial capital stock for which the

farmer prefers to produce organically to be non-empty. So if the feasible set of initial capital stocks

for which the farmer prefers to produce organically to be non-empty then we will have ∂ϵ∗

∂ρ ≥ 0, such

that increasing the interest rate (so that the farmer cares less about the future) increases ϵ∗, and

contracts the set of initial capital stock at which the farmer prefers to produce organically.

∂ϵ∗

∂γcc
=

µ+ ρ

γK
· 1
ρ

(
1

2

(
µC
)2) ≥ 0 (B.32)

∂ϵ∗

∂γc
=

µ+ ρ

γK
· µ
ρ
C ≥ 0 (B.33)

∂ϵ∗

∂γK
=

1

γ2K
· µ+ ρ

ρ︸ ︷︷ ︸
≥0

·


(
Porg − Pcon

Pcon

)(
Ab +

Ay

αb

)
︸ ︷︷ ︸

≥0

+

(
1

2
γccµC + γc +

αc − P−1
con

αb

)
︸ ︷︷ ︸

≥0

·
(
−µC

)︸ ︷︷ ︸
≤0︸ ︷︷ ︸

≤0


,

(B.34)

where
(
1
2γccµC + γc +

αc−P−1
con

αb

)
≥ 0 comes from the fact that in case C6 we have K̂con. So we see

that we will have:

• ∂ϵ∗

∂γK
≥ 0 when:

1. We have large enough organic price premia
Porg−Pcon

Pcon

2. or large enough Ab +
Ay

αb
, such that factors of production other than synthetic compounds and

soil bacteria are sufficiently important in determining yields.

• We will have ∂ϵ∗

∂γK
≤ 0 when both:

1. We have small enough organic price premia,
Porg−Pcon

Pcon
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2. and small enough Ab+
Ay

αb
, such that factors of production other than synthetic compounds and

soil bacteria are sufficiently unimportant for determining yields.

∂ϵ∗

∂αb
=

1

α2
b

· µ+ ρ

ρ
· 1

γK


(
Porg − Pcon

Pcon

)
·Ay︸ ︷︷ ︸

≥0

−
(
αc − P−1

con

)︸ ︷︷ ︸
≥0

· µC︸︷︷︸
≥0

 (B.35)

where αc − P−1
con ≥ 0 comes from K̂con ≤ 0, which is satisfied in case C6, since:

K̂con =
(ρ+ µ)

(
γccµC + γc +

αc−P−1
con

αb

)
− γK

(ρ+ µ) γccµ︸ ︷︷ ︸
≤0

≤ 0 (B.36)

⇒ (ρ+ µ)︸ ︷︷ ︸
≥0

γccµC︸ ︷︷ ︸
≤0

+ γc︸︷︷︸
≤0

+
αc − P−1

con

αb

− γK︸︷︷︸
≥0

≥ 0 (B.37)

⇒ αc − P−1
con

αb
≥ 0 (B.38)

⇒ αc − P−1
con ≥ 0 (B.39)

So we have that:

∂ϵ∗

∂αb
=

1

α2
b

· µ+ ρ

ρ
· 1

γK︸ ︷︷ ︸
≥0

·


(
Porg − Pcon

Pcon

)
·Ay︸ ︷︷ ︸

≥0

−
(
αc − P−1

con

)︸ ︷︷ ︸
≥0

· µC︸︷︷︸
≥0

 (B.40)

We have ∂ϵ∗

∂αb
≥ 0 when:

1. We have large enough organic price premia
Porg−Pcon

Pcon

2. or large enough Ay, such that factors of production other than synthetic compounds and soil

bacteria are sufficiently important in determining yields.

We will have ∂ϵ∗

∂αb
≤ 0 when both:
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1. We have small enough organic price premia
Porg−Pcon

Pcon

2. and small enough Ay, such that factors of production other than synthetic compounds and soil

bacteria are sufficiently unimportant for determining yields.

∂ϵ∗

∂αc
=

µ+ ρ

ρ
· 1

γK
· 1

αb
· µC ≥ 0 (B.41)

So that increasing the benefit of synthatic compounds (αc) increases the value of (ϵ∗) and shrinks

the set of initial capital stocks for which the farmer prefers to produce organically.

∂ϵ∗

∂Pcon
=

1

Pcon

 µ+ ρ

PconγK
· 1
ρ
Porg

(
Ab +

Ay

αb

)
︸ ︷︷ ︸

≥0

+
µ+ ρ

PconγK
· 1
ρ

(
1

αb
µ+ PorgγK

)
C︸ ︷︷ ︸

≥0

 ≥ 0

So that increasing the price at which conventional farmers can sell their crops (Pcon) increases

the value of (ϵ∗) and shrinks the set of initial capital stocks for which the farmer prefers to produce

organically.
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Table B.2: Comparative Statics for ϵ∗ When Conventional Farmer Adopts OT1

Parameter Full Information: C6 (OT1)

ρ
−

+

ρ and γK large enough,(
Porg

Pcon
− 1
)
and ϵ small enough.

(
Ab +

Ay

αb

)
sufficiently large

µ
−

+

Porg−Pcon

Pcon
large enough, or

Ab +
Ay

αb
large enough.

Porg−Pcon

Pcon
small enough, and

(µ+ ρ) large enough.

Porg -

Pcon +

αb

−

+

Porg−Pcon

Pcon
small enough, and

Ay small enough.

Porg−Pcon

Pcon
large enough, or

Ay large enough.

αc +

γc +

γcc +

γK

−

+

Porg−Pcon

Pcon
small enough, and

Ab +
Ay

αb
small enough.

Porg−Pcon

Pcon
large enough, or

Ab +
Ay

αb
large enough.

Ay +

Ab +

c0 0

C0 0

C
−
+

(Porg − Pcon) large enough
(Porg − Pcon) small enough

Notes: Table reports comparative statics for ϵ∗+ when the optimal solution for the
conventional farmer is to disinvest as fast as possible until K = 0. A conventional farmer
will prefer producing organically for all K0,con = Korg − ϵ at least ϵ∗+ lower than Korg.
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B.1.3 Comparative statics for threshold organic price premium
(
Porg−Pcon

Pcon

)∗
We also want to find how large the price premium needs to be in order to induce the fully informed

farmer to prefer organic management. We derive this requirement for
(
Porg−Pcon

Pcon

)
below.

The range of
(
Porg−Pcon

Pcon

)
yielding ∆(ϵ) ≥ 0 is

Porg−Pcon

Pcon
≥
(
Porg−Pcon

Pcon

)∗
, where:

(
Porg − Pcon

Pcon

)∗
=

(
1
2γccµC + γc +

αc−P−1
con

αb

)
· µC − 1

(µ+ρ) · γK ·
(
µC + ρ · ϵ

)
γK · C +Ab +

Ay

αb

(B.42)

We now conduct a comparatic statics analysis for threshold organic price premium
(
Porg−Pcon

Pcon

)∗
.

The results are summarized in Table B.3.

Given that:
∂∆(ϵ)

∂
(
Porg−Pcon

Pcon

) ≥ 1

ρ
· Pcon · αb ·

(
γK · C +Ab +

Ay

αb

)
︸ ︷︷ ︸

≥0

(B.43)

then any change in parameter values that increases the value of
(
Porg−Pcon

Pcon

)∗
will shrink the set of

organic price premia for which ∆(ϵ) ≥ 0.

∂
(
Porg−Pcon

Pcon

)∗
∂ϵ

=
− 1

(µ+ρ) · γK · ρ

γK · C +Ab +
Ay

αb

≤ 0 (B.44)

∂
(
Porg−Pcon

Pcon

)∗
∂ρ

=
µ · γK
(µ+ ρ)2

· C − ϵ

γK · C +Ab +
Ay

αb

≥ 0 (B.45)

∂
(
Porg−Pcon

Pcon

)∗
∂µ

=

(
γccµK̂con

)
︸ ︷︷ ︸

≥0

·C +
1

(µ+ ρ)
· γK ·

(
µ

µ+ ρ
· C +

ρ

µ+ ρ
· ϵ
)

︸ ︷︷ ︸
≥0

γK · C +Ab +
Ay

αb︸ ︷︷ ︸
≥0

≥ 0 (B.46)
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∂
(
Porg−Pcon

Pcon

)∗
∂γK

= −
(
γK · C +Ab +

Ay

αb

)−2

︸ ︷︷ ︸
≤0

(B.47)

·



µγcc

(
K̂con − 1

2
C

)
︸ ︷︷ ︸

≥0

+
1

µ+ ρ
· γK

 · µC2

︸ ︷︷ ︸
≥0

+

(
Ab +

Ay

αb

)
· µC + ρ · ϵ

µ+ ρ︸ ︷︷ ︸
≥0


≤ 0

∂
(
Porg−Pcon

Pcon

)∗
∂ · C

=

(
γK · C +Ab +

Ay

αb

)−1

︸ ︷︷ ︸
≥0

(B.48)

