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1 Introduction

Conventional agriculture has been criticized for its adverse effects on natural resources and the

environment – including biodiversity loss, water pollution, and other forms of pollution posing

threats to public health and climate stability - many of which are due in part to the prevalent

use of synthetic compounds (e.g., synthetic fertilizers, synthetic fertilizers, pesticides, herbicides,

or fungicides) that characterizes conventional management practices (Varanasi, 2019). In contrast,

organic farming and regenerative agriculture practices (Chesapeake Bay Foundation, 2024; Natural

Resources Defense Council, 2022) wherein farmers reduce or forego synthetic compound use are

considered to be a more sustainable and more environmentally friendly alternative to conventional

food production (Varanasi, 2019). This paper combines insights from economics and the natural

sciences to study and inform farmer transitions from conventional to organic management and other

production regimes characterized by reduced reliance on synthetic compounds.

Soil microbes benefit agricultural production and improve agricultural yields by enhancing crop

nutrient use, stress tolerance, and pest resistance (Yadav et al., 2017; Yibeltie and Sahile, 2018;

Righini et al., 2022). Recent insights from soil science show that the use of synthetic fertilizers

and pesticides can be harmful to these beneficial soil microbes (Li et al., 2022; Blundell et al.,

2020; Lori et al., 2017). Thus, while using synthetic fertilizers and pesticides may have the initial

effect of increasing crop yields, over time these synthetic compounds exert an indirect negative

effect on crop yields through their negative effects on soil health. This insight has implications for

a farmer’s optimal synthetic fertilizer and pesticide strategy, and for whether and how a farmer

should transition from conventional to organic farming.

We develop a dynamic bioeconomic model of a farmer’s decisions regarding the use of synthetic

compounds (e.g., synthetic fertilizers and pesticides) and the transition from conventional to organic

management. Our model of crop production accounts for the newly documented interrelationships

among synthetic compound use, soil health, and crop yields. By more accurately capturing the

important biological processes at play, our model yields a solution that more accurately captures a

farmer’s optimal synthetic compound use and organic production strategy.

Notably, our model allows the producer to capture price premia associated with programs like

the U.S. Department of Agriculture (USDA) National Organic Program (NOP) (USDA Agricultural

Marketing Service, 2000b; Organic Produce Network, 2022). This program grants producers access

to premium markets once pesticide-use rates and/or soil quality satisfy certain threshold values.

Such certification programs are important to include in our production model, as they currently

serve as important levers through which real-world markets reward reduced reliance on synthetic

chemicals and, as such, they play a prominent role in shaping farmers’ pesticide-use choices.

We use the model to explore how soil microbes’ role in production should optimally affect

farmers’ choice in pesticide application rates, using a world in which farmers have no awareness of

the role that soil microbes play in production as the relevant counterfactual. We also examine how

knowledge of soil microbes may interact with other key market features, like certification programs

that reward stewardship of soil health through reduced reliance on pesticides, to induce greater
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adoption of such certification programs than would be expected in the absence of knowledge of soil

microbes.

Our objectives are the following. First, we characterize a farmer’s optimal trajectory of synthetic

compound use over time, given the harmful effects that these compounds have on soil bacteria, and

given the beneficial effects of soil bacteria on crop yields. Second, we examine a farmer’s decision

of whether to adopt organic certification by lowering their use of synthetic compounds to meet

certification requirements. The solution to our model describes the feasibility and optimality of

organic production, given the way that soil health will respond to the transition.

Formally, the dynamic optimization problem faced by the farmer is to choose a pesticide and

fertilizer input trajectory to maximize the present discounted value of their entire stream of profits

from crop production. Crop yields, and therefore profits, are a function of pesticide and fertilizer

input use, as well as of soil bacteria. Soil bacteria populations, in turn, are a function of per-period

chemical use as well as the stock of synthetic residues that have built up in the farm’s soils from

past chemical use.

We characterize and solve for a farmer’s optimal synthetic compound use strategy, and for

whether a farmer should transition from conventional to a production regime that relies less

on synthetic pesticides and more on the productivity-enhancing services generated by their soil

microbiome. We find that some farmers may transition to organic management “accidentally” as

their optimal trajectories eventually take them toward the certification threshold. This can happen

even in the absence of an organic price premium. Others will have discrete “jump” transitions that

are induced purely by the organic price premium.

Our research will help farmers improve decision-making around synthetic compound use and

organic production, and has the potential to improve soil bacteria stewardship, crop yields, farmer

profits, agricultural sustainability, greenhouse gas mitigation, biodiversity, resilience of the organic

farming system, the protection of water and other resources, the provision of ecosystem services,

and public and environmental health.

2 Literature Review

Transitioning to organic farming entails the discontinuation of pesticide use, a change that may

impact farm profits. The relationship between pesticide use and farm profit has been the subject

of many studies. Chambers, Karagiannis, and Tzouvelekas (2010) develop a model that measures

how pesticide use affects relative returns to quasi-fixed factors of production like capital and land.

Jacquet, Butault, and Guichard (2011) use a mathematical programming model to determine

whether pesticide use can be reduced without affecting farmer income and find that a up to a

30 percent reduction is possible. In the long run, pesticide use may even negatively affect profits

due to their effects on soil productivity through soil health. Sexton, Lei, and Zilberman (2007)

acknowledge the effect that pesticide use can have on soil health through its impact on soil

microbiomes. Kalia and Gosal (2011) also document the damaging effects that the application
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of pesticides in conventional farming has on soil microorganisms that benefit plant productivity.

Jaenicke and Lengnick (1999) estimate a soil-quality index consistent with the notion of technical

efficiency. van Kooten, Weisensel, and Chinthammit (1990) use a dynamic model that explicitly

includes soil quality in the grower’s utility function and the trade-off between soil quality (which

may decline due to erosion) and net returns. Using data from rice farmers in California, Meneses

et al. (2025) empirically document the insights from soil science that the use of chemical inputs

may increase contemporaneous yields; and also that, over time, not using chemical inputs increases

yield. Meneses et al. (forthcoming) leverage recent insights from plant and soil sciences to show how

farmers’ private economic incentives can be realigned with pro-carbon management practices that

enhance soils’ ability to store atmospheric carbon, such as those found in regenerative agriculture

and organic farming.

Soil microbes benefit agricultural production and improve agricultural yields by enhancing crop

nutrient use, stress tolerance, and pest resistance (Singh et al., 2016; Lori et al., 2017; Yadav

et al., 2017; Yibeltie and Sahile, 2018; Blundell et al., 2020; Kalam et al., 2020; Verma et al., 2020;

Righini et al., 2022; Thiebaut et al., 2022). Insights from soil science show that the use of synthetic

fertilizers and pesticides can be harmful to these beneficial soil microbes (Li et al., 2022; Blundell

et al., 2020; Dash et al., 2017; Lori et al., 2017; Newman et al., 2016; Kalia and Gosal, 2011; Lo,

2010; Hussain et al., 2009).

The dynamic response of soil health and productivity to the sorts of changes in pesticide use

entailed by transitions to organic farming is still not well accounted for in economic assessments

of the profitability of transitioning to organic farming. Stevens (2018) argues that optimal control

models may be well suited for studying the economics of soil management. In this paper we

argue further that dynamic optimization and dynamic programming may help shed light on the

optimal rate of transition from conventional to organic farming, by allowing us to better capture

the countervailing and dynamic effects that pesticide use has on profits through its effect on pest

pressure and soil health.

Multiple studies have applied the dynamic optimization and programming toolkits to the

study of optimal agricultural management practices. Jaenicke (2000) develops a dynamic data

envelopment analysis (DEA) model of crop production to investigate the role soil capital plays

in observed productivity growth and the crop rotation effect. Yeh, Gómez, and Lin Lawell (2025)

develop a novel dynamic bioeconomic analysis framework that combines numerical dynamic optimization

and dynamic structural econometric estimation, and apply it to analyze the optimal management

strategy for Spotted Wing Drosophila, a pest affecting soft-skinned fruits. Wu (2000) develops a

dynamic model and solves for the optimal time path for herbicide application. Dynamic models

have also been developed to study agricultural productivity (Carroll et al., 2019), agricultural

groundwater management (Sears, Lim, and Lin Lawell, 2019; Sears, Lin Lawell, and Walter, 2025),

agricultural disease control (Carroll et al., 2025a), pollination input decisions by apple farmers

(Wilcox et al., 2025), supply chain externalities (Carroll et al., 2025b), optimal bamboo forest

management (Wu et al., 2025), fisheries management (Conrad, Lin Lawell, and Shin, 2025; Shin,
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Conrad, and Lin Lawell, 2025), and grapes (Sambucci, Lin Lawell, and Lybbert, 2025).

Delbridge and King (2016) use dynamic programming to address the question of why so few

farmers choose to transition to organic farming, and find that the slow uptake of organic farming

may be partially driven by the option value generated by the sunk costs associated with organic

transition that arise from substantial reductions in gross revenue since crop yields typically fall

during the organic transition and adopting an organic crop rotation often involves some diversification

away from the most valuable crops. Other studies have sought to incorporate transition dynamics,

such as the empirically documented initial decrease in crop yields associated with conventional to

organic transitions, into profitability assessments of organic farming. Dabbert and Madden (1986)

find in their multi-year simulation of a 117-hectare crop-livestock farm that the initial decrease in

crop yields during an organic transition results in a 30 percentage point decrease in income in the

first year of transition. The biological underpinnings of this initial decrease in productivity, and

their response to farmer control variables are not made explicit.

The current study is unique in that it approaches the matter of finding an optimal transition

trajectory from a bioeconomic perspective, informing its net benefit function with insights from

soil sciences on how soils respond to organic management. Blundell et al. (2020) find that organic

management is associated with decreased pest pressure on tomato plants. This effect is driven by

an accumulation of salicylic acid in plant tissue, and is likely mediated by soil microbe communities.

Lori et al. (2017) find that organic management is associated with increased microbial abundance

and activity. Our net benefit function captures such soil health effects on crop productivity and

farmer costs during the organic transition. We are not aware of any other studies that use

a bio-economic dynamic programming approach to solving for a farm’s optimal trajectory for

transitioning from conventional to organic farming.

3 Dynamic Bioeconomic Model

3.1 Model

We develop a dynamic bioeconomic model of a farmer’s decisions regarding the use of synthetic

compounds (e.g., synthetic fertilizers and pesticides) and the transition from conventional to organic

management. Our model of crop production accounts for the newly documented interrelationships

among synthetic compound use, soil health, and crop yields.

We model the farmer’s field-level organic transitions decision-making problem as an infinite

horizon dynamic optimization problem. We assume for the initial analysis that the farmer optimizes

for each of their fields independently.

The crop production function for a field’s crop output y(t) at time t is given by f̃(b(t), c(t);X),

where crop output is a function of beneficial soil microbes (or bacteria) b(t), chemical (or synthetic

compound) inputs c(t), and other human and natural inputs X (which may include capital, labor,

soil characteristics, and land quality). The marginal product of chemical input use c(t), conditional

on soil microbes b(t), is non-negative: ∂f̃(b(t),c(t);X)
∂c ≥ 0. Soil microbes b(t) have a non-negative
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effect on crop production: ∂f̃(b(t),c(t);X)
∂b ≥ 0.

The biological production function for soil microbes b(t) is given by g̃(C(t), c(t);X), where the

prevalence of beneficial soil microbes b(t) decreases with the total stock of synthetic compounds

in the soil C(t) , and with greater per-period chemical (or synthetic compound) input use c(t):
∂g̃(C(t),c(t);X)

∂C ≤ 0, ∂g̃(C(t),c(t);X)
∂c ≤ 0. The total stock of synthetic compounds in the soil C(t) only

affects crop production through its effects on soil bacteria b(t), so that C(t) only appears in the crop

production function f̃(·) through its role in the soil microbe production function g(·). The other

inputs X to soil microbe production includes soil characteristics and other human and natural

inputs that are important to how beneficial bacteria b(t) respond to total synthetic compound

stocks C(t) and to synthetic compound use c(t).

The farmer’s control variable is the amount of chemical inputs c(t), which may include synthetic

fertilizer and pesticides (including herbicides, insecticides, fungicides, etc.), at each time t. The

chemical input use c(t) at any point in time does not exceed an upper bound c, which may represent,

for example, the maximum recommended dose for any given application, the maximum chemical

input dose that is not lethal to the crop and/or to humans, the maximum chemical dose above

which consumers will no longer purchase the crop, or the maximum chemical input flow at any

point in time that does not destroy the farmer’s land and soil. We assume the upper bound c > 0.

We focus our analysis on the chemical input use c(t) decision, and therefore take the other human

and natural inputs X (which may include capital, labor, soil characteristics, and land quality)

as given. In particular, for our stylized theory model we condition the soil microbe biological

production function and output production function on the other human and natural inputs X,

and allow these other human and natural inputs X to shift the marginal products of the inputs to

soil microbe production and the marginal products of the inputs to crops production, but do not

model changes in these other human and natural inputs X explicitly. Costs of changes in other

human and natural inputs X associated with organic adoption can be captured in the organic (net)

price premium.

The state variable is the stock of synthetic chemicals C(t) that is present in the farm’s soil at

time t. The stock of synthetic chemicals increases with chemical input use c(t) and decays at a

constant rate µ(X) ≥ 0 that may depend on the soil characteristics and other human and natural

inputs X:

Ċ(t) = c(t)− µ(X)C(t). (1)

Thus, the use of synthetic compounds c(t) not only has harmful contemporaneous effects on soil

microbes b(t), but also has harmful effects on soil microbes b(t) over time by increasing the stock

of synthetic chemicals C(t) that is present in the farm’s soil, since both the total stock of synthetic

compounds in the soil C(t) and the per-period chemical input use c(t) have harmful effects on soil

microbes b(t). As a consequence, while using synthetic fertilizers and pesticides c(t) may have the

initial direct effect of increasing crop yields y(t), over time these synthetic compounds c(t) exert

an indirect negative effect on crop yields y(t) through their negative effects on soil health.
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Let C denote the maximum chemical stock capacity of the soil; if the stock of synthetic chemicals

C(t) ever exceeds this upper bound C, the land and soil is destroyed forever and cannot ever be

used for agricultural production again.

The national organic certification threshold for the stock of synthetic chemicals present in a

farm’s soil is given by Corg, where 0 ≤ Corg < C. For the majority of our analysis, we assume (as is

approximately the case in all real-world organic certification programs known to the authors) that

organic certification requires that a farmer fully remediate their soils until they are pristine, such

that Corg = 0.

The spot price of the crop in the organic market is Porg. The spot price of the conventionally

grown crop is Pcon. We normalize the unit price of chemical input c(t) to be 1.

The optimal transition trajectory can be described by the solution to the following dynamic

optimization problem:

max
{c(t)}

∫ ∞

t=0

(
(Pcon · 1{C(t) > Corg} +Porg · 1{C(t) ≤ Corg}) · f̃(b(t), c(t);X)− c(t)

)
e−ρtdt

s.t. Ċ(t) = c(t)− µ(X)C(t)

b(t) = g̃(C(t), c(t);X)

0 ≤ c(t) ≤ c

0 ≤ C(t) ≤ C

C(0) = C0 ,

(2)

where 1{x} is an indicator function that is equal to 1 if the condition x is true, and 0 otherwise; ρ

is the interest rate; and C0 is the initial stock of synthetic compounds in the soil.

Following Weitzman (2003), to facilitate analysis and economic interpretation, we convert our

problem to prototype economic control problem form. We do this by first defining the stock of

clean soil, K(t), to be

K(t) = C − C(t). (3)

Net investment in clean soil stock, I(t), is given by:

I(t) ≡ K̇(t) = −Ċ(t). (4)

Synthetic compound input use c(t) in terms of K(t) and I(t) is therefore given by the following

function c̃(·):

c(t) = c̃(K(t), I(t)) = µ(X)(C −K(t))− I(t). (5)

The constraint that c(t) ≥ 0 can be rewritten as:

µ(X)(C −K(t)) ≥ I(t) (6)
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The constraint that c(t) ≤ c can be rewritten as:

µ(X)(C −K(t))− c ≤ I(t). (7)

We assume that c = µ(X)C when µ(X) > 0 and c > 0 when µ(X) = 0. Applying these

assumptions to Equation (7), we obtain the following lower bound for net investment:I(t) ≥ −µ(X)K(t) if µ(X) > 0

I(t) > µ(X)(C −K(t)) if µ(X) = 0
(8)

The organic certification threshold in terms of clean soil capital is given by:

Korg = C − Corg. (9)

In terms of clean soil capital, our assumption Corg = 0 that organic certification requires that

a farmer fully remediate their soils can be rewritten as Korg = C.

We assume that the crop production function f̃(·) is given by:

f̃(b, c;X) = αb(X)b+ αc(X)c+Ay(X) (10)

where, ∀X, αb ≥ 0, αc ≥ 0, and Ay ≥ 0.

We define a crop production function f(·), which is the crop production function f̃(·) in terms

of K and I. The crop production function f(·) in terms of K and I is given by:

f(K, I;X) = f̃(b, c̃(K, I);X)

= αb(X)b+ αc(X)c̃(K, I) +Ay(X)
(11)

Let the soil microbe production function g̃(·) be given by:

g̃(C, c;X) =γc(X)c+
1

2
γcc(X)c2 + γK(X)

(
C − C(t)

)
+Ab(X), (12)

where, ∀X, γc ≤ 0, γcc ≤ 0 (i.e., convex costs to synthetic compound use), γK ≥ 0, and Ab ≥ 0.

We define a soil microbe production function g(K, I;X), which is the soil microbe production

function g̃(·) in terms of K and I as follows:

g(K, I;X) = γc(X)c̃(K, I) +
1

2
γcc(X)c̃(K, I)2 + γK(X)K +Ab(X). (13)

Let’s define the national organic certification threshold in terms of the stock of clean soil Korg

as:

Korg = C − Corg. (14)

The initial stock of clean soil K0 is given by:

7



K0 = C − C0. (15)

The farmer’s problem can then be re-written in prototypical economic form as follows:

max
{I(t)}

∫ ∞

0

(
(Pcon · 1{K(t) < Korg}+ Porg · 1{K(t) ≥ Korg}) · f̃(b(t), c̃(K(t), I(t));X)

− c̃(K(t), I(t))
)
· e−ρtdt

s.t. K̇(t) = I(t) : p(t)

b(t) = g(K(t), I(t);X)

c̃(K(t), I(t)) = µ(X)(C −K(t))− I(t)

µ(X)(C −K(t))− c ≤ I(t) ≤ µ(X)(C −K(t))

0 ≤ K(t) ≤ C

K(0) = K0 ,

(16)

where the co-state variable p(t) is the marginal value to the farmer’s optimal program of an extra

unit of clean soil.

3.2 What makes this optimal control problem novel and challenging to solve

The partial derivatives near the national organic certification threshold are tricky to calculate, since

they involve derivatives of indicator functions. The indicator function 1{K ≥ Korg} for satisfying

the national organic certification threshold is the Heaviside function H(K−Korg), where H(x) = 1

if n ≥ 0 and H(x) = 0 if x < 0. The derivative of the Heaviside function H(x) is the Dirac delta

function δ(x):

dH(x)

dx
= δ(x), (17)

which unfortunately is tricky to work with and interpret, as it is a function that spikes at zero.

So instead of trying to take a derivative of an indicator function, we analyze each stage of the

dynamic bioeconomic model separately, and then consider possible transitions from conventional

to organic management. The first stage is conventional agriculture with prices Pcon. The second

stage is organic agriculture with prices Porg. The second stage is reached if organic certification

requirement K(t) ≥ Korg is satisfied.

4 Optimal Solution for Each Stage

We first describe behavior within each stage j ∈ {con, org}. For each stage j ∈ {con, org}, we
solve for stationary rate of return on capital (clean soil stock) Rj(K); determine whether there is

a stationary solution K̂j ; characterize direction and speed of net investment I(t); and solve for the
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optimal trajectories I∗(t) and K∗(t) using the Maximum Principle.

4.1 Optimal control problem for each stage j ∈ {con, org}

For each stage j ∈ {con, org}, the farmer’s dynamic optimization problem is given by:

Vj(K0j) = max
{I(t)}

∫ ∞

0

(
Pj ·f̃ (g(K(t), I(t);X), c̃(K(t), I(t));X)− c̃(K(t), I(t))

)
· e−ρtdt

s.t. K̇(t) = I(t) : p(t)

c̃(K(t), I(t)) = µ(X)(C −K(t))− I(t)

µ(X)(C −K(t))− c ≤ I(t) ≤ µ(X)(C −K(t))

0 ≤ K(t) ≤ C

K(0) = K0j .

(18)

The Hamiltonian is then:

Hj = Gj(K, I) + ρI(t), (19)

where

Gj(K, I) = Pj · f̃ (g(K, I), c(K, I);X)− c̃(K, I;X). (20)

Given our functional form assumptions, the per-period net gain (or profits) Gj(K, I) for each

stage j ∈ {con, org} is given by:

Gj(K, I) =Pj ·

(
αb

(
γc
(
µ
(
C −K

)
− I
)
+

1

2
γcc
(
µ
(
C −K

)
− I
)2

+ γKK +Ab

)

+ αc

(
µ
(
C −K

)
− I
)
+Ay

)
−
(
µ
(
C −K

)
− I
) (21)

where the convex costs to synthetic compound use, as measured by the parameter γcc ≤ 0,

introduces non-linear investment costs. We will have a most rapid approach (MRA) policy if

γcc = 0 since then G(K, I) is linear in net investment I.

The solution to the farmer’s dynamic optimization problem for each stage j ∈ {con, org} satisfies
the FOCs of the Maximum Principle:

[#1] :
∂Hj

∂I
= 0 (22)

[#2] : ṗ(t) = −∂H̃j

∂K
(K∗(t), p(t)) + ρp(t) (23)
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[#3] : lim
t→∞

p(t)K(t)e−ρt = 0 (24)

The FOCs of the Maximum Principle are both necessary and sufficient for optimality since

our per-period net gain function Gj(K, I) is concave and the control set is convex for each stage

j ∈ {con, org}.

4.2 Characterizing the Optimal Solution for each stage j ∈ {con, org}

The present discounted value (PDV) of entire stream of marginal net benefit (MNB) of an additional

unit of synthetic compound c(t) today is given by:

Pj · αc −
(
−Pjαb (γc + γccc(t)) +

PjαbγK
µ+ ρ

+ 1

)
, (25)

each term of which is explained in detail in Figure 1. Owing to the convex costs of synthetic

compounds on soil microbe production, as measured by the parameter γcc ≤ 0, the PDV of the

entire stream of marginal net benefits is decreasing in synthetic compound use c(t). Since c(t) =

µ(X)(C−K(t))− I(t) is decreasing in K(t), the PDV of the entire stream of marginal net benefits

is increasing in K(t).

The present discounted value of the entire stream of marginal benefits from applying an additional

unit of synthetic compound today, which is given by Pjαc, comes from the direct effect of chemical

input use c(t) on crop output y(t) today and therefore on crop revenue today. Using an additional

unit of synthetic compound today does not yield any future marginal benefits.1

The present discounted value of the entire stream of marginal costs of applying an additional

unit of synthetic compound today consists of several components. Applying an additional unit of

synthetic compound today incurs both direct and indirect marginal costs. The direct marginal

cost of an additional unit of synthetic compound today is simply the unit price of chemical inputs

c(t), which we normalize to 1, and which is only incurred today. The indirect marginal cost of an

additional unit of synthetic compound today comes from the negative effects of synthetic compounds

on soil microbes b(t) and their resulting negative effects on crop output y(t) and therefore on crop

revenue. There are two channels through which synthetic compounds have negative effects on soil

microbes. First, applying an additional unit of synthetic compound today has a direct negative

effect on soil microbes today through its direct negative effect on soil microbe production today.

Second, applying an additional unit of synthetic compound today has an indirect negative effect on

soil microbes by decreasing the stock of clean soils K(t) today, which may last for multiple periods,

and which in turn has a negative effect on soil microbe production over multiple periods of time;

we call the PDV of the entire stream of indirect marginal costs of applying an additional unit of

synthetic compound today via their indirect negative effect on soil microbes through their negative

effect on stock of clean soils the “stock effect”. Thus, the present discounted value of the entire

1Using data from rice farmers in California, Meneses et al. (2025) empirically document that the use of synthetic
pesticides increases contemporaneous yields; and also that, over time, not using synthetic pesticides increases yield.
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stream of marginal costs from applying an additional unit of synthetic compound today comes from

the direct marginal cost of purchasing synthetic compounds today, 1; the indirect marginal cost

of applying an additional unit of synthetic compound today via their direct negative effect on soil

microbes today, −Pjαb (γc + γccc(t)); and the PDV of the entire stream of indirect marginal costs

of applying an additional unit of synthetic compound today via their indirect negative effect on

soil microbes through their negative effect on stock of clean soils (the stock effect),
PjαbγK
µ+ρ .

The optimal unconstrained amount of synthetic compound c(t) to apply at any time t is the

synthetic compound input level c∗∗j at which the present discounted value (PDV) of entire stream

of marginal net benefit (MNB) of an additional unit of synthetic compound c today is 0. In other

words, at the optimal unconstrained amount of synthetic compound c∗∗j , the PDV of the entire

stream of marginal benefits of an additional unit of synthetic compound c(t) today is exactly offset

by the PDV of the entire stream of marginal costs of an additional unit of synthetic compound

c(t) today. This optimal unconstrained amount of synthetic compound c∗∗j is a constant that is a

function of parameters but not of K(t) and is given by:

c∗∗j = −
Pj ·

(
αc + αb

(
γc − γK

µ+ρ

))
− 1

Pjαbγcc
. (26)

As long as the PDV of the entire stream of MNB of an additional unit of synthetic compound

c(t) today is greater than 0 (i.e., as long as c(t) < c∗∗j , since the PDV of the entire stream of MNB

is decreasing in c(t)), we would want to increase the amount of synthetic compound we use today,

and will continue to do so until either (1) the PDV of the entire stream of MNB of an additional

unit of synthetic compound c(t) today is 0 (i.e., until c(t) = c∗∗j ); or (2) we hit the upper bound c

for synthetic compound use. If we are constrained by the upper bound c for synthetic compound

use from increasing synthetic compound use c(t) any further even though the PDV of the entire

stream of MNB of an additional unit of synthetic compound c(t) today is still greater than 0 (i.e.,

if c∗∗j > c, then the PDV of the entire stream of MNB of an additional unit of synthetic compound

c(t) today is the smallest positive value that it can be.