·


(
γK · C +Ab +

Ay

αb

)−1

︸ ︷︷ ︸
≥0

·

 1

(µ+ ρ)
· γK · ρ

µ
· ϵ

C︸ ︷︷ ︸
≥0

+(−γcc)µ

(
K̂con − 1

2
C

)
︸ ︷︷ ︸

≤0

 · γKµC︸ ︷︷ ︸
≥0

+ γccµ
2 · K̂con︸ ︷︷ ︸
≥0



We will have
∂
(

Porg−Pcon
Pcon

)∗

∂·C ≤ 0 for small enough ρ, small enough γK and small enough
(
Ab +

Ay

αb

)
(i.e synthetic compounds being relatively important, and the economic agent we caring enough about

the future). We will have
∂
(

Porg−Pcon
Pcon

)∗

∂·C ≥ 0 for large enough ρ.
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∂
(
Porg−Pcon

Pcon

)∗
∂Ay

=

(
γK · C +Ab +

Ay

αb

)−2

·
(
− 1

αb

)
︸ ︷︷ ︸

≤0

·

γcc · µ
(
K̂con − 1

2
C

)
· µC︸ ︷︷ ︸

≥0

+

(
−ρ

(µ+ ρ)

)
· γK · ϵ︸ ︷︷ ︸

≤0


(B.49)

We will have
∂
(

Porg−Pcon
Pcon

)∗

∂Ay
≥ 0 for large enough ρ and non-zero ϵ. We will have

∂
(

Porg−Pcon
Pcon

)∗

∂Ay
≤ 0

for small enough ρ or ϵ.

∂
(
Porg−Pcon

Pcon

)∗
∂Ab

=

(
γK · C +Ab +

Ay

αb

)−2

︸ ︷︷ ︸
≥0

·

µ (−γcc) ·
(
K̂con − 1

2
C

)
· µC︸ ︷︷ ︸

≤0

+

(
ρ

µ+ ρ

)
· γK · ϵ︸ ︷︷ ︸

≥0


(B.50)

We will have
∂
(

Porg−Pcon
Pcon

)∗

∂Ab
≥ 0 for large enough ρ and non-zero ϵ. We will have

∂
(

Porg−Pcon
Pcon

)∗

∂Ab
≤ 0

for small enough ρ or ϵ.

∂
(
Porg−Pcon

Pcon

)∗
∂αb

=
Ay(

αb ·
(
γK · C +Ab

)
+Ay

)2︸ ︷︷ ︸
≥0

·

γccµ ·
(
K̂con − 1

2
C

)
· µC︸ ︷︷ ︸

≥0

+
−ρ

(µ+ ρ)
· γK · ϵ︸ ︷︷ ︸

≤0


(B.51)

+

(
−
(
αc−P−1

con
αb

)
· µC

)
(
αb

(
γK · C +Ab

)
+Ay

)︸ ︷︷ ︸
≤0

We will have
∂
(

Porg−Pcon
Pcon

)∗

∂αb
≥ 0 for small enough ρ and and large enough Ay. We will have

∂
(

Porg−Pcon
Pcon

)∗

∂αb
≤ 0 for large enough ρ.
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∂
(
Porg−Pcon

Pcon

)∗
∂γcc

=
1
2

(
µC
)2

γK · C +Ab +
Ay

αb

≥ 0 (B.52)

∂
(
Porg−Pcon

Pcon

)∗
∂γc

=
µC

γK · C +Ab +
Ay

αb

≥ 0 (B.53)

∂
(
Porg−Pcon

Pcon

)∗
∂αc

=

(
1
αb

)
· µC

γK · C +Ab +
Ay

αb

≥ 0 (B.54)

∂
(
Porg−Pcon

Pcon

)∗
∂Pcon

=

(
P−2
con
αb

)
· µC

γK · C +Ab +
Ay

αb

≥ 0 (B.55)
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Table B.3: Comparative Statics for
(
Porg−Pcon

Pcon

)∗
When Conventional Farmer Adopts OT1 (Case C6,

B4)

Parameter Full Information: C6 (OT1)

ϵ -

ρ +

µ +

γK -

C
−

+

For small enough ρ, γK , and (Ab +
Ay

ab
)

For large enough ρ

Ay

−

+

For small enough ρ or ϵ

For large enough ρ and non-zero ϵ

Ab

−

+

For small enough ρ or ϵ

For large enough ρ and non-zero ϵ

αb

−

+

For large enough ρ

For small enough ρ and large enough Ay

γcc +

γc +

αc +

Pcon +

Notes: Table reports comparative statics for
(
Porg−Pcon

Pcon

)∗
when the optimal solution for

the conventional farmer is to disinvest as fast as possible until K = 0. A conventional

farmer will prefer producing organically if
Porg−Pcon

Pcon
>
(
Porg−Pcon

Pcon

)∗
.

B.2 Discrete Analysis for OT2/OT3/OT4 (Case A2)

Case A2: Conventional Farmer Stationary Solution K̂con is belowKorg and Organic Farmer Stationary

Solution K̂org exists (so is below K̂con and therefore below Korg as well), and K̂Sj ∈ [0, C] for

j ∈ {con, org}
In A2 the farmer will also adopt the same stage 2 trajectories as in B4 and C6, namely K(t)org =

Korg∀t and I(t)org = 0∀t.
A conventional farmer facing A2 conditions will adopt either an OT2, OT3, or OT4 solution.

The conventional A2 farmer faces:
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0 < K̂j < Korg ≤ C (B.56)

and adopts the following trajectories:

K∗(t)Sj = K̂j +
(
K(0)j − K̂j

)
· e−µ·t (B.57)

I∗(t)Sj = µ
(
K̂j −K(t)

)
(B.58)

c∗(t)Sj = µ
(
C − K̂j

)
(B.59)

For the conventional A2 farmer, Vcon(Korg − ϵ) is given by:

Vcon(Korg − ϵ) =

1

ρ

(
Pcon ·

(
αb

(
1

2
γcc

(
µ
(
C − K̂con

))2
+ γc

(
µ
(
C − K̂con

))
+ γKK̂con +Ab

)
+ αc

(
µ
(
C − K̂con

))
+Ay

)
−
(
µ
(
C − K̂con

)))
+

PconαbγK
µ+ ρ

·
(
K(0)con − K̂con

)
︸ ︷︷ ︸

≥0

We assume organic certification requires having pristine soils, such that Korg = C.

Given Korg = C the conventional A2 farmer faces:

V A2
con(Korg − ϵ) =

1

ρ
· Pcon (αb ·Ab +Ay)︸ ︷︷ ︸

PDV of ”level effect”

of other agricultural inputs

at conventional prices

+Pconαb ·
1

(µ+ ρ)
· γK ·

(Korg − ϵ)︸ ︷︷ ︸
=K0

−K̂con


︸ ︷︷ ︸

PDV of ”cashing in”

on microbial productivity

+
1

ρ
·
(
Pcon

(
αb ·

(
1

2
γccµ

(
C − K̂con

)
+ γc

)
+ αc

)
− 1

)
· µ
(
C − K̂con

)
︸ ︷︷ ︸

PDV of using synthetic compounds at dynamically optimal rate µ
(
C − K̂con

)
During stage 2:

Vorg(Korg) =
1

ρ
Porg·

(
αb

((
1

2
γccµC + γc +

αc − P−1
org

αb
− 1

2
γccµKorg

)
µ
(
C −Korg

)
+ γKKorg +Ab

)
+Ay

)
(B.60)
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Given Korg = C the stage-2 A2 farmer faces:

Vorg(Korg) =
1

ρ
Porg · αbγK C︸︷︷︸

=Korg︸ ︷︷ ︸
PDV of stewarding soil microbiome

at organic-level capital stock and

at organic prices

+
1

ρ
Porg · (αbAb +Ay)︸ ︷︷ ︸

PDV of ”level effect”

of other agricultural inputs

at organic prices

(B.61)

Given Korg = C the ∆A2(ϵ) faced by the conventional A2 farmer is given by:

∆A2(ϵ) =
1

ρ
Porg · αbγK C︸︷︷︸

=Korg︸ ︷︷ ︸
PDV of stewarding soil microbiome

at organic-level capital stock and

at organic prices

+
1

ρ
(Porg − Pcon) · (αbAb +Ay)︸ ︷︷ ︸

PDV of organic price premium

on ”level effect”

of other agricultural inputs

− Pconαb ·
1

(µ+ ρ)
· γK ·

(C − ϵ
)︸ ︷︷ ︸

=K0

−K̂con


︸ ︷︷ ︸

PDV of microbial productivity

under conventional management

− 1

ρ
·
(
Pcon

(
αb ·

(
1

2
γccµ

(
C − K̂con

)
+ γc

)
+ αc

)
− 1

)
· µ
(
C − K̂con

)
︸ ︷︷ ︸

PDV of using synthetic compounds at dynamically optimal rate µ
(
C − K̂con

)

The sign of ∂∆(ϵ)
∂ϵ is given by:

∂∆(ϵ)

∂ϵ
=

PconαbγK
µ+ ρ

· ϵ ≥ 0 (B.62)

Thus, ∆(ϵ) is linear and weakly increasing in ϵ.