With the farmer’s problem now in prototypical economic control form, we can solve for the

stationary rate of return on capital, Rj(K) for each stage j ∈ {con, org}. The stationary rate of

return on capital Rj(K) is the per-period rate of return on the clean soil capital stock K from

increasing net investment I a tiny bit this period from a net investment level of I = 0. In other

words stationary rate of return on capital Rj(K) is the per-period yield from increasing the clean

soil capital stock K from a stationary state K, to a stationary state K + ϵ , and is given by

(Weitzman, 2003):

Rj(K) = −
∂Gj(K,0)

∂K
∂Gj(K,0)

∂I

. (27)

Solving for the stationary rate of return Rj(K) on clean soil capital for each stage j ∈ {con, org},
we obtain:
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Rj(K) = −µ+
γK

γc + γccµ
(
C −K

)
+

αc−P−1
j

αb

. (28)

As derived in Appendix A.1, the stationary rate of return Rj(K) is weakly decreasing in clean soil

capital K. We describe and discuss the stationary rate of return Rj(K) in more detail in Appendix

A.1.

The stationary solution K̂j is the clean soil stock at which the stationary rate of return on the

clean soil capital stock Rj(K̂j) is equal to the rate of the return on the best alternative investment

(i.e., the bank) ρ (Weitzman, 2003):

Rj(K̂j) = ρ (29)

Plugging in Equation (28) for the stationary rate of return on the clean soil capital stock, Rj(·)
into Equation (29), we obtain the following condition for the stationary solution K̂j :

Pjαc = −Pjαb

(
γc + γccµ

(
C −K

))
+

PjαbγK
µ+ ρ

+ 1 (30)

The intuition for the condition for the stationary solution K̂j is presented in Figure 2.

As seen in Equation (131) in Figure 2, at the stationary solution K̂j for a given stage j ∈
{con, org}, the present discounted value (PDV) of the entire stream of marginal benefits from

applying an additional unit of synthetic compound today equals the present discounted value of

the entire stream of marginal costs of applying an additional unit of synthetic compound today.

The optimal choice of synthetic compound c(t) at any time t is when the PDV of the entire

stream of marginal net benefits of an additional unit of synthetic compound c(t) today is 0 (or as

small a non-negative number as possible).

Thus, when the stationary solution exists, the optimal synthetic compound use c(t) is constant

at the amount ĉj ≡ µ
(
C − K̂j

)
that exactly offsets how much the stock of chemicals in the soil

decays on its own at the stationary solution.

If (ρ+ µ) γccµ ̸= 0, K̂j is given by:

K̂j =

(ρ+ µ)

(
γccµC + γc +

αc−P−1
j

αb

)
− γK

(ρ+ µ) γccµ
(31)

Note that our solution for K̂j may be negative or positive depending on model parameters.

Also note that K(t) is constrained such that K(t) ∈ [0, C]. It is therefore possible that K̂j is not

feasible because K̂j is not within the set of feasible K. In other words, it is possible that K̂j is not

feasible because either K̂j < 0 or K̂j > C. If our solution for K̂j is negative then our non-negativity

constraint on K(t) will bind. Importantly, we note that under this formulation of the model it is

possible for (31) to be positive even in the case of special interest in which µ > 0.

We conduct comparative statics for K̂j in Appendix A.2. As derived in Appendix A.2, the
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stationary solution K̂j is a decreasing function of prices Pj :
∂K̂j

∂Pj
≤ 0. Since the stationary solution

K̂j is a decreasing function of prices Pj and Pcon < Porg, the stationary solution for the organic

stage 2, if it exists, is less than the stationary solution for the conventional stage 1, if it exists.

Since our analysis using the stationary rate of return on capital Rj(K) makes the assumption of

the prototype economic control model that ∂G(K,I)
∂I < 0 (i.e., net investment has a strictly negative

effect on contemporaneous net gain), we cannot use the stationary rate of return on capital Rj(K)

and the comparison between the stationary rate of return on capital R(K) and ρ to describe the

optimal solution when ∂G(K,0)
∂I ≥ 0 (i.e., net investment has a positive effect on contemporaneous

net gain starting from a net investment of I = 0). A farmer with ∂G(K,0)
∂I ≥ 0 would invest in

the stock of clean soil, not disinvest, since there is no trade-off involved with net investment: net

investment not only increases future net gain, but also current net gain as well. As shown in

Appendix A.3, ∂G(K,0)
∂I ≥ 0 when K ≤ K̃j , where K̃j is defined as the stock of clean soils at which

∂G(K,0)
∂I = 0. Thus, for K ≤ K̃j , the farmer will invest in clean soil. Also as shown in Appendix

A, K̂j ≥ K̃j . Thus, since for K ≤ K̃j , the farmer will invest in clean soil, this means that for

K0j ≤ K̃j , if the stationary solution K̂j exists, the farmer will continue to invest in clean soil until

he reaches the stationary solution K̂j .

If either γcc = 0 (i.e., the negative effects of chemical input use c(t) on beneficial soil microbes

b(t) are linear rather than convex) or µ = 0 (i.e., synthetic compounds in the soil do not decay on

their own), then Rj(K) is a constant (that does not depend on K) and K̂j will not exist (nor will

K̃j).

We discuss how prices Pj affect the optimal solution in Appendix A.4.

4.3 Optimal Trajectories for Stage j When K̂j Exists

We now solve for the farmer’s optimal stage j trajectories.

In Appendix A.5, we start by solving for the unconstrained solution for each stage j by using

second-order Taylor series approximations of the net gain function G(K, I). Since the net gain

function G(K, I) is quadratic, these second-order Taylor series approximations and the solutions

derived using them are exact. In other words, the second-order Taylor series approximations of the

net gain function G(K, I) is an exact second-order Taylor series expansion of the net gain function

G(K, I).

In Appendix A.6, we then solve for the constrained optimal solution for each stage j by solving

for an exact solution via direct derivation.

There are five possible types of optimal trajectories that arise when K̂j exists, depending on the

parameters. Taken in order from solutions that require the most synthetic compound use and the

most disinvestment in the stock of clean soil, to solutions that require the least synthetic compound

use and the most investment in the stock of clean soils, these five types of optimal trajectories are

as follows:

• Optimal Trajectories 1 [OT1]: Disinvest as fast as possible untilK = 0 by always applying

13



c(t) = c

• Optimal Trajectories 2 [OT2]: Disinvest to K̂j < K0 by always applying ĉj at which PDV

of MNB equals 0

• Optimal Trajectories 3 [OT3]: Stay at initial clean soil stock K0 = K̂j by always applying

ĉj at which PDV of MNB equals 0

• Optimal Trajectories 4 [OT4]: Invest until K̂j > K0 by always applying ĉj at which PDV

of MNB equals 0

• Optimal Trajectories 5 [OT5]: Invest as fast as possible until K = C (the highest possible

value of clean soil stock) by never applying any synthetic compounds at all

Figure 3 presents the parameter spaces for each of the five types of optimal trajectories when

K̂j exists. Figure 4 plots examples of each of the five types of optimal trajectories that arise when

K̂j exists.

As seen in Figure 4, the more the optimal trajectory type requires synthetic compound use and

disinvestment in the stock of clean soil, the higher the initial per-period yield y(t). Over time,

however, the order of the optimal trajectory type by per-period yield reverses, and the more the

optimal trajectory type requires synthetic compound use and disinvestment in the stock of clean

soil, the lower the per-period yield y(t) over the long run. Thus, while using a lot of synthetic

compounds and disinvesting in the stock of clean soil may lead to higher per-period yields in the

short run, doing so eventually leads to lower per-period yields in the long run.

We now derive and discuss each of the five types of optimal trajectories when K̂j exists in more

detail.

4.3.1 Optimal Trajectories 1 [OT1]: Disinvest as fast as possible to K = 0

When K̂ exists and is negative (i.e., K̂j < 0), the lower-bound constraints on net investment I

always bind (for all t), which means that the upper bound constraint on synthetic compound use

always binds (i.e., c∗∗ > c). Thus, when K̂j < 0, the farmer’s optimal solution is to disinvest as

fast as possible until K = 0. The optimal synthetic compound use c(t) is to apply the maximum

amount possible c every period until we reach K = 0, at which point we stay at K = 0 (i.e., by

applying c(t) = c = µC each period).

As depicted in Figure 3, when K̂j < 0, the PDV of the entire stream of marginal net benefits of

an additional unit of synthetic compound today is weakly positive even when the farmer uses the

maximum permissible dose c of a synthetic compound:

Pjαc + Pjαbγcc · c+ Pjαbγc − Pjαb
1

(ρ+ µ)
· γK − 1 ≥ 0 (32)

Since the stationary solution K̂j is a decreasing function of prices Pj , K̂j < 0 may occur if

prices are very high.
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The optimal trajectories for OT1 are as follows:

c∗j (t) = c = µC ∀t (33)

K∗
j (t) = K0j · e−µ·t (34)

I∗j (t) = −µK∗
j (t) (35)

4.3.2 Optimal Trajectories 2 [OT2]: Disinvest until K̂j

This case occurs when K̂j ∈ [0, C] and K0j > K̂j . In this case the optimal solution is to disinvest

until K̂j , and to do so at a moderate speed. The optimal synthetic compound use c(t) is constant

at the amount ĉj that exactly offsets how much the stock of chemicals in the soil decays on its own

at the stationary solution:

c∗j (t) = ĉj = µ
(
C − K̂j

)
∀t (36)

At ĉj , PDV of MNB = 0.

The optimal trajectories for OT2 are as follows:

c∗j (t) = µ
(
C − K̂j

)
∀t (37)

I∗j (t) = µ
(
K̂j −K∗

j (t)
)
< 0 (38)

K∗
j (t) = K̂j +

(
K0j − K̂j

)
· e−µ·t (39)

4.3.3 Optimal Trajectories 3 [OT3]: Stay at initial clean soil stock and do not invest

or disinvest

If K0j = K̂j , we always set I(t) = 0 (for all t) and stay at the initial clean soil stock. In this case it

is optimal to stay at initial clean soil stock and not to invest or disinvest. In other words, in each

period our chemical input use c(t) should exactly offset the stock of chemicals in the soil decays on

its own so that the stock of chemicals in the soil stays constant, and therefore the clean soil stock

stays constant at its initial value.

Thus, for OT3, the optimal synthetic compound use c(t) is constant at the amount that exactly

offsets how much the initial stock of chemicals in the soil decays on its own.

K∗
j (t) = K0j ∀t (40)
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I∗j (t) = 0 ∀t (41)

c∗j (t) = µ
(
C −K0j

)
∀t (42)

4.3.4 Optimal Trajectories 4 [OT4]: Invest until K̂j

This case occurs when K̂j ∈ [0, C] and K0j < K̂j . In other words: K0j < K̂j ≤ C. In this case the

optimal solution is to invest until K̂j , and to do so at a moderate speed. The optimal synthetic

compound use c(t) is constant at the amount ĉj that exactly offsets how much the stock of chemicals

in the soil decays on its own at the stationary solution. At ĉj , PDV of MNB = 0.

The optimal trajectories for OT4 are as follows:

c∗j (t) = µ
(
C − K̂j

)
∀t (43)

I∗j (t) = µ
(
K̂j −K∗

j (t)
)
> 0 (44)

K∗
j (t) = K̂j +

(
K0j − K̂j

)
· e−µ·t (45)

4.3.5 Optimal Trajectories 5 [OT5]: Invest as fast as possible until K = C

If K̂j > C, upper-bound constraints on net investment I always bind (for all t). In this case the

optimal solution is to continue to invest as fast as possible until K = C. It is optimal not to use

any synthetic compounds c(t) at all.

As depicted in Figure 3, if K̂j > C, the PDV of the entire stream of marginal net benefits of

an additional unit of synthetic compound today is negative even when there are no convex costs of

synthetic compounds on soil microbes:

Pjαc < −Pjαbγc +
PjαbγK
µ+ ρ

− 1 (46)

Since the stationary solution K̂j is a decreasing function of prices Pj , K̂j > C may occur if

prices are low.

The optimal trajectories for OT5 are as follows:

c∗j (t) = 0 ∀t (47)

K∗
j (t) = C −

(
C −K0j

)
e−µ·t (48)

I∗j (t) = µ ·
(
C −K∗

j (t)
)

(49)
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4.4 Optimal Trajectories for Stage j When R(K) is Constant Because γcc = 0

If γcc = 0 (i.e., the negative effects of chemical input use c(t) on beneficial soil microbes b(t) are

linear rather than convex) then Rj(K) is a constant (that does not depend on K).

There are three possible types of optimal trajectories that arise when R(K) is constant because

γcc = 0, depending on the parameters. Taken in order from solutions that require the most synthetic

compound use and the most disinvestment in the stock of clean soil, to solutions that require the

least synthetic compound use and the most investment in the stock of clean soils, these three types

of optimal trajectories are as follows:

• Optimal Trajectories 1 [OT1]: Disinvest as fast as possible untilK = 0 by always applying

c(t) = c

• Optimal Trajectories 3’ [OT3’]: Stay at initial clean soil stock K0 by always applying the

amount of synthetic compounds that exactly offsets how much the initial stock of chemicals

decays on its own

• Optimal Trajectories 5 [OT5]: Invest as fast as possible until K = C (the highest possible

value of clean soil stock) by never applying any synthetic compounds at all

Figure 5 presents the parameter spaces for each of the three types of optimal trajectories when

R(K) is constant because γcc = 0. Figure 6 plots examples of each of the 3 types of optimal

trajectories that arise when R(K) is constant because γcc = 0.