Let ϵ∗ be the value of ϵ such that ∆(ϵ∗) = 0.

The range of ϵ yielding ∆(ϵ) ≥ 0 is ϵ ≥ ϵ∗ where:
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ϵ∗ =
1

γK
·

(
−Porg

Pcon
·

(
1

2

µ2

ρ
(µ+ ρ) · γcc

(
C −Korg

)
+

µ

ρ
(µ+ ρ) ·

(
γc +

αc − P−1
org

αb

))(
C −Korg

)
−1

2
· 1

γcc
· 1
ρ
· (µ+ ρ) ·

(
γc +

αc − P−1
con

αb
− (ρ+ µ)−1 γK

)2

−((
µ+ ρ

ρ
· Porg

Pcon
− 1

)
· γK ·Korg +

µ+ ρ

ρ
·
(
Porg

Pcon
− 1

)
·
(
Ab +

Ay

αb

)))
+

µ

ρ
C

(B.63)

When Korg = C, ϵ∗ simplifies to:

ϵ∗ =
1

γK
· µ+ ρ

ρ
·

1

2
·

(
γc +

αc−P−1
con

αb
− γK

µ+ρ

)2
(−γcc)︸ ︷︷ ︸
≥0

−
(
Porg

Pcon
− 1

)
·
(
γK · C +Ab +

Ay

αb

)
︸ ︷︷ ︸

≥0

 (B.64)

Case A2 allows for the possibility that ϵ∗ exceeds C. When this happens there will be no feasible

ϵ for which ∆(ϵ) ≥ 0, and there will therefore be no feasible capital stock for which the fully informed

farmer facing Case A2 OT2/OT3/OT3 conditions will prefer to produce organically. ϵ∗ will be more

likely to exceed C when the farmer faces small organic price premia.

Under Case A2, we have:

K̂j ≤ C ⇒ γc +
αc − P−1

j

αb
− γK

(ρ+ µ)
≥ 0, (B.65)

and

K̂j ≥ 0 ⇒ γc +
αc − P−1

j

αb
≤ (−γcc)µC +

γK
(ρ+ µ)

(B.66)

Also, given:

K̂con =
(ρ+ µ)

(
γccµC + γc +

αc−P−1
con

αb

)
− γK

(ρ+ µ) γccµ
= C +

(ρ+ µ)
(
γc +

αc−P−1
con

αb

)
− γK

(ρ+ µ) γccµ︸ ︷︷ ︸
≤0

≤ C (B.67)

we know that
(
C − K̂con

)
→ 0 implies:

B-23



(ρ+ µ)
(
γc +

αc−P−1
con

αb

)
− γK

(ρ+ µ) γccµ︸ ︷︷ ︸
≤0

→ 0 (B.68)

or

γc +
αc − P−1

con

αb
− γK

(ρ+ µ)︸ ︷︷ ︸
≥0

→ 0 (B.69)

αc

αb︸︷︷︸
≥0

+

(
− 1

αb · Pcon
+ γc −

γK
(ρ+ µ)

)
︸ ︷︷ ︸

≤0

→ 0 (B.70)

αc → αb ·
(

1

αb · Pcon
− γc +

γK
(ρ+ µ)

)
︸ ︷︷ ︸

≥0

(B.71)

That is,
(
C − K̂con

)
→ 0, given constant C, implies small enough αc, such that αc︸︷︷︸

≥0

−αb ·(
1

αb · Pcon
− γc +

γK
(ρ+ µ)

)
︸ ︷︷ ︸

≥0

approaches 0 from above.

B.2.1 Comparative statics for ∆(ϵ)

Now we discuss the signs of ∂∆(ϵ)
∂i , imposing the assumption that Korg = C.

The results are summarized in Table B.4.

∂∆(ϵ)

∂Porg
=

1

ρ
·
(
Ay + αb

(
Ab + CγK

))
︸ ︷︷ ︸

≥0

≥ 0
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∂∆(ϵ)

∂Pcon
=

(
−1

ρ
· αb

)
︸ ︷︷ ︸

≤0

·

Ab +
Ay

αb︸ ︷︷ ︸
≥0

+µ ·

P−1
con

αb
+

1

2
· (−γcc)µ ·

(
C − K̂con

)
︸ ︷︷ ︸

≥0

 ·
(
C − K̂con

)
︸ ︷︷ ︸

≥0

+ γK

(
C − ρ

µ+ ρ
ϵ

)
︸ ︷︷ ︸

≥0

 ≤ 0 (B.72)

∂∆(ϵ)

∂µ
= −1

ρ
Pconαb

γK
(µ+ ρ)

(
−ρC + µK̂con

ρ+ µ
+

(
C +

ρ

µ+ ρ
· ϵ
))

(B.73)

∂∆(ϵ)

∂µ
= −1

ρ
·
(
Pcon · αb ·

γK
µ+ ρ

)
︸ ︷︷ ︸

≥0

·


C −

ρ+

(
K̂con

C

)
︸ ︷︷ ︸

≤1

·µ

ρ+ µ︸ ︷︷ ︸
≤1

·C

︸ ︷︷ ︸
≥0

+
ρ

µ+ ρ
· ϵ︸ ︷︷ ︸

≥0


≤ 0 (B.74)

∂∆(ϵ)

∂ρ
= ρ−2Pconαb︸ ︷︷ ︸

≥0

·


 ρ

(µ+ ρ)2
· (−γK)︸ ︷︷ ︸

≤0

+
1

2
· (−γcc)µ

(
C − K̂con

)
︸ ︷︷ ︸

≥0

 ·µ
(
C − K̂con

)
︸ ︷︷ ︸

≥0

+

(
ρ

µ+ ρ

)2

· (−γK) · ϵ︸ ︷︷ ︸
≤0

+

(
Ay

αb
+Ab + γK · C

)
·
(
−Porg − Pcon

Pcon

)
︸ ︷︷ ︸

≤0

 (B.75)

So we will have ∂∆(ϵ)
∂ρ ≥ 0 for small enough γK and small enough organic price premium

Porg−Pcon

Pcon
.
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On the other hand we will have ∂∆(ϵ)
∂ρ ≤ 0 for large enough

Porg−Pcon

Pcon
.

∂∆(ϵ)

∂γc
= −1

ρ
· Pconαbµ ·

(
C − K̂con

)
︸ ︷︷ ︸

≥0

≤ 0 (B.76)

∂∆(ϵ)

∂γcc
= −1

ρ
· Pconαb ·

1

2
·
(
µ
(
C − K̂con

))2
≤ 0 (B.77)

∂∆(ϵ)

∂γK
=

1

ρ
· Pconαb ·


(
Porg − Pcon

Pcon

)
︸ ︷︷ ︸

≥0

C +
µ

µ+ ρ
·
(
C − K̂con

)
︸ ︷︷ ︸

≥0

+
ρ

µ+ ρ
· ϵ︸︷︷︸

≥0


︸ ︷︷ ︸

≥0

≥ 0 (B.78)

∂∆(ϵ)

∂C
=

1

ρ
· (Porg − Pcon)︸ ︷︷ ︸

≥0

·αb · γK ≥ 0 (B.79)

∂∆(ϵ)

∂αb
=

1

ρ
· Pcon ·


(
Porg − Pcon

Pcon

)
·
(
Ab + γK · C

)
︸ ︷︷ ︸

≥0

+
ρ

µ+ ρ
· γK · ϵ︸ ︷︷ ︸

≥0

+
1

2
γcc

(
µ
(
C − K̂con

))2
︸ ︷︷ ︸

≤0

+
αc − P−1

con

αb
· µ
(
C − K̂con

)
︸ ︷︷ ︸

≥0︸ ︷︷ ︸
?


(B.80)
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So we will have ∂∆(ϵ)
∂αb

≥ 0 for large enough
Porg−Pcon

Pcon
, and we will have ∂∆(ϵ)

∂αb
≤ 0 for large enough

ĉ = µ
(
C − K̂con

)
, given γcc ̸= 0. Note that ĉ = µ

(
C − K̂con

)
will be larger for larger C or µ, or

smaller K̂con. Given

K̂con =
(µ+ ρ)

(
γccµC + γc +

αc−P−1
con

αb

)
− γK

(µ+ ρ) γccµ
≥ 0

⇒ (µ+ ρ)

(
γccµC + γc +

αc − P−1
con

αb

)
− γK ≤ 0

we know that K̂con will be smaller for smaller −γcc, −γc, or γK , or bigger αc.