As seen in Figure 6, the more the optimal trajectory type requires synthetic compound use and

disinvestment in the stock of clean soil, the higher the initial per-period yield y(t). Over time,

however, the more the optimal trajectory type requires synthetic compound use and disinvestment

in the stock of clean soil, the lower the per-period yield y(t) over the long run. Thus, while using a

lot of synthetic compounds and disinvesting in the stock of clean soil may lead to higher per-period

yields in the short run, doing so eventually leads to lower per-period yields in the long run.

4.4.1 Optimal Trajectories 1 [OT1]: Disinvest as fast as possible to K = 0

If γcc = 0 (i.e., the negative effects of chemical input use c(t) on beneficial soil microbes b(t)

are linear rather than convex) so that Rj(K) is a constant (that does not depend on K), then

if prices are high enough to satisfy the condition that net investment has a negative effect on

contemporaneous net gain (so that Rj(K) is useful for analyzing net investment):

P−1
j < αbγc + αc (50)

and the following condition for Rj(K) < ρ holds:

P−1
j <

αb

ρ+ µ
((ρ+ µ)γc − γK) (51)
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then the farmer will always disinvest until he reaches K = 0 since Rj(K) < ρ.

When we have γcc = 0, our gain function is linear in the control variable I, which means that

the farmer will follow a most rapid approach (MRA) policy. Thus, since Rj(K) < ρ, the farmer

will always disinvest according to the most rapid approach (MRA) policy until he reaches K = 0.

In other words, lower-bound constraints on net investment I always bind (for all t), which means

the upper bound constraint on synthetic compound use always binds (i.e., c∗∗ > c). The optimal

synthetic compound use c(t) is to always apply the maximum amount possible c.

As depicted in Figure 5, when γcc = 0 and Rj(K) < ρ, the PDV of the entire stream of marginal

net benefits of an additional unit of synthetic compound today is always positive:

Pjαc > −Pjαbγc +
PjαbγK
µ+ ρ

+ 1 (52)

The optimal trajectories for OT1 are therefore:

c∗j (t) = c = µC ∀t (53)

K∗
j (t) = K0j · e−µ·t (54)

I∗j (t) = −µ ·K0j · e−µ·t (55)

4.4.2 Optimal Trajectories 3’ [OT3’]: Stay at initial clean soil stock and do not invest

or disinvest

We always set I(t) = 0 (for all t) and stay at the initial clean soil stock when Rj(K) is constant

and equal to ρ.

In this case it is optimal to stay at initial clean soil stock and not to invest or disinvest. In

other words, in each period our chemical input use c(t) should exactly offset the stock of chemicals

in the soil decays on its own so that the stock of chemicals in the soil stays constant, and therefore

the clean soil stock stays constant at its initial value.

Thus, for OT3’, the optimal synthetic compound use c(t) is constant at the amount that exactly

offsets how much the initial stock of chemicals in the soil decays on its own.

K∗
j (t) = K0j ∀t (56)

I∗j (t) = 0 ∀t (57)

c∗j (t) = µ
(
C −K0j

)
∀t (58)
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4.4.3 Optimal Trajectories 5 [OT5]: Invest as fast as possible until K = C

There are two main cases in which the farmer will wish to continually invest when Rj(K) is a

constant (that does not depend on K).

First, if γcc = 0 (i.e., the negative effects of chemical input use c(t) on beneficial soil microbes

b(t) are linear rather than convex) so that Rj(K) is a constant (that does not depend on K), then

if prices are low enough to satisfy the following condition for net investment to have a non-negative

effect on contemporaneous net gain (so that Rj(K) is not useful for analyzing net investment):

P−1
j ≥ αbγc + αc, (59)

then the farmer will wish to continually invest in clean soil stock.

Second, if γcc = 0 (i.e., the negative effects of chemical input use c(t) on beneficial soil microbes

b(t) are linear rather than convex) so that Rj(K) is a constant (that does not depend on K), then

if prices are low enough that Rj(K) > ρ:

P−1
j >

αb

ρ+ µ
((ρ+ µ)γc − γK) (60)

but also high enough that net investment has a negative effect on contemporaneous net gain (so

that Rj(K) is useful for analyzing net investment):

P−1
j < αbγc + αc, (61)

then the farmer will wish to continually invest in clean soil stock.

Moreover, when we have γcc = 0, our gain function is linear in the control variable I, which

means that the farmer will follow a most rapid approach (MRA) policy. Thus, the farmer will

always invest according to the most rapid approach (MRA) policy until he reaches K = C. In

other words upper-bound constraints on net investment I always bind (for all t). It is optimal not

to use any synthetic compounds c(t) at all.

As depicted in Figure 5, when γcc = 0 and Rj(K) > ρ, the PDV of the entire stream of marginal

net benefits of an additional unit of synthetic compound today is negative even when there are no

convex costs of synthetic compounds on soil microbes:

Pjαc < −Pjαbγc +
PjαbγK
µ+ ρ

+ 1 (62)

The optimal trajectories for OT5 are therefore:

c∗j (t) = 0 ∀t (63)

K∗
j (t) = C −

(
C −K0j

)
e−µ·t (64)
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I∗j (t) = µ ·
(
C −Kj(t)

)
(65)

4.5 Optimal Trajectories for Stage j When R(K) is Constant Because µ = 0

If µ = 0 (i.e., synthetic compounds in the soil do not decay on their own) then Rj(K) is a constant

(that does not depend on K).

There are three possible types of optimal trajectories that arise when R(K) is constant because

µ = 0, depending on the parameters. Taken in order from solutions that require the most synthetic

compound use and the most disinvestment in the stock of clean soil, to solutions that require the

least synthetic compound use and the least disinvestment in the stock of clean soils, these three

types of optimal trajectories are as follows:

• Optimal Trajectories 1’ [OT1’]: Disinvest as fast as possible by applying c(t) = c until

K = 0 is reached

• Optimal Trajectories 1” [OT1”]: Disinvest by applying c∗∗j at which PDV of MNB equals

0 until K = 0 is reached

• Optimal Trajectories 3” [OT3”]: Stay at initial clean soil stock K0 by never applying

any synthetic compounds at all

Figure 7 presents the parameter spaces for each of the three types of optimal trajectories when

R(K) is constant because µ = 0. Figure 8 plots examples of each of the three types of optimal

trajectories that arise when R(K) is constant because µ = 0.

As seen in Figure 8, the more the optimal trajectory type requires synthetic compound use and

disinvestment in the stock of clean soil, the higher the initial per-period yield y(t). Over time,

however, the order of the optimal trajectory type by per-period yield reverses, and the more the

optimal trajectory type requires synthetic compound use and disinvestment in the stock of clean

soil, the lower the per-period yield y(t) over the long run. Thus, while using a lot of synthetic

compounds and disinvesting in the stock of clean soil may lead to higher per-period yields in the

short run, doing so eventually leads to lower per-period yields in the long run.

4.5.1 Optimal Trajectories 1’ [OT1’]: Disinvest as fast as possible to K = 0

If µ = 0 (i.e., synthetic compounds in the soil do not decay on their own) so that Rj(K) is a

constant (that does not depend on K), then if prices are high enough to satisfy the condition that

net investment has a negative effect on contemporaneous net gain (so that Rj(K) is useful for

analyzing net investment):

P−1
j < αbγc + αc (66)

and the following condition for Rj(K) < ρ holds:
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P−1
j <

αb

ρ+ µ
((ρ+ µ)γc − γK) (67)

then the farmer will always disinvest until he reaches K = 0 since Rj(K) < ρ.

The lower bound to I binds when the optimal unconstrained synthetic compound level c∗∗j
exceeds the upper bound for synthetic compound use (i.e., if c∗∗j > c). If the optimal unconstrained

synthetic compound level c∗∗j exceeds the upper bound for synthetic compound use (i.e., if c∗∗j > c),

this means that the PDV of the entire stream of MNB of an additional unit of synthetic compound

c(t) today is still greater than 0 at c = c.

The optimal trajectories for OT1’ are as follows:

K∗
j (t) =

K0j − c · t t < T ∗
j

0 t ≥ T ∗
j

(68)

I∗j (t) =

−c t < T ∗
j

0 t ≥ T ∗
j

(69)

c∗j (t) =

c t < T ∗
j

0 t ≥ T ∗
j

(70)

T ∗
j =

K0j

c
(71)

4.5.2 Optimal Trajectories 1” [OT1”]: Disinvest to K = 0

If µ = 0 (i.e., synthetic compounds in the soil do not decay on their own) so that Rj(K) is a

constant R̃j (that does not depend on K), then if prices are high enough to satisfy the condition

that net investment has a negative effect on contemporaneous net gain (so that Rj(K) is useful for

analyzing net investment):

P−1
j < αbγc + αc (72)

and the following condition for Rj(K) < ρ holds:

P−1
j <

αb

ρ+ µ
((ρ+ µ)γc − γK) (73)

then the farmer will always disinvest until he reaches K = 0 since Rj(K) < ρ.

When γcc ̸= 0 but µ = 0 the gain function is non-linear in I, and therefore the optimal policy

will not be MRA. If the lower corner solution for I does not bind (because c∗∗j ≤ c), we will have

an interior solution.

Thus, for OT1”, the farmer will disinvest by applying the optimal unconstrained synthetic

compound level c∗∗j at which PDV of MNB equals 0 until K = 0. As derived in Appendix A.7.1,

the optimal trajectories are as follows:
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K∗
j (t) =


γK

(−γcc)

(
ρ−1 − R̃−1

j

)
· t+K0j , ∀t ≤ T ∗

j

0, ∀t > T ∗
j

(74)

I∗j (t) =


γK

(−γcc)

(
ρ−1 − R̃−1

j

)
, ∀t ≤ T ∗

j

0, ∀t > T ∗
j

(75)

c∗j (t) =


γK
γcc

·
(
ρ−1 − R̃−1

j

)
, ∀t ≤ T ∗

j

0, ∀ > T ∗
j

(76)

T ∗
j =

K0j

γK
(−γcc)

·
(
R̃−1

j − ρ−1
) ≥ 0 (77)

R̃j = Rj(K) =
γK

γc +
αc−P−1

j

αb

. (78)

4.5.3 Optimal Trajectories 3” [OT3”]: Stay at initial clean soil stock and do not

invest or disinvest

We always set I(t) = 0 (for all t) and stay at the initial clean soil stock when µ = 0 and Rj(K) is

constant and greater than or equal to ρ.

If Rj(K) is constant and equal to ρ, it is optimal to stay at initial clean soil stock and not to

invest or disinvest.

When µ = 0 the upper bound constraint on investment is equal to zero, and will always bind

when Rj(K) is greater than ρ. In this case, the farmer is constrained by the upper bound on I to

stay at their initial capital stock K0j indefinitely.

Thus, for OT3”, the optimal synthetic compound use c(t) is constant at the amount that exactly

offsets how much the initial stock of chemicals in the soil decays on its own. Since the stock of

chemicals in the soil does not decay on its own when µ = 0, this means the optimal synthetic

compound use c(t) is constant at zero.

The optimal trajectories for OT3” are therefore the following:

K∗
j (t) = K0j ∀t (79)

I∗j (t) = 0 ∀t (80)

c∗j (t) = 0 ∀t (81)
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5 Accidental Organic Transitions

The transition from conventional to organic management is “accidental” and continuous even in

the absence of an organic price premium for conventional farmers whose optimal trajectories are

either:

• OT5: Invest as fast as possible until K = C (the highest possible value of clean soil stock)

by never applying any synthetic compounds at all

• OT4 if K̂con ≥ Korg: Invest until K̂con by always applying ĉj at which PDV of MNB equals 0

since in these cases the optimal solution for a conventional farmer is to invest in the stock of clean

soils until K(t) exceeds Korg.

This will happen in agricultural systems where soil microbes are sufficiently important for

determining crop yields.

If K̂con ∈ [Korg, C], then we have Optimal Trajectories 4: Approach K̂con at moderate speed,

then the time Torg at which a fully informed conventional farmer makes a continuous transition to

organic farming is given by:

Torg = ln

(
K0,con − K̂con

Korg − K̂con

) 1
µ

(82)

If K̂con > C, or Rcon(K) is constant and greater than ρ, then we have Optimal Trajectories 5:

Invest as fast as possible until K = C, then the time Torg at which a fully informed conventional

farmer makes a continuous transition to organic farming is given by:

Torg = ln

(
C −K0,con

C −Korg

) 1
µ

(83)

In the presence of an organic price premium, since K̂j is a decreasing function of prices Pj and

therefore K̂con > K̂org, all else equal a conventional farmer would invest weakly more quickly in

the clean soil stock than would an organic farmer facing all the same parameters except a higher

price. For example, for a farmer who is OT5 under both conventional and organic prices (e.g.,

if K̂con > K̂org > C, or if both Rcon(K) and Rorg(K) are constant and greater than ρ), such a

conventional OT5 farmer would continue to choose to invest in clean soil as fast as possible until

K = C (the highest possible value of clean soil stock) by never applying any synthetic compounds

at all even if they anticipated transitioning to organic. For a farmer who is OT5 under conventional

prices but OT4 under organic prices (e.g., if K̂con > C > K̂org), the conventional OT5 farmer would

never apply any synthetic compounds while the organic OT4 farmer would always apply ĉj at which

PDV of MNB equals 0; thus such a conventional OT5 farmer would invest weakly more quickly in

the clean soil stock if they anticipated eventually transitioning “accidentally” to organic. Similarly,

for a farmer with is OT4 under both conventional and organic prices, since an OT4 farmer would

always apply ĉj at which PDV of MNB equals 0, and since ĉj = µ
(
C − K̂j

)
decreases with K̂j
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and therefore is increases with prices and is therefore higher under organic prices than conventional

prices (i.e., ĉorg > ĉcon), the organic OT4 farmer all else equal would apply a higher ĉj ; as a

consequence this conventional OT4 farmer would invest weakly more quickly in the clean soil stock

if they anticipated eventually transitioning “accidentally” to organic. Thus, a conventional farmer

who transitions to organic “accidentally” would not make a continuous transition any faster even

if they anticipated eventually transitioning “accidentally” to organic.