∂∆(ϵ)

∂Ay
=

1

ρ
(Porg − Pcon)︸ ︷︷ ︸

≥0

≥ 0 (B.81)

∂∆(ϵ)

∂Ab
=

1

ρ
· αb · (Porg − Pcon)︸ ︷︷ ︸

≥0

≥ 0 (B.82)

∂∆(ϵ)

∂αc
= −1

ρ
· Pcon · µ

(
C − K̂con

)
︸ ︷︷ ︸

≥0

≤ 0 (B.83)

∂∆(ϵ)

∂ϵ
=

1

µ+ ρ
· PconαbγK ≥ 0 (B.84)
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Table B.4: Comparative Statics for ∆ (ϵ) When Conventional Farmer Adopts OT2 (Case A2) and Korg = C

Parameter i Sign Condition

Ab +

Ay +

Pcon −
Porg +

C +

µ −

ρ
−

+

Large enough
Porg−Pcon

Pcon
.

Small γK and
Porg−Pcon

Pcon
.

γcc −
γc −
γK +

αb

−

+

Large enough ĉ = µ
(
C − K̂con

)
, given γcc ̸= 0.

(Note that ↑ ĉ ⇒↑ C, µ, αc, ↓ |γcc| , |γc| , γK).

Large enough
Porg−Pcon

Pcon
.

αc −
ϵ +

Notes: Table reports comparative statics for ∆ (ϵ) when K̂j ∈ [0,K0,j ]∀j ∈ {con, org}, assuming Korg = C (not responsive
to assumption that c = µC (looks the same either way)). A conventional farmer is said to prefer producing organically when
∆ (ϵ) > 0.
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B.2.2 Comparative statics for ϵ∗

We now calculate the partials of ϵ∗ with respect to our model parameters. We assume organic

certification requires having pristine soils, such that Korg = C.

The results are summarized in Table B.5.

∂ϵ∗

∂µ
=

1

ρ
· 1

γK
·

1

2
· µ ·

(
γc +

αc − P−1
con

αb
+

γK
ρ+ µ

)
︸ ︷︷ ︸

≥0

(
C − K̂con

)
︸ ︷︷ ︸

≥0

(B.85)

+

(
−γK ·

(
Porg

Pcon
+ 1

)
C −

(
Porg

Pcon
− 1

)
·
(
Ab +

Ay

αb

))
︸ ︷︷ ︸

≤0


The sign of ∂ϵ∗

∂µ is still ambiguous without futher restrictions to our parameter values. However,

we can see that for large enough organic premia we will have ∂ϵ∗

∂µ ≥ 0. On the other hand, for small

enough organic premia we will have

∂ϵ∗

∂µ
→ 1

ρ
· 1

γK
·

1

2
· µ2 (−γcc)

(
C − K̂con

)2
︸ ︷︷ ︸

≥0

− γK

(
C +

ρ

ρ+ µ
· C +

µ

ρ+ µ
· K̂con

)
︸ ︷︷ ︸

≥0

 (B.86)

Therefore, given small enough organic price premia (such that the value of ∂ϵ∗

∂µ is close enough to

the value of the expression we have above), and large enough K̂con (s.t.
(
C − K̂con

)
→ 0), we will

have ∂ϵ∗

∂µ ≤ 0 .

Since
(
C − K̂con

)
→ 0 implies that αc︸︷︷︸

≥0

−αb ·
(

1

αb · Pcon
− γc +

γK
(ρ+ µ)

)
︸ ︷︷ ︸

≥0

approaches 0 from

above, we will have ∂ϵ∗

∂µ ≤ 0 for small enough organic price premia, and and small enough αc.

∂ϵ∗

∂ρ
= −

(
µ

ρ

)2

·

(
C − K̂con

(ρ+ µ)2
+Korg −

1

µ
C

)
(B.87)

Given Korg = C, this yields:
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∂ϵ∗

∂ρ
= −

(
µ

ρ

)2

·

C − K̂con

(ρ+ µ)2︸ ︷︷ ︸
≥0

+
1

µ
(µ− 1)︸ ︷︷ ︸

≤0

C

 (B.88)

The sign of ∂ϵ∗

∂ρ is ambiguous, but we can see that for large enough µ (such that 1
µ (µ− 1)︸ ︷︷ ︸

≤0

C → 0)

we will have ∂ϵ∗

∂ρ ≤ 0. On the other hand, for small enough αc such that C−K̂con

(ρ+µ)2
→ 0, we will have

∂ϵ∗

∂ρ ≥ 0.

∂ϵ∗

∂γK
=

µ+ ρ

ρ
· 1

γ2K
·

Porg

Pcon
·

(
1

2
γccµ

(
C −Korg

)
+ γc +

αc − P−1
org

αb

)
µ
(
C −Korg

)
+

(
Porg

Pcon
− 1

)
·
(
Ab +

Ay

αb

)
︸ ︷︷ ︸

≥0

(B.89)

+


1

2
· γcc ·

γc +
αc−P−1

con
αb

− 1
(ρ+µ)γK

γcc

2

︸ ︷︷ ︸
≤0

+
γK

(ρ+ µ)
·

(
γc +

αc−P−1
con

αb
− 1

(ρ+µ)γK

)
γcc︸ ︷︷ ︸

≤0




The sign of ∂ϵ∗

∂γK
is still ambiguous, but we can see that as

(
Ab +

Ay

αb

)
increases in magnitude eventually

∂ϵ∗

∂γK
will become non-negative ( ∂ϵ∗

∂γK
≥ 0). On the other hand, as the organic price premia shrinks (such

that
(
Porg

Pcon
− 1
)
→ 0), and the certification criteria becomes stricter (such that

(
C −Korg

)
→ 0), we

will eventually get ∂ϵ∗

∂γK
≤ 0.

∂ϵ∗

∂γcc
=

µ+ ρ

ρ
· 1

γK︸ ︷︷ ︸
≥0

·

−Porg

Pcon
· 1
2

(
µ
(
C −Korg

))2︸ ︷︷ ︸
≤0

+
1

2
· 1

γ2cc

(
γc +

αc − P−1
con

αb
− 1

(ρ+ µ)
γK

)2

︸ ︷︷ ︸
≥0


(B.90)
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The sign of ∂ϵ∗

∂γcc
is still ambiguous, but we can see that as

Porg

Pcon
(which reflects the organic premium)

increases in magnitude eventually ∂ϵ∗

∂γcc
will become non-positive ( ∂ϵ∗

∂γcc
≤ 0). On the other hand, as the

organic certification becomes stricter
(
Korg → C

)
, ∂ϵ∗

∂γcc
eventually becomes non-negative ( ∂ϵ∗

∂γcc
≥ 0).

∂ϵ∗

∂γc
=

µ+ ρ

ρ
· 1

γK
·


−Porg

Pcon
· µ
(
C −Korg

)
︸ ︷︷ ︸

≤0

+
1

(−γcc)

(
γc +

αc − P−1
con

αb
− γK

(ρ+ µ)

)
︸ ︷︷ ︸

≥0︸ ︷︷ ︸
≥0


(B.91)

The sign of ∂ϵ∗

∂γc
is still ambiguous, but we can see that as

Porg

Pcon
(which reflects the organic premium)

increases in magnitude eventually ∂ϵ∗

∂γc
will become non-positive ( ∂ϵ

∗

∂γc
≤ 0). On the other hand, as the

organic certification becomes stricter
(
Korg → C

)
, ∂ϵ∗

∂γc
eventually becomes non-negative ( ∂ϵ

∗

∂γc
≥ 0).

∂ϵ∗

∂Pcon
=

µ+ ρ

ρ
· 1

γK︸ ︷︷ ︸
≥0

·

Porg

P 2
con

µ
(
C −Korg

)
︸ ︷︷ ︸

≥0

·

(
1

2
γccµ

(
C −Korg

)
+ γc +

αc − P−1
org

αb

)
(B.92)

+
1

(−γcc)
·
(
P−2
con

αb

)
︸ ︷︷ ︸

≥0

·
(
γc +

αc − P−1
con

αb
− 1

(ρ+ µ)
γK

)
︸ ︷︷ ︸

≥0

+
Porg

P 2
con

(
γK ·Korg +Ab +

Ay

αb

)
︸ ︷︷ ︸

≥0


The sign of ∂ϵ∗

∂Pcon
is still ambiguous. However, we can see that for relatively large C and organic

certification criteria is weak enough (such that
(
1
2γccµ

(
C −Korg

)
+ γc +

αc−P−1
org

αb

)
≤ 0 and also such

that
(
C −Korg

)
is relatively large, so that

Porg

P 2
con

µ
(
C −Korg

)
·
(
1
2γccµ

(
C −Korg

)
+ γc +

αc−P−1
org

αb

)
is negative and has a large magnitude), then we will have ∂ϵ∗

∂Pcon
≤ 0. On the other hand, when

the certification criteria is strict enough (so that
(
C −Korg

)
is close enough to zero), we will have

∂ϵ∗

∂Pcon
≥ 0.
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∂ϵ∗

∂C
=

µ

ρ︸︷︷︸
≥0

(µ+ ρ)

γK
· Porg

Pcon︸ ︷︷ ︸
≥0

·

(−γcc)µ
(
C −Korg

)︸ ︷︷ ︸
≥0

−

γc +
αc − P−1

org

αb︸ ︷︷ ︸
≥0


− 1

 (B.93)

The sign of ∂ϵ∗

∂C
is still ambiguous. However, we can see that for relatively large C (such that(

C −Korg

)
is relatively large), we will have ∂ϵ∗

∂C
≥ 0. On the other hand, for sufficiently strict

certification criteria (such that
(
C −Korg

)
→ 0) we will have ∂ϵ∗

∂C
≤ 0.

∂ϵ∗

∂Korg
=

µ+ ρ

ρ
· 1

γK
· Porg

Pcon
· µ︸ ︷︷ ︸

≥0

γccµ
(
C −Korg

)︸ ︷︷ ︸
≤0

+ γc +
αc − P−1

org

αb︸ ︷︷ ︸
≥0

+

(
1− µ+ ρ

ρ
· Porg

Pcon

)
︸ ︷︷ ︸

≤0

(B.94)

We see that the sign of ∂ϵ∗

∂Korg
is ambiguous. We have that for large enough αc, small enough γK , and

Korg ̸= 0 , we will have ∂ϵ∗

∂Korg
≥ 0. On the other hand, for weak enough initial certification criteria

(such that
(
C −Korg

)
is sufficiently large), |γcc| large enough, and µ ̸= 0, we will have ∂ϵ∗

∂Korg
≤ 0.

∂ϵ∗

∂αc
=

µ+ ρ

ρ
· 1

γK
· 1

αb︸ ︷︷ ︸
≥0

·

Porg

Pcon
µ
(
Korg − C

)
︸ ︷︷ ︸

≤0

+
1

(−γcc)

(
γc +

αc − P−1
con

αb
− 1

(ρ+ µ)
γK

)
︸ ︷︷ ︸

≥0

 (B.95)

The sign of ∂ϵ∗

∂αc
is ambiguous, but we see that if Korg ̸= C and the organic premium is high

enough, then we will have ∂ϵ∗

∂αc
≤ 0. On the other hand, if the certification criteria is strict enough

(such that
(
Korg − C

)
is close enough to zero), then we will have ∂ϵ∗

∂αc
≥ 0.
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∂ϵ∗

∂αb
=

µ+ ρ

ρ
· 1

γK︸ ︷︷ ︸
≥0

· 1
α2
b

·

Porg

Pcon
µ
(
C −Korg

)
︸ ︷︷ ︸

≥0

·
(
αc − P−1

org

)︸ ︷︷ ︸
≥0

+

(
Porg

Pcon
− 1

)
·Ay︸ ︷︷ ︸

≥0

(B.96)

+
1

γcc

(
γc +

αc − P−1
con

αb
− 1

(ρ+ µ)
γK

)(
αc − P−1

con

)
︸ ︷︷ ︸

≤0

 ≥ 0

The sign of ∂ϵ∗

∂αb
is ambiguous. However, we can see that if factors of production other than soil

bacteria and synthetic compounds are relatively unimportant for production (so that Ay → 0), and

the certification criteria is sufficiently strict (such that
(
C −Korg

)
→ 0), then we will have ∂ϵ∗

∂αb
≤ 0.

On the other hand, if the organic price premium is high enough and also either Ay ̸= 0 or Korg ̸= C,

then we will have ∂ϵ∗

∂αb
≥ 0.

∂ϵ∗

∂Ab
=

µ+ ρ

ρ
· 1

γK
·
(
1− Porg

Pcon

)
≤ 0 (B.97)

∂ϵ∗

∂Ay
=

µ+ ρ

ρ
· 1

γK
·
(
1− Porg

Pcon

)
· 1

αb
≤ 0 (B.98)
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Table B.5: Comparative Statics for ϵ∗ When Conventional Farmer Adopts OT2 (Case A2 ) and Korg = C

Parameter i Sign Condition

Ab −
Ay −
Pcon +

Porg −
C −

µ
−

+

Small enough (Porg − Pcon) and
(
C − K̂con

)
. Given constant C, the latter implies small enough αc.

Large (Porg − Pcon) .

ρ

−

+

0

Large enoughµ.

Small enough αc (so that K̂j ↑and K̂j → C
−
).

For: (1) small enough αc and also large enough µ; or (2) small enough µ.

γcc +

γc +

γK

−

+

For
Porg

Pcon
small enough.

For
Porg

Pcon
large enough, and (Ab+Ay) ̸=0.

αb

−

+

For small enough Ay or
Porg

Pcon
.

For large enough Ay and
Porg

Pcon
.

αc +

Notes: Table reports comparative statics for ϵ∗ when K̂j ∈ [0, C] ∀j ∈ {con, org}, assuming Korg = C (not responsive
to assumption that c = µC (looks the same either way)). A conventional farmer will prefer producing organically for all
K0,con = Korg − ϵ at least ϵ∗ lower than Korg.
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B.2.3 Comparative statics for threshold organic price premium
(
Porg−Pcon

Pcon

)∗
Next we are interested in describing how large the organic price premium needs to be in order to

induce a fully informed farmer facing A2, OT2/OT3/OT4 conditions to prefer to produce organically.

We derive an inequality describing the necessary conditions below.

Given the assumption that Korg = C, and assuming conventional crop prices are not zero, we can

write:

Porg − Pcon

Pcon
≥

(
1
2 · (−γcc)µ

2
(
C − K̂con

)2
− ρ

µ+ρ · γK · ϵ
)

(
γKC +Ab +

Ay

αb

) (B.99)

We’d like to see if we can express this condition in more intuitive terms:

Porg − Pcon

Pcon
≥

1
ρ · αb · 1

2 · (−γcc) c(T̂ )
2 − 1

µ+ρ · αb · γK · ϵ
1
ρ ·
(
γKC +Ab +

Ay

αb

) (B.100)

Porg − Pcon

Pcon
≥ Pcon

Pcon
·
∫∞
0

1
2 · αb (−γcc) c(T̂ )

2 · e−ρ·tdt−
∫∞
0 αbγK · ϵ · e−(µ+ρ)·tdt∫∞

0

(
αb

(
γKC +Ab

)
+Ay

)
· e−ρ·tdt

(B.101)

Porg − Pcon

Pcon
≥
∫∞
0 Pcon · αb · 1

2 · (−γcc) c(T̂ )
2 · e−ρ·tdt−

∫∞
0 Pcon · αb · γK · ϵ · e−(µ+ρ)·tdt∫∞

0 Pcon ·
(
αb

(
γKC +Ab

)
+Ay

)
· e−ρ·tdt

(B.102)
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Porg − Pcon

Pcon︸ ︷︷ ︸
Organic price premium: How much larger organic crop prices are than

conventional prices, as a proportion of conventional crop prices

(B.103)

≥

(∫ ∞

0

Pcon · forg · e−ρ·tdt

)−1

︸ ︷︷ ︸
PDV of entire stream

of net benefits from

managing organically

but selling at

conventional prices

·

( ∫ ∞

0

Pcon · αb ·
1

2
· (−γcc) c(T̂ )

2 · e−ρ·tdt︸ ︷︷ ︸
PDV of value destroyed by managing

conventionally, from the moment

the stationary solution is reached and

onwards, from the perspective of T̂

−
∫ ∞

0

Pcon · αb · γK ·
(

ϵ︸︷︷︸
Additional amount of capital that

the farmer would have if they

received a capital transfer just large

enough to allow them to satisfy

the organic certification requirement

at s=0.

·e−µ·t
)

︸ ︷︷ ︸
Amount of capital from the

transfer at s=0 that remains at s=t.︸ ︷︷ ︸
per-period value created in period s=t by a capital transfer at

period s=0, from the perspective of period s=t.