6 Premium-Induced Organic Transitions

There is no “accidental” transition from conventional to organic for conventional farmers whose

optimal trajectories are:

• OT1: Disinvest as fast as possible until K = 0 by always applying c(t) = c

• OT2: Disinvest to K̂j < K0 by always applying ĉj at which PDV of MNB equals 0

• OT3: Stay at initial clean soil stock K0 = K̂j by always applying ĉj at which PDV of MNB

equals 0

• OT3’: Stay at initial clean soil stock and do not invest or disinvest

• OT3”: Stay at initial clean soil stock and do not invest or disinvest

• OT4 if K̂con < Korg: Invest until K̂con by always applying ĉj at which PDV of MNB equals 0

For a conventional farmer to be conventional, this initial clean soil capital stock K0 must be

lower than the organic threshold Korg.

There is no accidental, continuous transition from conventional stage 1 to organic stage 2 when

the conventional farmer stationary solution K̂con is below Korg, since then a conventional farmer

will tend towards the conventional farmer stationary solution K̂con, and therefore stay below Korg

rather than become organic.

Similarly, there is no accidental, continuous transition from conventional to organic when

Rcon(K) is constant and less than ρ, since then the conventional farmer will continually disinvest

until K = 0, and therefore stay below Korg rather than become organic.

Nevertheless, even if there is no “accidental” transition, an organic price premium may still

induce some farmers to switch to organic management. Given Porg > Pcon, it may still be

possible for fully informed conventional farmer to prefer organic farming, even when K̂j < Korg or

when Rcon(K) is constant and always less than ρ, and make a “jump” transition to the organic

certification threshold. “Jump” transitions that accelerate the transition to organic are also possible

in the presence of an organic price premium for conventional farmers who may have “accidental”

and continuous transitions in the absence of an organic price premium.

For a “jump” transition to the organic certification threshold to occur we must have that the

differential value from organic management ∆(ϵ), defined as the difference in present discounted

24



value of the entire stream of net benefits that a farmer will receive from organic and conventional

management, is positive:

∆(ϵ) ≡ Vorg(Korg)− Vcon(Korg − ϵ) > 0 (84)

where Vorg(Korg) is the present discounted value of the entire stream of net benefits that a farmer

will receive from the moment they have switched to organic management, into perpetuity, assuming

the organic farmer stays organic indefinitely; and Vcon(Korg − ϵ) is the present discounted value of

the entire stream of net benefits that a farmer will receive if they continue to produce conventionally

indefinitely starting at initial clean soil stock K0,con = Korg − ϵ for some ϵ > 0.

Vorg(Korg) is the present discounted value of the entire stream of net benefits that a farmer will

receive from the moment they have switched to organic management, into perpetuity, assuming

the organic farmer stays organic indefinitely. Vorg(Korg) assumes that once in stage 2, the farmer

follows the following constrained trajectories:

Korg(t) = Korg ∀t (85)

Iorg(t) = 0∀t (86)

corg(t) = µ
(
C −Korg

)
= 0∀t (87)

To simplify our analysis, let’s assume (as we approximately have in all real-world organic

certification programs known to the authors) that organic certification requires that a farmer fully

remediate their soils, such that they will be certified organic if and only if K = C.

When Korg = C, the value Vorg(Korg) of the farmer’s optimal program for stage 2 following

this constrained capital trajectory can be written as follows:

Vorg(Korg) =
1

ρ
Porg · αbγK C︸︷︷︸

=Korg︸ ︷︷ ︸
PDV of stewarding soil microbiome

at organic-level capital stock and

at organic prices

+
1

ρ
Porg · (αbAb +Ay)︸ ︷︷ ︸

PDV of “level effect”

of other agricultural inputs

at organic prices

(88)

We find the conditions on the model parameters that satisfy Equation (84).

We solve for the values of the organic price premium
Porg−Pcon

Pcon
that satisfy condition (84) for

a conventional farmer to want to adopt organic. Similarly, we solve for the values of ϵ, which

measures how close ϵ the conventional farmer is to satisfying organic requirement Korg at t = 0,

satisfy condition (84) for a conventional farmer to want to adopt organic.

Because our optimal trajectories change form depending on where we are in the parameter space,
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Vcon(Korg − ϵ) and, consequently, Equation (84) also change form depending on parameter space.

Thus, the conditions on the organic price premium
Porg−Pcon

Pcon
defining {Porg−Pcon

Pcon
) : ∆(ϵ) > 0} and

also on ϵ defining {K0,con = Korg − ϵ : ∆(ϵ) > 0} do not have a general form. As a result, we must

find separate conditions from Equation (84) for each part of parameter space.

6.1 Discrete Analysis for OT1

When the conventional farmer adopts OT1 solutions and Korg = C, Vcon(Korg − ϵ) is given by:

Vcon(Korg − ϵ) =
1

ρ
· Pconαb ·

(
ρ

(µ+ ρ)
· γK ·

(
C − ϵ

)
+

(
1

2
γccµC + γc +

αc − P−1
con

αb

)
· µC +Ab +

Ay

αb

)
(89)

With expressions for Vorg(Korg) from Equation (88) and Vcon(Korg − ϵ) from Equation (89), we

can now write the differential value from organic management ∆(ϵ), defined as the difference in

present discounted value of the entire stream of net benefits that a farmer will receive from organic

and conventional management, as follows when Korg = C:

∆OT1(ϵ) =
1

ρ
Porg · αbγK C︸︷︷︸

=Korg︸ ︷︷ ︸
PDV of stewarding soil microbiome

at organic-level capital stock and

at organic prices

+
1

ρ
(Porg − Pcon) · (αbAb +Ay)︸ ︷︷ ︸

PDV of organic price premium

on “level effect”

of other agricultural inputs

(90)

− 1

(µ+ ρ)
· Pconαb · γK ·

(
C − ϵ

)︸ ︷︷ ︸
=K0︸ ︷︷ ︸

PDV of microbial productivity

under conventional management

− 1

ρ
·
(
Pcon

(
αb ·

(
1

2
γccµC + γc

)
+ αc

)
− 1

)
· µC︸ ︷︷ ︸

PDV of using synthetic compounds

at dynamically optimal rate µC

(91)

The sign of ∂∆(ϵ)
∂ϵ is given by:

∂∆(ϵ)

∂ϵ
= Pcon · αb ·

γK
(µ+ ρ)

≥ 0 (92)

Thus, ∆(ϵ) is linear and weakly increasing in ϵ.

Let ϵ∗ be the value of ϵ such that ∆(ϵ∗) = 0. Note that ∆(ϵ∗) = 0. The range of ϵ yielding

∆(ϵ) ≥ 0 is ϵ ≥ ϵ∗ where:
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ϵ∗ = − µ+ ρ

PconγK
· 1
ρ︸ ︷︷ ︸

≤0

(Porg − Pcon)

(
Ab +

Ay

αb

)
︸ ︷︷ ︸

≥0

−Pcon


(
1

2
γccµC + γc +

αc − P−1
con

αb

)
µ−

(
Porg

Pcon
− ρ

µ+ ρ

)
γK︸ ︷︷ ︸

≥0

C


(93)

This means that when ϵ∗ ≤ 0 the farmer will face Vorg(Korg)− Vcon(Korg − ϵ) > 0∀ϵ ≥ 0, and

will therefore prefer to produce organically for all feasible initial capital stocks (i.e. they always

prefer to produce organically).

Given ∂∆(ϵ∗)
∂ϵ ≥ 0, we will have that:

• The lower the threshold ϵ∗, the larger the set {K0,con = Korg − ϵ : ∆(ϵ) > 0}

• The higher the threshold ϵ∗, the smaller the {K0,con = Korg − ϵ : ∆(ϵ) > 0}

We conduct a comparative statics analysis of ∆ (ϵ) = Vorg(Korg) − Vcon(Korg − ϵ) to analyze

how ∆ (ϵ) responds to changes in parameters (µ, ρ, γcc, γc, γK , α1,αc, Pcon, and Porg). The results

are summarized in Table B.1 and the derivations are presented in Appendix B.1.1.

We similarly conduct a comparative static analysis for ϵ∗. The results are summarized in Table

B.2 and the derivations are presented in Appendix B.1.2.

We also want to find how large the price premium needs to be in order to induce the fully

informed farmer to prefer organic management. We derive this requirement for
(
Porg−Pcon

Pcon

)
below.

The range of
(
Porg−Pcon

Pcon

)
yielding ∆(ϵ) ≥ 0 is

Porg−Pcon

Pcon
≥
(
Porg−Pcon

Pcon

)∗
, where:

(
Porg − Pcon

Pcon

)∗
=

(
1
2γccµC + γc +

αc−P−1
con

αb

)
· µC − 1

(µ+ρ) · γK ·
(
µC + ρ · ϵ

)
γK · C +Ab +

Ay

αb

(94)

We also conduct a comparative statics analysis for threshold organic price premium
(
Porg−Pcon

Pcon

)∗
.

The results are summarized in Table B.3 and full derivations are presented in Appendix B.1.3.

6.2 Discrete Analysis for OT2/OT3/OT4

For the conventional farmer who adopts OT2, OT3, or OT4 solutions, assuming Korg = C,

Vcon(Korg − ϵ) is given by:
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V OT2,OT3,OT4
con (Korg − ϵ) =

1

ρ
· Pcon (αb ·Ab +Ay)︸ ︷︷ ︸

PDV of “level effect”

of other agricultural inputs

at conventional prices

+
1

(µ+ ρ)
· Pconαb · γK ·

(Korg − ϵ)︸ ︷︷ ︸
=K0

−K̂con


︸ ︷︷ ︸

PDV of microbial productivity

under conventional management

+
1

ρ
·
(
Pcon

(
αb ·

(
1

2
γccµ

(
C − K̂con

)
+ γc

)
+ αc

)
− 1

)
· µ
(
C − K̂con

)
︸ ︷︷ ︸

PDV of using synthetic compounds at dynamically optimal rate µ
(
C − K̂con

)
Given Korg = C the differential value from organic management ∆OT2,OT3,OT4(ϵ) faced by the

conventional farmer with OT2/OT3/OT4 conditions is given by:

∆OT2,OT3,OT4(ϵ) =
1

ρ
Porg · αbγK C︸︷︷︸

=Korg︸ ︷︷ ︸
PDV of stewarding soil microbiome

at organic-level capital stock and

at organic prices

+
1

ρ
(Porg − Pcon) · (αbAb +Ay)︸ ︷︷ ︸

PDV of organic price premium

on “level effect”

of other agricultural inputs

(95)

− 1

(µ+ ρ)
· Pconαb · γK ·

(C − ϵ
)︸ ︷︷ ︸

=K0

−K̂con


︸ ︷︷ ︸

PDV of microbial productivity

under conventional management

(96)

− 1

ρ
·
(
Pcon

(
αb ·

(
1

2
γccµ

(
C − K̂con

)
+ γc

)
+ αc

)
− 1

)
· µ
(
C − K̂con

)
︸ ︷︷ ︸

PDV of using synthetic compounds at dynamically optimal rate µ
(
C − K̂con

)
(97)

The sign of ∂∆(ϵ)
∂ϵ is given by:

∂∆(ϵ)

∂ϵ
=

PconαbγK
µ+ ρ

· ϵ ≥ 0 (98)

Thus, ∆(ϵ) is linear and weakly increasing in ϵ.
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Let ϵ∗ be the value of ϵ such that ∆(ϵ∗) = 0. The range of ϵ yielding ∆(ϵ) ≥ 0 is ϵ ≥ ϵ∗ where,

when Korg = C:

ϵ∗ =
1

γK
· µ+ ρ

ρ
·

1

2
·

(
γc +

αc−P−1
con

αb
− γK

µ+ρ

)2
(−γcc)︸ ︷︷ ︸
≥0

−
(
Porg

Pcon
− 1

)
·
(
γK · C +Ab +

Ay

αb

)
︸ ︷︷ ︸

≥0

 (99)

As shown in Appendix B.2, under OT2/OT3/OT4 conditions there is a possibility that ϵ∗

exceeds C. When this happens there will be no feasible ϵ for which ∆(ϵ) ≥ 0, and there will

therefore be no feasible capital stock for which the fully informed farmer facing OT2/OT3/OT3

conditions will prefer to produce organically. ϵ∗ will be more likely to exceed C when the farmer

faces small organic price premia.

We conduct a comparative statics analysis of ∆ (ϵ) = Vorg(Korg) − Vcon(Korg − ϵ) to analyze

how ∆ (ϵ) responds to changes in parameters (µ, ρ, γcc, γc, γK , α1,αc, Pcon, and Porg). The results

are summarized in Table B.4 and the derivations are presented in Appendix B.2.1.