·e−ρ·tdt

︸ ︷︷ ︸
PDV of entire stream of benefits generated by a one-time transfer of capital,

at time s=0, large enough to allow the farmer to satisfy the organic certification

requirement, from the perspective of period s=0, if prices continued to be convetional︸ ︷︷ ︸
How much greater the loss incurred by using synthetic compounds at stationary state

levels is than the loss incurred by opting not to receive a one-time transfer of

capital large enough to allow the farmer to satisfy the organic certification threshold

)

︸ ︷︷ ︸
PDV of value destroyed by managing conventionally as a proportion of the PDV created by managing (but not selling) organically,

net of relative value of the gain from a one-time transfer of capital just large enough to allow the farmer to satisfy the organic certification requirements
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We’re finding that there’s a value to (1) not managing conventionally (i.e. reducing one’s per-

period synthetic compound use), but also to (2) receiving enough capital to satisfy the organic

certification requirement (i.e. having an overall larger capital stock).

∫ ∞

0
(Porg − Pcon) · forg · e−ρ·tdt︸ ︷︷ ︸

Net gain from organic premium

(B.104)

+

∫ ∞

0
Pcon · αb · γK ·

(
ϵ · e−µ·t) · e−ρ·tdt︸ ︷︷ ︸

gain from organic management

≥

∫ ∞

0
Pcon · αb ·

1

2
· (−γcc) c(T̂ )

2 · e−ρ·tdt︸ ︷︷ ︸
loss from conventional management

More broadly we may be interested in how the requisite price premia changes in response to

changes in our model parameters. To do this, let’s first rearrange our expression for
Porg

Pcon
further.

Porg − Pcon

Pcon
≥

(
1

2
· 1

(−γcc)
·
(
γc +

αc − P−1
con

αb
− γK

(µ+ ρ)

)2

− ρ

µ+ ρ
· γK · ϵ

)
·
(
γKC +Ab +

Ay

αb

)−1

(B.105)

Let
(
Porg−Pcon

Pcon

)∗
denote the threshold value:

(
Porg − Pcon

Pcon

)∗
=

(
1

2
· 1

(−γcc)
·
(
γc +

αc − P−1
con

αb
− γK

(µ+ ρ)

)2

− ρ

µ+ ρ
· γK · ϵ

)
·
(
γKC +Ab +

Ay

αb

)−1

(B.106)

Then we can determine how
(
Porg−Pcon

Pcon

)∗
changes in response to changes in our model parameters

by examining the signs of the partials below. The results are summarized in Table B.6.

∂
(
Porg−Pcon

Pcon

)∗
∂ϵ

= − ρ

µ+ ρ
· γK ·

(
γKC +Ab +

Ay

αb

)−1

≤ 0 (B.107)
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∂
(
Porg−Pcon

Pcon

)∗
∂ρ

=

γK · µ︸ ︷︷ ︸
≥0

·
(
K0 − K̂con

)
(µ+ ρ)2︸ ︷︷ ︸

≥0

·
(
γKC +Ab +

Ay

αb

)
︸ ︷︷ ︸

≥0

(B.108)

where in case A2 we have that K̂con ∈ [0, C]. So we will have
∂
(

Porg−Pcon
Pcon

)∗

∂ρ ≥ 0 for large enough

initial capital stock, K0, and we will have
∂
(

Porg−Pcon
Pcon

)∗

∂ρ ≤ 0 for small enough initial capital stock,

K0.

∂
(
Porg−Pcon

Pcon

)∗
∂µ

=
γK

µ+ ρ︸ ︷︷ ︸
≥0

·

(
C − µ · K̂con + ρ ·K0

µ+ ρ

)
·
(
γKC +Ab +

Ay

αb

)−1

︸ ︷︷ ︸
≥0

(B.109)

In case A2 we have that K̂con ∈ [0, C]. In all cases we also have that K0 ∈ [0, C]. Therefore, it must

be the case that

(
C − µ · K̂con + ρ ·K0

µ+ ρ

)
≥ 0. (B.110)

So we have that

∂
(
Porg−Pcon

Pcon

)∗
∂µ

=
γK

µ+ ρ︸ ︷︷ ︸
≥0

·

(
C − µ · K̂con + ρ ·K0

µ+ ρ

)
︸ ︷︷ ︸

≥0

·
(
γKC +Ab +

Ay

αb

)−1

︸ ︷︷ ︸
≥0

≥ 0 (B.111)
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∂
(
Porg−Pcon

Pcon

)∗
∂γK

=

µ · K̂con + ρ ·K0

µ+ ρ
− C︸ ︷︷ ︸

≤0

+

1

2
· γcc ·

(
µ
(
C − K̂con

))2
︸ ︷︷ ︸

≤0

+
ρ

µ+ ρ
· γK ·

(
C −K0

)
︸ ︷︷ ︸

≥0(
γKC +Ab +

Ay

αb

)
︸ ︷︷ ︸

≥0

· C


·
(
γKC +Ab +

Ay

αb

)−1

︸ ︷︷ ︸
≥0

(B.112)

Here we will have that
∂
(

Porg−Pcon
Pcon

)∗

∂γK
≤ 0 if K0 is sufficiently large (and therefore sufficiently close

to C). On the other hand we will have
∂
(

Porg−Pcon
Pcon

)∗

∂γK
≥ 0 if both K̂con is sufficiently large (and

therefore sufficiently close to C) and also
(
γKC +Ab +

Ay

αb

)
is sufficiently small.

∂
(
Porg−Pcon

Pcon

)∗
∂C

=

1

2
· γcc ·

(
µ ·
(
C − K̂con

))2
︸ ︷︷ ︸

≤0

+
ρ

µ+ ρ
· γK ·

(
C −K0

)
︸ ︷︷ ︸

≥0

·
(
γKC +Ab +

Ay

αb

)−2

· γK︸ ︷︷ ︸
≥0

(B.113)

The farmer will face
∂
(

Porg−Pcon
Pcon

)∗

∂C
≥ 0 when K̂con is sufficiently large (and therefore sufficiently

close to C). On the other hand the farmer will face
∂
(

Porg−Pcon
Pcon

)∗

∂C
≤ 0 when K0 is sufficiently large

(and therefore sufficiently close to C).

∂
(
Porg−Pcon

Pcon

)∗
∂Ay

=

1

2
· γcc ·

(
µ ·
(
C − K̂con

))2
︸ ︷︷ ︸

≤0

+
ρ

µ+ ρ
· γK ·

(
C −K0

)
︸ ︷︷ ︸

≥0


·
(
γKC +Ab +

Ay

αb

)−2

·
(

1

αb

)
︸ ︷︷ ︸

≥0

(B.114)
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The farmer will face
∂
(

Porg−Pcon
Pcon

)∗

∂Ay
≥ 0 when K̂con is sufficiently large (and therefore sufficiently close

to C). On the other hand the farmer will face
∂
(

Porg−Pcon
Pcon

)∗

∂Ay
≤ 0 when K0 is sufficiently large (and

therefore sufficiently close to C).

∂
(
Porg−Pcon

Pcon

)∗
∂Ab

=

1

2
· γcc ·

(
µ ·
(
C − K̂con

))2
︸ ︷︷ ︸

≤0

+
ρ

µ+ ρ
· γK ·

(
C −K0

)
︸ ︷︷ ︸

≥0

 ·
(
γKC +Ab +

Ay

αb

)−2

︸ ︷︷ ︸
≥0

(B.115)

The farmer will face
∂
(

Porg−Pcon
Pcon

)∗

∂Ab
≥ 0 when K̂con is sufficiently large (and therefore sufficiently close

to C). On the other hand the farmer will face
∂
(

Porg−Pcon
Pcon

)∗

∂Ab
≤ 0 when K0 is sufficiently large (and

therefore sufficiently close to C).

∂
(
Porg−Pcon

Pcon

)∗
∂αb

=

µ
(
K̂con − C

)
︸ ︷︷ ︸

≤0

·
(
Pconαc − 1

Pconα2
b

)

+

1

2
· (−γcc) ·

(
µ ·
(
C − K̂con

))2
︸ ︷︷ ︸

≥0

+
ρ

µ+ ρ
· γK ·

(
K0 − C

)
︸ ︷︷ ︸

≤0(
γKC +Ab +

Ay

αb

)
︸ ︷︷ ︸

≥0

· Ay

α2
b︸︷︷︸

≥0


·
(
γKC +Ab +

Ay

αb

)−1

︸ ︷︷ ︸
≥0

(B.116)

The farmer will therefore face
∂
(

Porg−Pcon
Pcon

)∗

∂αb
≤ 0, for example, when K̂con is sufficiently large (and

therefore sufficiently close to C). On the other hand we will have
∂
(

Porg−Pcon
Pcon

)∗

∂αb
≥ 0 when both K0

is sufficiently large (and therefore sufficiently close to C), and the marginal revenue associated with

conventional synthetic compound use is sufficiently close to the marginal cost of synthetic compound

use such that Pconαc → 1.
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∂
(
Porg−Pcon

Pcon

)∗
∂γcc

=
1

2
·
(
µ
(
C − K̂con

))2
·
(
γKC +Ab +

Ay

αb

)−1

≥ 0 (B.117)

∂
(
Porg−Pcon

Pcon

)∗
∂γc

= µ
(
C − K̂con

)
·
(
γKC +Ab +

Ay

αb

)−1

≥ 0 (B.118)

∂
(
Porg−Pcon

Pcon

)∗
∂αc

= µ ·
(
C − K̂con

)
·
(

1

αb

)
·
(
γKC +Ab +

Ay

αb

)−1

≥ 0 (B.119)

∂
(
Porg−Pcon

Pcon

)∗
∂Pcon

= µ
(
C − K̂con

)
·
(
P−2
con

αb

)
·
(
γKC +Ab +

Ay

αb

)−1

≥ 0 (B.120)
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Table B.6: Comparative Statics for
(
Porg−Pcon

Pcon

)∗
When Conventional Farmer Adopts OT2 (Case A2

) and Korg = C

Parameter Full Information: A2 (OT2/3)

ϵ -

ρ
−

+

For small enoughK0.

For large enoughK0.

µ +

γK

−

+

Sufficiently large K0.

Sufficiently large K̂con and

small enough
(
γKC +Ab +

Ay

αb

)
.

C
−

+

Sufficiently large K0.

Sufficiently large K̂con.

Ay

−

+

Sufficiently large K0.

Sufficiently large K̂con.

Ab

−

+

Sufficiently large K0.

Sufficiently large K̂con.

αb

−

+

Sufficiently large K̂con.

Sufficiently large K0 and
Pconαc → 1+.

γcc +

γc +

αc +

Pcon +

c0 0

Notes: Table reports comparative statics for
(
Porg−Pcon

Pcon

)∗
when K̂j ∈ [0, C]∀j ∈ {con, org},

assuming Korg = C (not responsive to assumption that c = µC (looks the same either way)).
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B.3 Discrete Analysis for OT3’ (Case F14A)

Case F14: R(K)con and R(K)org Constant with R(K)con = ρ and R(K)org < ρ

Case F14A: γcc = 0, µ ̸= 0, Rcon(K) = ρ ∀K (conventional OT3’), and Rorg(K) < ρ

In this case the stage 1 conventional farmer follows the following solution trajectories (OT3’):

K(t)con = Korg − ϵ∀t (B.121)

I(t)con = 0∀t (B.122)

c(t)con = µ
(
C −K(t)con

)
− I(t)con (B.123)

= µ
(
C −Korg + ϵ

)
∀t (B.124)

Given the assumption that Korg = C, K(t)con and c(t)con simply to

K(t)con = C − ϵ∀t (B.125)

c(t)con = µ · ϵ∀t (B.126)

where ϵ > 0 and is determined by the equation K(0) = Korg − ϵ.

The stage 2 organic farmer will, conditional on having reached the organic threshold and decided

to remain organic, adopt the following constrained trajectory:

K̄(t)org = C ∀t (B.127)

Ī(t)org = 0∀t (B.128)

C(t)org = µ
(
C − K̄(t)org

)
− Ī(t)org (B.129)

= 0∀t (B.130)

Applying our solutions for c(t)con and K(t)con from above, as well as the assumption that Korg =

C, and γcc = 0, we can then write Vcon(Korg − ϵ) as:
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Vcon(C − ϵ) =

1

ρ
· Pcon · αb ·

(
Ab +

Ay

αb

)
︸ ︷︷ ︸
PDV of ”level effect”

of other agricultural inputs

at conventional prices

+
1

ρ
· Pcon · αb · γK ·

(
C − ϵ

)
︸ ︷︷ ︸

PDV of microbial productivity

under conventional management

+
1

ρ
· Pcon · αb ·

γK
µ+ ρ

· µ · ϵ︸ ︷︷ ︸
PDV of using synthetic compounds

at dynamically optimal

conventional rate µ · ϵ

(B.131)

When γcc = 0 and µ ̸= 0, Rcon(K) = ρ∀K implies:

−µ+
γK

γc +
αc−P−1

con
αb

= ρ (B.132)

γK

γc +
αc−P−1

con
αb

= µ+ ρ (B.133)

γc +
αc − P−1

con

αb
=

γK
µ+ ρ

(B.134)

On the other hand, the F14 A fully informed farmer will face the following stage 2 value function:

Vorg(Korg) =
1

ρ
Porg · αbγK C︸︷︷︸

=Korg︸ ︷︷ ︸
PDV of value of stewarding soil microbiome

at organic-level capital stock and

at organic prices

+
1

ρ
Porg · (αbAb +Ay)︸ ︷︷ ︸

PDV of ”level effect”

of other agricultural inputs

at organic prices

(B.135)

Given Korg = C, the ∆F14A(ϵ) faced by the conventional F14 A farmer is given by:
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∆F14A(ϵ) =
1

ρ
Porg · αbγK C︸︷︷︸

=Korg︸ ︷︷ ︸
PDV of value of stewarding soil microbiome

at organic-level capital stock and

at organic prices

+
1

ρ
(Porg − Pcon) · (αbAb +Ay)︸ ︷︷ ︸

PDV of organic price premium

on ”level effect”

of other agricultural inputs

(B.136)

− 1

ρ
· Pcon · αb · γK ·

(
C − ϵ

)︸ ︷︷ ︸
=K0︸ ︷︷ ︸

PDV of microbial productivity

under conventional management

− 1

ρ
· Pcon · αb ·

γK
µ+ ρ

· µ · ϵ︸ ︷︷ ︸
PDV of using synthetic compounts

at dynamically optimal

conventional rate µ · ϵ

which we can simplify as follows:

∆F14A(ϵ) =
1

ρ
(Porg − Pcon) · αbγK C︸︷︷︸

=Korg︸ ︷︷ ︸
PDV of organic price premium

from organic stock effect

+
1

ρ
αb (Porg − Pcon)

(
Ab +

Ay

αb

)
︸ ︷︷ ︸
PDV of organic price premium

from ag. base productivity

(B.137)

+
1

ρ
· Pcon · αb · γK · ϵ︸ ︷︷ ︸

PDV of additional value gained from

microbial productivity after adopting

organic management practices,

valued at conventional prices

− 1

ρ
· Pcon · αb ·

γK
µ+ ρ

· µ · ϵ︸ ︷︷ ︸
PDV of using synthetic

compounds at dynamically

optimal conventional rate µ · ϵ

B.3.1 Comparative statics for ∆(ϵ)

Now we discuss the signs of ∂∆(ϵ)
∂i , imposing the assumption that Korg = C.

The results are summarized in Table B.7.
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∂∆F14A(ϵ)

∂ρ
= − 1

ρ2
· Pcon · αb ·

((
Porg − Pcon

Pcon

)(
γKC +Ab +

Ay

αb

)
(B.138)

+

(ρ− 1) ·

(
µ+ρ−1
ρ−1

)
· µ+ ρ

(µ+ ρ)2

 · γK · ϵ



So we have the following sufficient conditions

• ∂∆F14A(ϵ)
∂ρ ≤ 0 for

– Sufficiently large
Porg−Pcon

Pcon

• ∂∆F14A(ϵ)
∂ρ ≥ 0 for

– Sufficiently small
Porg−Pcon

Pcon
and µ, and ρ < 1

∂∆F14A(ϵ)

∂µ
= −Pcon · αb ·

1

(µ+ ρ)2
· γK · ϵ ≤ 0 (B.139)

∂∆F14A(ϵ)

∂Porg
=

1

ρ
· αbγKC +

1

ρ
αb

(
Ab +

Ay

αb

)
≥ 0 (B.140)

∂∆F14A(ϵ)

∂Pcon
= −1

ρ
· αb ·

Ab +
Ay

αb
+ γK ·

 µ

µ+ ρ
+

C

ϵ︸︷︷︸
≥1

−1

 · ϵ

 ≤ 0 (B.141)
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∂∆F14A(ϵ)

∂αb
=

1

ρ
· Pcon ·

((
Porg − Pcon

Pcon

)
·
(
γKC +Ab

)
+

ρ

µ+ ρ
· γK · ϵ

)
≥ 0 (B.142)

∂∆F14A(ϵ)

∂γK
=

1

ρ
· Pcon · αb ·

((
Porg − Pcon

Pcon

)
· C +

ρ

µ+ ρ
· ϵ
)

≥ 0 (B.143)

∂∆F14A(ϵ)

∂C
=

1

ρ
(Porg − Pcon) · αbγK ≥ 0 (B.144)

∂∆F14A(ϵ)

∂Ab
=

1

ρ
αb (Porg − Pcon) ≥ 0 (B.145)

∂∆F14A(ϵ)

∂Ay
=

1

ρ
(Porg − Pcon) ≥ 0 (B.146)

∂∆F14A(ϵ)

∂ϵ
=

1

ρ
· Pcon · αb · γK ·

1− µ

µ+ ρ︸ ︷︷ ︸
≤1

 ≥ 0 (B.147)
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B.3.2 Comparative statics for ϵ∗

We now calculate the partials of ϵ∗ with respect to our model parameters. We assume organic

certification requires having pristine soils, such that Korg = C.