We similarly conduct a comparative statics analysis for ϵ∗. The results are summarized in Table

B.5 and the derivations are presented in Appendix B.2.2.

Next we are interested in describing how large the organic price premium needs to be in

order to induce a fully informed farmer facing OT2/OT3/OT4 conditions to prefer to produce

organically. We derive an inequality describing the necessary conditions in Appendix B.2.3. Given

the assumption that Korg = C, and assuming conventional crop prices are not zero, the threshold

organic price premium
(
Porg−Pcon

Pcon

)∗
is given by:

(
Porg − Pcon

Pcon

)∗
=

(
1
2 · (−γcc)µ

2
(
C − K̂con

)2
− ρ

µ+ρ · γK · ϵ
)

(
γKC +Ab +

Ay

αb

) (100)

We can the determine how
(
Porg−Pcon

Pcon

)∗
changes in response to changes in our model parameters.

The results are summarized in Table B.6 and derivations are presented in Appendix B.2.3.

6.3 Discrete Analysis for OT3’

For a conventional farmer who follows OT3’ solution trajectories, under the assumption thatKorg =

C, and γcc = 0, we can then write Vcon(Korg − ϵ) as:
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Vcon(C − ϵ) =

1

ρ
· Pcon · αb ·

(
Ab +

Ay

αb

)
︸ ︷︷ ︸
PDV of “level effect”

of other agricultural inputs

at conventional prices

+
1

ρ
· Pcon · αb · γK ·

(
C − ϵ

)
︸ ︷︷ ︸
PDV of value gained from

microbial productivity

under conventional management

+
1

ρ
· Pcon · αb ·

γK
µ+ ρ

· µ · ϵ︸ ︷︷ ︸
PDV of using synthetic compounds

at dynamically optimal

conventional rate µ · ϵ

(101)

When γcc = 0 and µ ̸= 0, Rcon(K) = ρ ∀K implies:

γc +
αc − P−1

con

αb
=

γK
µ+ ρ

(102)

GivenKorg = C, the differential value from organic management ∆OT3′(ϵ) faced by the conventional

OT3’ farmer is given by:

∆OT3′(ϵ) =
1

ρ
Porg · αbγK C︸︷︷︸

=Korg︸ ︷︷ ︸
PDV of stewarding soil microbiome

at organic-level capital stock and

at organic prices

+
1

ρ
(Porg − Pcon) · (αbAb +Ay)︸ ︷︷ ︸

PDV of organic price premium

on “level effect”

of other agricultural inputs

(103)

− 1

ρ
· Pcon · αb · γK ·

(
C − ϵ

)︸ ︷︷ ︸
=K0︸ ︷︷ ︸

PDV of microbial productivity

under conventional management

− 1

ρ
· Pcon · αb ·

γK
µ+ ρ

· µ · ϵ︸ ︷︷ ︸
PDV of using synthetic compounts

at dynamically optimal

conventional rate µ · ϵ

Assuming Pcon · αb · γK · ρ
µ+ρ · ̸= 0, ϵ∗ is given by:

ϵ∗ = −µ+ ρ

ρ
·
(
Porg − Pcon

Pcon

)(
C +

(
Ab +

Ay

αb

)
· γ−1

K

)
≤ 0 (104)
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In Appendix B.3.1, we discuss the signs of ∂∆(ϵ)
∂i , imposing the assumption that Korg = C. The

results are summarized in Table B.7.

In Appendix B.3.2, we calculate the partials of ϵ∗ with respect to our model parameters. We

assume organic certification requires having pristine soils, such that Korg = C. The results are

summarized in Table B.8.

Next we are interested in describing how large the organic price premium needs to be in order to

induce a fully informed farmer facing OT3’ conditions to prefer to produce organically. We derive

an inequality describing the necessary conditions below. Assuming that Pcon ̸= 0, and assuming

that 1
ραb

(
γKC +Ab +

Ay

αb

)
̸= 0, we can write:

(
Porg − Pcon

Pcon

)∗
= − 1

C +
(
Ab +

Ay

αb

)
· γ−1

K

· ρ

µ+ ρ
· ϵ ≤ 0 (105)

Given

∂∆OT3′(ϵ)

∂
(
Porg−Pcon

Pcon

) =
1

ρ
· Pcon · αb ·

(
γKC +Ab +

Ay

αb

)
≥ 0, (106)

(
Porg−Pcon

Pcon

)∗
≤ 0 implies that the OT3’ farmer prefers organic given any non-negative price

premium. Still, we may at some point be interested in how the value of
(
Porg−Pcon

Pcon

)∗
responds to

changes in our parameter values in this case. In Appendix B.3.3, we determine how
(
Porg−Pcon

Pcon

)∗
changes in response to changes in our model parameters. The results are summarized in Table B.9.

6.4 Discrete Analysis for OT3”

For a conventional farmer who follows OT3’ solution trajectories, under the assumption thatKorg =

C, and µ = 0, we can then write Vcon(Korg − ϵ) as:

Vcon(Korg − ϵ) =
1

ρ
· Pconαb ·

(
Ab +

Ay

αb

)
︸ ︷︷ ︸
PDV of “level effect”

of other agricultural inputs

at conventional prices

+
1

ρ
· PconαbγK

(
C − ϵ

)
︸ ︷︷ ︸

PDV of value gained from

microbial productivity

under conventional management

(107)

Given Korg = C, the conventional OT3” farmer faces:
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∆OT3′′(ϵ) =
1

ρ
Porg · αbγK C︸︷︷︸

=Korg︸ ︷︷ ︸
PDV of stewarding soil microbiome

at organic-level capital stock and

at organic prices

+
1

ρ
(Porg − Pcon) · (αbAb +Ay)︸ ︷︷ ︸

PDV of organic price premium

on “level effect”

of other agricultural inputs

(108)

− 1

ρ
· PconαbγK

(
C − ϵ

)
︸ ︷︷ ︸

PDV of microbial productivity

under conventional management

Next we are interested in describing how large the organic price premium needs to be in order to

induce a fully informed farmer facing OT3’ conditions to prefer to produce organically. We derive

an inequality describing the necessary conditions below. Assuming that Pcon ̸= 0, and assuming

that 1
ραb

(
γKC +Ab +

Ay

αb

)
̸= 0, we can write:

(
Porg − Pcon

Pcon

)∗
= − 1

C +
(
Ab +

Ay

αb

)
· γ−1

K

· ρ

µ+ ρ
· ϵ ≤ 0 (109)

Given

∂∆OT3′(ϵ)

∂
(
Porg−Pcon

Pcon

) =
1

ρ
· Pcon · αb ·

(
γKC +Ab +

Ay

αb

)
≥ 0, (110)

(
Porg−Pcon

Pcon

)∗
≤ 0 implies that the OT3’ farmer prefers organic given any non-negative price

premium.

6.5 Discrete analysis for cases with accidental transition

As explained in Section 5, a conventional farmer who transitions to organic “accidentally” would

not make a continuous transition any faster even if they anticipated eventually transitioning

“accidentally” to organic.

Nevertheless, the accidental farmers might be induced to “jump” transition to organic by an

organic price premium just as the non-accidental farmers might. Given Porg > Pcon, it may still

be possible that a fully informed conventional farmer who would otherwise transition to organic
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management “accidentally” might make a “jump” transition to the organic certification threshold

even earlier than they would by following their optimal conventional trajectory toward leading to

an “accidental” and continuous transition. Thus, “jump” transitions that accelerate the transition

to organic might be possible in the presence of an organic price premium for conventional farmers

who may have “accidental” and continuous transitions in the absence of an organic price premium.

6.5.1 Discrete analysis for OT5

A “jump” transition refers to conventional farmers who completely discontinue their use of synthetic

compounds in order to get to the organic threshold as quickly as possible.

For an OT5 conventional farmer with K̂con > C̄, the optimal conventional management plan

requires applying synthetic compounds at the rate c(t) = 0. This is the same synthetic compound

policy as in a “jump” transition. For the OT5 farmer, the optimal policy under an accidental, or

continuous, transition is the same as the policy under a “jump” transition (c(t) = 0). Therefore,

for the OT5 conventional farmer there is no threshold organic price premium that would induce

the farmer to switch out of their continuous transition path (or, equivalently, out of their optimal

conventional management plan), since this path is already the same as the “jump” transition path

that gets the conventional farmer to organic management as quickly as possible.

7 Investment Under Organic Price Uncertainty

In this section we use dynamic programming and investment under uncertainty to derive the optimal

organic switching policy (i.e., the conditions under which a conventional farmer will switch to

organic).

Let the action variable a be a dummy for switching to organic.

Without loss of generality, we assume that the organic price Porg is uncertain and stochastic,

while the the conventional price Pcon is a fixed parameter that is not stochastic.

If the farmer stays conventional, then he gets a current period payoff (which is a function of the

conventional price Pcon, which we assume is a fixed parameter that is not stochastic) plus β times

the continuation value from waiting instead of switching to organic. Let’s assume for simplicity that

for all periods t for which the farmer chooses to continue producing conventionally, they will employ

the pesticide policy that solves the conventional management problem conditional on conventional

management being their only option.

If the farmer switches to organic, let’s assume for this investment under uncertainty analysis

that the farmer can’t switch back, so the payoff to switching is a lump-sum payoff which is the

value function from being organic from that time t onwards (similarly to the local discrete analysis).

Thus, there is no continuation value if the farmer switches to organic since we model the farmer

as having no more decisions to make after switching. We also assume that the organic price the

farmer receives from that time t onwards is the organic price Porg at the time t of the switch to

organic.
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The optimal organic switching policy under uncertainty will be a threshold value of the organic

price premium above which the conventional farmer will switch to organic. This threshold organic

price premium will be a function of K (or ϵ) and of parameters (including parameters in the

transition density for the organic price Porg).

Thus, for our investment under uncertainty model, we are focusing on the switch to organic,

not the quantity of synthetic compound use.

The (infinite horizon) value function for a conventional farmer who has the option to switch to

organic is given by:

v(Porg,K) = max

{
max

I

(
Gcon(K, I) + β · E

[
v(P ′

org,K
′) | Porg,K, I, at = 0

])
, Vorg(Porg)

}
. (111)

where Porg is a stochastic state variable, and where the discount factor β = 1
1+ρ ∈ [0, 1). The value

function for a conventional farmer who has the option to switch to organic is the maximum of the

PDV payoff from two possible options: (1) stay conventional, or (2) switch to organic. Vorg(Korg)

is the value function from organic production, and is therefore the PDV of the entire stream of net

benefits from having switched to organic production (similar to the Vorg(Korg) we use in the local

discrete analysis).

We can write the following expression for Gcon(K, I):

Gcon(K, I) = Pcon · f(ct, bt)− ct (112)

If the farmer remains conventional, they choose ct according to the dynamically optimal chemical-

use policy{c∗t } that solves their value function when managing conventionally is their only option.

{c∗t } can be determined using optimal control theory or dynamic programming, and expressed in

terms of model parameters.

We assume Korg = C.

Right now Vorg(Porg) is easy to work with when Korg = C̄ since we can factor out Porg and

express Vorg(Porg) as Porg · f(Korg) for some function f(Korg) of Korg (which makes it easier to

solve for P ∗
org and the threshold organic premium).

When Korg = C, we have:

Vorg(Porg) =
1

ρ
Porg ·

(
αb

(
γKC +Ab

)
+Ay

)
(113)

Next we consider

Gcon(K, I) = Pcon · f(ct, bt)− ct (114)

Let’s assume for simplicity that for all periods t for which the farmer chooses to continue

producing conventionally, they will employ the pesticide policy that solves the conventional management

problem conditional on conventional management being their only option.
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When net investment I(t) (and synthetic compound use c(t)) is chosen optimally, Gcon(K, I∗)

is no longer a function of I (or c), so we can define the optimized net gain G∗
con(K) as:

G∗
con(K) ≡ Gcon(K, I∗) (115)

If the farmer pursues the optimal conventional management plan as long as they remain

conventional, then we can simplify our notation for v(Porg,K) and write:

v(Porg,K) = max
{
G∗

con(K) + β · E
[
v(P ′

org,K
′) | Porg,K, at = 0

]
, Vorg(Porg)

}
, (116)

7.0.1 Deterministic benchmark

First let’s start with the no uncertainty case (i.e., the deterministic case) where Porg is not stochastic

but instead fixed and known with certainty.

vdet(Porg,K) = max {Vcon(K), Vorg(Porg)} , (117)

Now, the value of continuing to produce conventionally, Vcon(K), is not a function of Porg.

The value of producing organically, Vorg(Porg), though, is strictly increasing with respect to Porg

(assuming αb

(
γKC +Ab +

Ay

αb

)
̸= 0.)

Therefore, assuming that αb

(
γKC +Ab +

Ay

αb

)
̸= 0, we can find a value of Porg for each K

at which the value of continuing to produce conventionally is equal to the value of producing

organically. We will denote this value as P ∗
org(K). At P ∗

org(K) we therefore have that:

Vcon(K) = Vorg(Porg | Porg = P ∗
org(K)) (118)

Vcon(K) =
1

ρ
P ∗
org(K) · αb

(
γKC +Ab +

Ay

αb

)
(119)

where Vcon(K) comes from our solution to the conventional problem.