The results are summarized in Table B.8.

Next we consider the partials of ϵ∗ w.r.t. our model parameters.

Assuming Pcon · αb · γK · ρ
µ+ρ · ≠ 0, we can then write:

⇒ ϵ∗ = −µ+ ρ

ρ
·
(
Porg − Pcon

Pcon

)(
C +

(
Ab +

Ay

αb

)
· γ−1

K

)
≤ 0 (B.148)

Given

∂∆F14A(ϵ)

∂ϵ
=

1

ρ
· Pcon · αb · γK

(
1− µ

µ+ ρ

)
≥ 0, (B.149)

ϵ∗ ≤ 0 implies that the F14A farmer prefers organic given any initial capital stock. Still, we may at

some point be interested in how the value of ϵ∗ responds to changes in our parameter values in this

case, so we will calculate the partials of ϵ∗ wrt to these model parameters.

∂ϵ∗

∂ρ
=

1

ρ
·
(
µ+ ρ

ρ
− 1

)
︸ ︷︷ ︸

≥0

·
(
Porg − Pcon

Pcon

)(
C +

(
Ab +

Ay

αb

)
· γ−1

K

)
≥ 0 (B.150)

∂ϵ∗

∂µ
= −

(
Porg − Pcon

Pcon

)(
C +

(
Ab +

Ay

αb

)
· γ−1

K

)
≤ 0 (B.151)

∂ϵ∗

∂Porg
= −µ+ ρ

ρ
·
(
C +

(
Ab +

Ay

αb

)
· γ−1

K

)
≤ 0 (B.152)
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∂ϵ∗

∂Pcon
=

µ+ ρ

ρ
·
(

1

Pcon
+

Porg − Pcon

P 2
con

)(
C +

(
Ab +

Ay

αb

)
· γ−1

K

)
︸ ︷︷ ︸

≥0

≥ 0 (B.153)

∂ϵ∗

∂αb
=

µ+ ρ

ρ
·
(
Porg − Pcon

Pcon

)(
Ay

α2
b

· γ−1
K

)
≥ 0 (B.154)

∂ϵ∗

∂γK
=

µ+ ρ

ρ
·
(
Porg − Pcon

Pcon

)
·
(
Ab +

Ay

αb

)
· γ−2

K ≥ 0 (B.155)

∂ϵ∗

∂C
= −µ+ ρ

ρ
·
(
Porg − Pcon

Pcon

)
≤ 0 (B.156)

∂ϵ∗

∂Ab
= −µ+ ρ

ρ
·
(
Porg − Pcon

Pcon

)(
γ−1
K

)
≤ 0 (B.157)

∂ϵ∗

∂Ay
= −µ+ ρ

ρ
·
(
Porg − Pcon

Pcon

)(
1

αb
· γ−1

K

)
≤ 0 (B.158)

B.3.3 Comparative statics for threshold organic price premium
(
Porg−Pcon

Pcon

)∗
Next we are interested in describing how large the organic price premium needs to be in order to

induce a fully informed farmer facing F14A conditions to prefer to produce organically. We derive an

inequality describing the necessary conditions below.

Assuming that Pcon ̸= 0, and assuming that 1
ραb

(
γKC +Ab +

Ay

αb

)
̸= 0, we can write:
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(
Porg − Pcon

Pcon

)∗
= − 1

C +
(
Ab +

Ay

αb

)
· γ−1

K

· ρ

µ+ ρ
· ϵ ≤ 0 (B.159)

Given

∂∆F14A(ϵ)

∂
(
Porg−Pcon

Pcon

) =
1

ρ
· Pcon · αb ·

(
γKC +Ab +

Ay

αb

)
≥ 0, (B.160)

(
Porg−Pcon

Pcon

)∗
≤ 0 implies that the F14A farmer prefers organic given any non-negative price premium.

Still, we may at some point be interested in how the value of
(
Porg−Pcon

Pcon

)∗
responds to changes in

our parameter values in this case, so we will calculate the partials of
(
Porg−Pcon

Pcon

)∗
wrt to these model

parameters.

Then we can determine how
(
Porg−Pcon

Pcon

)∗
changes in response to changes in our model parameters

by examining the signs of the partials below. The results are summarized in Table B.9.

∂
(
Porg−Pcon

Pcon

)∗
∂ϵ

= − 1

C +
(
Ab +

Ay

αb

)
· γ−1

K

· ρ

µ+ ρ
≤ 0 (B.161)

∂
(
Porg−Pcon

Pcon

)∗
∂ρ

= − 1

C +
(
Ab +

Ay

αb

)
· γ−1

K

· µ

(µ+ ρ)2
· ϵ ≤ 0 (B.162)

∂
(
Porg−Pcon

Pcon

)∗
∂µ

=
1

C +
(
Ab +

Ay

αb

)
· γ−1

K

· ρ

(µ+ ρ)2
· ϵ ≥ 0 (B.163)

∂
(
Porg−Pcon

Pcon

)∗
∂Pcon

= 0 (B.164)

B-50



∂
(
Porg−Pcon

Pcon

)∗
∂αb

=
1(

C +
(
Ab +

Ay

αb

)
· γ−1

K

)2 ·
(
−Ay

α2
b

· γ−1
K

)
· ρ

µ+ ρ
· ϵ ≤ 0 (B.165)

∂
(
Porg−Pcon

Pcon

)∗
∂γK

=
1(

C +
(
Ab +

Ay

αb

)
· γ−1

K

)2 ·
(
−
(
Ab +

Ay

αb

)
· γ−2

K

)
· ρ

µ+ ρ
· ϵ ≤ 0 (B.166)

∂
(
Porg−Pcon

Pcon

)∗
∂Ay

=
1(

C +
(
Ab +

Ay

αb

)
· γ−1

K

)2 ·
(

1

αb
· γ−1

K

)
· ρ

µ+ ρ
· ϵ ≥ 0 (B.167)

∂
(
Porg−Pcon

Pcon

)∗
∂Ab

=
1(

C +
(
Ab +

Ay

αb

)
· γ−1

K

)2 · γ−1
K · ρ

µ+ ρ
· ϵ ≥ 0 (B.168)

∂
(
Porg−Pcon

Pcon

)∗
∂C

=
1(

C +
(
Ab +

Ay

αb

)
· γ−1

K

)2 · ρ

µ+ ρ
· ϵ ≥ 0 (B.169)
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Table B.7: Comparative Statics for ∆F14A (ϵ) For Case F14 A When Korg = C

Summary of ∂∆F14A(ϵ)
∂i

i Sign Condition

ρ
−

+

Large
Porg−Pcon

Pcon
.

Small
Porg−Pcon

Pcon
and µ, and ρ¡1.

µ -

Porg +

2 Pcon -

αb +

αc N/A N/A

γc N/A N/A

γcc N/A N/A

γK +

Ay +

Ab +

C +

ϵ +

Notes: Table reports comparative statics for ∆ (ϵ), assuming that Korg = C and
Rcon(K) = ρ∀K, and assuming Korg = C (Does not depend on whether or not c = µC).
A conventional farmer is said to prefer producing organically when ∆ (ϵ) > 0.

* Does not depend on whether or not c = µC
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Table B.8: Comparative Statics for ϵ∗ For Case F14A When Conventional Korg = C

Summary of ∂ϵ∗

∂i

i Sign Condition

ρ +

µ -

Porg -

Pcon +

αb +

αc N/A N/A

αc N/A N/A

γcc N/A N/A

γK +

Ay -

Ab -

c0 N/A N/A

C0 N/A N/A

C -

Notes: Table reports comparative statics for ϵ∗ assuming that Korg = C and Rcon(K) =
ρ∀K, and assuming Korg = C (Does not depend on whether or not c = µC). A
conventional farmer will prefer producing organically for all K0,con = Korg − ϵ at least
ϵ∗ lower than Korg.
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Table B.9: Comparative Statics for
(
Porg−Pcon

Pcon

)∗
For Case F14 A When Korg = C

Summary of
∂
(

Porg−Pcon
Pcon

)∗

∂i

i Sign Condition

ϵ -

ρ -

µ +

Pcon 0

αb -

αc N/A N/A

γc N/A N/A

γcc N/A N/A

γK -

Ay +

Ab +

c0 N/A N/A

C0 N/A N/A

C +

Notes: Table reports comparative statics for
(
Porg−Pcon

Pcon

)∗
assuming that Korg = C and

Rcon(K) = ρ∀K, and assuming Korg = C (Does not depend on whether or not c = µC).

* Does not depend on whether or not c = µC
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