From Equation (119), when there is no uncertainty about Porg and Porg is not stochastic but

instead known and fixed, the threshold P ∗
org,det(K) is given by:

P ∗
org,det(K) =

Vcon(K)

1
ρ · αb

(
γKC +Ab +

Ay

αb

) (120)

where Vcon(K) comes from our solutions to the conventional problem.

In Appendix C.1, we confirm, for each of OT1, OT2/OT3/OT4, and OT3’, that whenKorg = C,

P ∗
org,det(K) yields the same threshold organic premium

(
Porg−Pcon

Pcon

)∗
deterministic

that we previously

derived in our local discrete analysis when there is no uncertainty and when Korg = C.
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7.0.2 Stochastic prices

Now we will analyze the uncertainty case where Porg is stochastic. Let’s assume that Porg evolves

as a first-order Markov process P ′
org

iid∼ FPorg(·|Porg).

For simplicity we also assume that at = 0 does not give the farmer information about the

distribution of Porg because, for example, the distribution of Porg is known to the farmer ahead of

the starting period and is not affected by their adoption decision in the current period. In this case

we can write that

v(Porg,K) = max
{
G∗

con(K) + β · E
[
v(P ′

org,K
′) | Porg,K

]
, Vorg(Porg)

}
, (121)

Now, the value of continuing to produce conventionally, G∗
con(K)+β ·E

[
v(P ′

org,K
′) | Porg,K

]
, is

not a function of Porg. The value of producing organically, Vorg(Porg), though, is strictly increasing

with respect to Porg (assuming αb

(
γKC +Ab +

Ay

αb

)
̸= 0.)

Therefore, assuming that αb

(
γKC +Ab +

Ay

αb

)
̸= 0, we can find a value of Porg for each K

at which the value of continuing to produce conventionally is equal to the value of producing

organically. We will denote this value as P ∗
org(K). At P ∗

org(K) we therefore have that:

G∗
con(K) + β · E

[
v(P ′

org,K
′) | Porg,K

]
= Vorg(Porg | Porg = P ∗

org(K)) (122)

G∗
con(K) + β · E

[
v(P ′

org,K
′) | Porg,K

]
=

1

ρ
P ∗
org(K) · αb

(
γKC +Ab +

Ay

αb

)
(123)

From condition (123) we have that at P ∗
org(K) the following condition holds when Korg = C:

G∗
con(K) + β · E

[
v(P ′

org,K
′) | Porg,K

]
=

1

ρ
P ∗
org(K) · αb

(
γKC +Ab +

Ay

αb

)
(124)

where the RHS comes from the continuous time value of Vorg(Porg), conditional on remaining

organic and conditional on Korg = C.

From this equation we can write:

P ∗
org(K) =

Vcon(K)

1
ρ · αb

(
γKC +Ab +

Ay

αb

) (125)

+
E [Vorg(Porg(Torg(Porg(t),K

∗(t))))− Vcon(K
∗(Torg(Porg(t),K

∗(t)))) | Porg,K]

1
ρ · αb

(
γKC +Ab +

Ay

αb

)

where K∗(t) is the solution for a conventional farmer (who stays conventional and has no option

of becoming organic); where Torg(Porg,K) is the time at which the farmer adopts organic (i.e., the

first time t when a(Porg,K) = 1, and therefore the first time t when Vorg(Porg) > G∗
con(K) + β ·
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E
[
v(P ′

org,K
′) | Porg,K

]
); and where a conventional farmer will adopt organic (a = 1) the first time

when:

a(Porg,K) = 1{Vorg(Porg) > G∗
con(K) + β · E

[
v(P ′

org,K
′) | Porg,K

]
} (126)

As derived in Appendix C.2 for each of Cases OT1, OT2/OT3/OT4, and OT3’, we can write

an expression for the organic price premium required to induce adoption of organic management

when the farmer faces uncertainty in the value of Porg:

(
Porg(K)− Pcon

Pcon

)∗

uncertainty

−
(
Porg − Pcon

Pcon

)∗

deterministic

= (127)

E [Vorg(Porg(Torg(Porg(t),K
∗(t))))− Vcon(K

∗(Torg(Porg(t),K
∗(t)))) | Porg,K]

Pcon · 1
ρ · αb

(
γKC +Ab +

Ay

αb

) ≥ 0

We therefore have that the threshold organic price premium higher when there is uncertainty:(
Porg(K)− Pcon

Pcon

)∗

uncertainty

≥
(
Porg − Pcon

Pcon

)∗

deterministic

(128)

The argument for why

E [Vorg(Porg(Torg(Porg(t),K
∗(t))))− Vcon(K

∗(Torg(Porg(t),K
∗(t)))) | Porg,K] ≥ 0 (129)

is satisfied is as follows. A conventional farmer that has the option to switch permanently to

organic does weakly better than a conventional farmer who must stay conventional. In other words

G∗
con(K)+β ·E

[
v(P ′

org,K
′) | Porg,K

]
≥ G∗

con(K)+β ·E [Vcon(K
′) | Porg,K] for all K, which means

G∗
con(K) + β · E

[
v(P ′

org,K
′) | Porg,K

]
≥ Vcon(K) for all K.

Torg(Porg,K) is the first time t when a(Porg,K) = 1, and therefore the first time t when

Vorg(Porg) > G∗
con(K)+β ·E

[
v(P ′

org,K
′) | Porg,K

]
. Since G∗

con(K)+β ·E
[
v(P ′

org,K
′) | Porg,K

]
≥

Vcon(K) for all K, this means that at time t = Torg(Porg,K), Vorg(Porg) ≥ Vcon(K).

Thus, consistent with the real options theory for investment under uncertainty (Dixit and

Pindyck, 1994), when there is uncertainty over the organic price premium, there is an option

value to waiting before adopting organic management, and the farmer therefore requires a higher

threshold organic price premium before adopting organic management.

8 Application to Organic Standards in US and elsewhere

8.1 USDA Organic Standards

In the United States, the National Organic Program (NOP), which is directed by the U.S. Department

of Agriculture (USDA) Agricultural Marketing Service (AMS) and became effective on February
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20, 2001, oversees and enforces the integrity of the rigorous USDA organic standards and the

accreditation of organic certifiers (USDA Agricultural Marketing Service, 2000b; Organic Produce

Network, 2022). Organic is one of the most heavily regulated and closely monitored food systems

in the U.S. Any product labeled as organic must be USDA certified (Organic Produce Network,

2022). The National Organic Program (NOP) establishes national standards for the production

and handling of organically produced products, including a National List of substances approved

for and prohibited from use in organic production and handling; as well as requirements for

labeling products as organic and containing organic ingredients. Under the National Organic

Program (NOP), certifying agents certify production and handling operations in compliance with

the requirements of this regulation and initiate compliance actions to enforce program requirements

(USDA Agricultural Marketing Service, 2000b).

The organic production and handling requirements of the National Organic Program (NOP)

include the requirement that production practices implemented must maintain or improve the

natural resources of the operation, including soil and water quality, as well as the requirement that

the field or farm parcel must have had no prohibited substances applied to it for a period of 3 years

immediately preceding harvest of the crop. The on-side inspection must verify that prohibited

substances have not been and are not being applied to the operation through means which, at the

discretion of the certifying agent, may include the collection and testing of soil; water; waste; seeds;

plant tissue; and plant, animal, and processed products samples (USDA Agricultural Marketing

Service, 2000a). Thus, becoming certified organic under the USDA National Organic Program

may entail being subject to soil testing (USDA Agricultural Marketing Service, 2000a; Baier and

Ahramjian, 2012; USDA Agricultural Marketing Service, 2018).

In our model, we model organic certification requirements as a clean soil stock threshold Korg

(or, equivalently, a threshold for the stock of synthetic compounds in the soil Corg). Our choice

to make certification contingent on a stock threshold at least partially captures the main features

of the US National Organic Program, including the requirements that practices implemented must

maintain or improve the natural resources of the operation, including soil and water quality, and

that the field or farm parcel must have had no prohibited substances applied to it for a period of

3 years immediately preceding harvest of the crop. In order to verify that practices implemented

must maintain or improve the natural resources of the operation, including soil and water quality

and that prohibited substances have not been applied by a period of 3 years, the certifying agent

may collect and test the soil; as a consequence, the certification requirement essentially amounts

to the requirement that the stock of synthetic compounds in the soil must not exceed a threshold

Corg (or, equivalently, clean soil stock must meet a clean soil stock threshold Korg).

To see this, consider that a farmer’s organic certification agent ultimately reserves the right to

reject a farmer’s application if they find evidence of prohibited substances in the farmer’s soils (as

per the USDA’s certification requirements) that exceed a threshold Corg (or, equivalently, a clean

soil stock that does not meet a clean soil stock threshold Korg). Therefore, the farmer needs to

ensure that the stock of synthetic residues remaining in their soils meets this threshold Corg. If
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the stock of synthetic residues remaining in a farmer’s soils after the required 3-year period of not

using synthetic compounds has not fallen below the threshold Corg, the farmer’s application will be

rejected, even if the farmer claims to have not used prohibited substances for the last three years.

Therefore, our use of a capital stock threshold is justified, because satisfying this synthetic residue

stock requirement is a meaningful/necessary part of becoming eligible for certification.

We can additionally impose the requirement that the field or farm parcel must have had no

prohibited substances applied to it for a period of 3 years immediately preceding harvest of the

crop as a requirement that the optimal trajectory for synthetic compound input use c(t) = 0 for

all t. Continuous transitions to organic management that can involve c(t) = 0 for at least 3 years

include:

1. Optimal Trajectories 5 (OT5): Invest as fast as possible until K = C

2. Optimal Trajectories 4 (OT4) if K̂j = C: Approach K̂j = C at moderate speed; and

3. Optimal Trajectories 4 (OT4, Approach K̂j at moderate speed) if µ = 0 (i.e., the stock of

synthetic compounds in the soil does not decay on its own) and K̂j ≥ Korg.

For discrete “jump” transitions, we can additionally impose the requirement that any discrete

“jump” transition must have c(t) = 0 for at least 3 years as part of the discrete “jump” .

For the majority of our analysis, we also assume (as we approximately have in all real-world

organic certification programs known to the authors) that organic certification requires that a

farmer fully remediate their soils, such that they will be certified organic if and only if K = C. In

this case we have that Korg = C.

When Korg = C, this means that, for cases in which there is no “accidental” , continuous

transition to organic, a farmer that becomes organic and stays organic will choose not to apply any

synthetic compounds, since:

corg(t) = µ
(
C −Korg

)
= 0∀t (130)

Thus, under the assumption that Korg = C, c(t) = 0 for organic farmers, which corresponds to

the organic production requirements of the National Organic Program (NOP).

8.2 Organic Standards Elsewhere

Great Britain’s organic standards are currently the same as EU standards. Basically, no synthetic

fertilizers or pesticides may be used. Approved fertilizers and pesticides can only be used if other

management methods are not working by themselves. Even then their use has to be justified.

The certification program establishes nutrient caps (such that farmers cannot apply more than X

amount of nitrogen equivalents per Y area of land ). Farmers must also demonstrate that they

are making efforts to increase the ecological/environmental soundness of their operation (e.g. by

minimizing the destruction of important natural habitats, etc) (Soil Association, 2023a). There is
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a 2- to 3-year transition period before organic premium can be claimed (Soil Association, 2023a).

Testing will be performed at the end of the transition period to determine whether farmers need

to pursue a longer transition period, and soil samples may be taken to determine if the conversion

period need to be extended (Soil Association, 2023b).

In Australia, ACO Certification LTD, Australia’s largest organic certifier, tests farmers’ soils

for pesticide residues (ACO Certification Ltd, 2023a,b)2.

9 Examples of crop-synthetic compound-soil microbe systems

One type of beneficial soil microbe is Acidobacteria, which have been shown to affect soils in

a number of ways that are important for crop production for a variety of crops (Kalam et al.,

2020), including corn (Li et al., 2019), rice (Liu et al., 2021; Huang et al., 2020), and tomatoes.

Evidence suggests that Acidobacteria promote plant growth through production of certain beneficial

compounds. Some Actinobacteria, like Micrococcales, have been shown to increase the abundance

of salicylic acid, which improves crop pest resistance (Blundell et al., 2020). It is hypothesized

that Acidobacteria facilitate water and nutrient uptake by plants; that they are very important

in nutrient cycling (including carbon, nitrogen and sulfur cycling); and that they function as a

“keystone taxa”, vital for shaping how a soil ecosystem works (Kalam et al., 2020). Newman et al.

(2016) finds that Acidobacteria are negatively affected by the use of Glyphosate (Round Up), a

pesticide used for corn and tomatoes.

Dash et al. (2017) shows that the use of the synthetic pesticide benthiocarb harms cyanobacteria

in agricultural soils used in the cultivation of rice, as indicated by falling measures of the biomass,

acetylene reduction activity (ARA), and N-yield of cyanobacteria present in soils. Findings suggest

that benthiocarb harms the ability of the cyanobacteria present in agricultural soils to fix nitrogen

and to make that nitrogen available to a farmer’s rice crops.

Li et al. (2022) show that 50% substitution of synthetic fertilizer with organic fertilizer outperforms

synthetic fertilizers alone, and organic fertilizers alone, over 7 years. Several studies have shown

that long-run rice yields have been improved by using less synthetic fertilizer and in some instances

substituting with organic fertilizers (Md Mozammel Haque and Kabir, 2019; Meng et al., 2009;

Moe et al., 2019; Singh et al., 2019).

Ji et al. (2018) show that tea plantations can become more productive by substituting away

some fraction of the synthetic the synthetic nitrogen fertilizer typically used in production. This

shift is associated with a shift in the microbial communities found in these plantations. Arafat et al.

(2020) find that decreased productivity in tea plantations is associated with a shift in microbial

communities. Tao et al. (2015) found that bacteria of the genus Bacillus (which seem to do better

in environments with less synthetic nitrogen, phosphorous, and potassium fertilizers) may suppress

soil-born pathogens, which may benefit a plantation’s productivity.

2This was also confirmed via personal communication with ACO’s Technical Officer, Ruwi Jayasuriya, January
2024
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Ding et al. (2020) show that sweet-potatoes in certain low-nitrogen environments actually

perform better (i.e. have higher yields) when less than standard doses of synthetic nitrogen fertilizer

are used. This is a finding that replicates in at least one other study (Satpathy and Singh, 2021).

Ding et al. (2020) also show that the decrease in nitrogen use is associated with a shift in their

soil’s microbial communities in favor of (several) plant-growth promoting bacteria. Several studies

in related literatures corroborate the idea that the finding of Ding et al. (2020) is mediated by

synthetic fertilizers’ effects on soil bacteria (Bill et al., 2021; Wang et al., 2022; Wei et al., 2017;

Yoneyama, Terakado-Tonooka, and Minamisawa, 2017). Tangapo, Astuti, and Aditiawati (2018)

shed light on which particular soil bacteria may be driving these effects.

Liu et al. (2020) show that long-term organic management of kiwifruit orchards results in a

yield increase vis-à-vis comparable orchards managed conventionally. Improved fruit yields were

associated with changes in the organic orchard’s microbial community, and an increase in the

abundance of potentially beneficial microbes.

Vico et al. (2020) find that some organic management regimes result in slightly higher spinach

yields than does their conventional control. This is the case even after just one growing system.

Other studies have found that organically managed spinach can perform just as well as conventionally

managed spinach after just one season as well (Bharad et al., 2013). If we assume that a farmer’s soil

ecology continues to improve season over season, we might expect that the margin between organic

and conventional management systems will eventually widen. Note however, that other short-

term studies of organically managed spinach have found that conventionally managed spinach

significantly outperforms organically managed spinach, at least in the short-run (Zhuang et al.,

2019).

Lead arsenate was commonly used to control pests in US apple orchards in the early to mid-

1900s (Gamble, Givens, and Sparks, 2018). Arsenic has been shown to reduce bacterial activity

of nitrogen fixers present in agricultural soils (Arindam Chakraborty and Islam, 2017). Nitrogen

fixing bacteria are commonly understood to be critical for the proper cycling of nitrogen (a vital

resource for agricultural crops) in soils. When lead arsenate was in use as an insecticide in US

agriculture, the USDA still did not have an organic certification program (this was established

after the passing of the Organic Foods Production Act of 1990). So we should think of this as

being an organic system in which a farmer, sometime between 1890 and 1988 (when the EPA

finally banned the use of lead arsenate for insecticidal purposes) was considering whether or not

to apply for an international ecological certification, such as from Demeter International, which

started its certification program in 1928 (Demeter, 1999), or some other ecological certification

program.

Arsenic has been shown to reduce bacterial activity of nitrogen fixers present in agricultural

soils (Arindam Chakraborty and Islam, 2017). Nitrogen-fixing bacteria (diazotrophs) are important

to wine production because the production of high-quality wine depends on grapes having a

high enough nitrogen content (Bell and Henschke, 2005; Verdenal et al., 2021). Diazotrophs can

also help crops through the regulation of phytohormones that can coordinate plant responses to
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environmental factors (Thiebaut et al., 2022). Common diazotrophs in grape orchards include:

Rhizobium, which function as nitrogen fixers (Wright et al., 2022; Verma et al., 2020); Pseudomonas,

which also fix nitrogen, and protect against disease (Wright et al., 2022; Preston, 2022), Alpha-

Proteobacteria - Bradyrhizobium (Gamalero et al., 2020), and Beta-Proteobacteria - Burkholderia

(Gamalero et al., 2020).

Organochlorides were another class of historical pesticides that were highly persistent. One

such compound, DDT, which was used as a pesticide in US agriculture between 1945 and 1972,

has a half life in soil anywhere from 2 to 15 years, depending on the soil type (Agency for Toxic

Substances and Disease Registry [ATSDR], 2005).

10 Synthetic Compound Decay Rates

The decay rate µ(X) of a synthetic compound vary depending on the synthetic compound. Thiobencarb,

a synthetic pesticide which is widely used on rice, for example, has a half-life in soils of about 21

days (U.S. Department of Agriculture [USDA], 1995). So 21 days after applying 4 lb of active

ingredient over an acre (4 lb per acre being the EPA’s maximum recommended dose in a one-year

period (U.S. Environmental Protection Agency [EPA], 2022)), just 2 lb will remain. After 42 days

only 1 lb will remain. After 63 days 0.5 lb remain, and so on and so forth. By the end of the year

the farmer has about 0.00002344 lb, or 0.01063221 grams of thiobencarb left on their acre of land.

While many modern day pesticides degrade relatively quickly, with half-lives on the order of

a couple of days to a couple of weeks, some pesticides still in use continue to be longer-lived.

For instance, depending on environmental conditions the insecticide Clothianidin, which is applied

to crops like corn and canola, may have a soil half-life of up to 1,155, or even 6,931 days (U.S.

Environmental Protection Agency [EPA], 2003; DeCant and Barrett, 2010). The more conservative

upper bound implies that up to half of the clothianidin applied to a farmer’s field today would still

be present in their soils three years from now.

At the far extreme we have a number of discontinued pesticides which were used as part of

historical farming practices, and which contained heavy metals that were very persistent in soils.

Lead arsenate, for instance, was widely used to combat pests in US apple orchard through the

1940’s (Hood, 2006). The half-life of lead arsenate in soil is estimated to be approximately 16 years

(Eisler, 1988), such that roughly 3% of the lead arsenate applied in orchard in the year 1949 was

still present in the orchard’s soils in the year 2024.

Depending on the pesticides being considered, therefore, there is certainly scope for the time t

in our model to be measured on the scale of years.

11 Discussion and Conclusion

We develop a dynamic bioeconomic model of a farmer’s decisions regarding the use of synthetic

compounds (e.g., synthetic fertilizers and pesticides) and the transition from conventional to
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organic management. Our model accounts for newly documented interrelationships among synthetic

compound use, soil health, and crop yields. In particular, new insights from soil science show that

the use of synthetic compounds can be harmful to beneficial soil microbes that improve agricultural

yields by enhancing crop nutrient use, stress tolerance, and pest resistance.

We characterize and solve for a farmer’s optimal synthetic compound use strategy, and for

whether and how a farmer should transition from conventional to organic farming. Results show

that some farmers may transition to organic management “accidentally” as their optimal trajectories

gradually take them toward the certification threshold (this can happen even in the absence of an

organic price premium). Other transitions may be induced by the organic price premium.

In particular, under full information, some conventional farmers (OT5) prefer organic management,

even if there is no organic price premium. Some conventional farmers (OT4 and OT5) will pursue

active stewardship and invest in clean soil stock, even there is no organic price premium. Among

those still preferring conventional farming, some conventional farmers (OT2, OT3, and OT4) will

use less than the maximum level of synthetic compounds, so as to cultivate, and benefit from,

soil microbes. Other farmers (OT1) will prefer conventional and will choose the maximum level

of synthetic compound use no matter how large the organic price premium. Farmers who prefer

to produce conventionally in absence of an organic price premium (OT1, OT2, OT3, OT4) can be

induced to prefer organic (via a “jump” transition if the organic price premium is high enough.

Our study sheds light on the importance to farmers of optimally acting upon an accurate

understanding of the role that soil bacteria play in crop production and the sensitivity of that

bacteria to the application of synthetic compounds. This will help open the way to educational

extension programs that could result in improved yields for conventional farmers, organic farmers,

and farmers transitioning to organic farming.
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Figure 1: PDV of entire stream of marginal net benefit of additional unit of synthetic compound c(t) today
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PDV of entire stream of marginal costs of additional unit of synthetic compound today
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Figure 2: Condition for stationary solution K̂j for each stage j ∈ {con, org}
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Figure 3: Parameter Space for Optimal Trajectories When K̂j Exists
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(a) Clean soil stock K(t)
(b) synthetic compound use c(t)

(c) Microbes b(t) (d) Yield y(t)

Figure 4: Optimal Trajectories When K̂j Exists

Note: We assume c = µC.
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Figure 5: Parameter Space for Optimal Trajectories When R(K) is Constant Because γcc = 0
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(a) Clean soil stock K(t)
(b) synthetic compound use c(t)

(c) Microbes b(t) (d) Yield y(t)

Figure 6: Optimal Trajectories When R(K) is constant because γcc = 0

Note: We assume µ ̸= 0 and c = µC.
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Figure 7: Parameter Space for Optimal Trajectories When R(K) is Constant Because µ = 0
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(a) Clean soil stock K(t)
(b) synthetic compound use c(t)

(c) Microbes b(t) (d) Yield y(t)

Figure 8: Optimal Trajectories When R(K) is constant because µ = 0
Note: We assume γcc ̸= 0.
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A Optimal Solution for Each Stage

A.1 Stationary rate of return Rj(K)

The stationary rate of return Rj(K) on clean soil capital for each stage j ∈ {con, org}is given by:

Rj(K) = −µ+
γK

γc + γccµ
(
C −K

)
+

αc−P−1
j

αb

. (A.1)

The slope of Rj(K) is:

R′
j(K) =

γK(
γc + γccµ

(
C −K

)
+

αc−P−1
j

αb

)2γccµ (A.2)

which we can sign as follows:

R′
j(K) =

γK︸︷︷︸
≥0(

γc + γccµ
(
C −K

)
+

αc − P−1
j

αb

)2

︸ ︷︷ ︸
≥0

γcc︸︷︷︸
≤0

µ︸︷︷︸
≥0

≤ 0 (A.3)

If either γcc = 0 (i.e., the negative effects of chemical input use c(t) on beneficial soil microbes

b(t) are linear rather than convex) or µ = 0 (i.e., synthetic compounds in the soil do not decay on

their own) so that Rj(K) is a constant (that does not depend on K), then the constant Rj(K) is

lower when prices are higher:

∂Rj(K)

∂Pj
= − γK(

γc +
αc−P−1

j

αb

)2

P−2
j

αb
≤ 0 (A.4)

A.2 Comparative Statics for Stationary Solution K̂j

We evaluate the effect of each parameter on the stationary solution K̂j by calculating the partials

of K̂j , where:

K̂j =

(ρ+ µ)

(
γccµC + γc +

αc−P−1
j

αb

)
− γK

(ρ+ µ) γccµ
(A.5)

A.2.1 Crop price Pj

∂K̂j

∂Pj
=

1

P 2
j αb︸ ︷︷ ︸
≥0

µ︸︷︷︸
≥0

γcc︸︷︷︸
≤0

≤ 0 (A.6)
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The effect of crop price on the stationary solution is weakly negative:
∂K̂j

∂Pj
≤ 0. The stock of

clean soil at the stationary solution is smaller at higher crop prices. Thus, when the farmer faces

greater incentives to produce, the stationary solution K̂j at which the stationary rate of return of

clean stock capital equals the interest rate ρ is lower:

Note that
∂K̂j

∂Pj
becomes more negative, and therefore we have a greater decrease in the stock

of clean soil at the stationary solution for a unit increase in crop prices, when: the direct effect

that soil bacteria have on crop production (αb) is smaller, the rate at which synthetic compounds

decompose (µ) is smaller, synthetic compounds are less detrimental to soil bacteria (γcc is less

negative), and when crop prices Pj are lower.

A.2.2 Interest rate ρ

∂K̂j

∂ρ
=

γK︸︷︷︸
≥0

µ︸︷︷︸
≥0

γcc(µ+ ρ)2︸ ︷︷ ︸
≤0

≤ 0 (A.7)

The stock of clean soil at the stationary solution decreases as the interest rate increases:
∂K̂j

∂ρ ≤ 0.

This is as expected, since as the payoff from the best alternative investment increases, we would

expect the farmer to invest a greater amount in the best alternative investment, and therefore a

lesser amount in the stock of clean soil.

Note that
∂K̂j

∂ρ becomes more negative, and therefore increasing ρ reduces K̂j more, when the

benefit of the clean soil stock to the soil microbiome (γK) is greater. This is likely because when γK

is greater the farmer requires less clean soil in order to have a desired positive effect of any given size

on the soil bacteria.
∂K̂j

∂ρ also becomes more negative, and therefore increasing ρ reduces K̂j more,

when the quadratic part of synthetic compound use’s effect on soil bacteria (γcc) is less detrimental

(such that γcc is smaller in magnitude). This is because as γcc grows smaller in magnitude, not

investing in the stock of clean soils (by increasing per-period synthetic compound use) becomes

less costly, allowing the farmer to forgo greater amounts of K as the outside option becomes more

attractive.
∂K̂j

∂ρ becomes more negative, and therefore increasing ρ reduces K̂j more, as µ ≥ 0

becomes smaller. This is as expected, since as soils become less able to clean themselves up on

their own it becomes more costly for the farmer to achieve a stock of clean soils of any given size,

since the farmer no longer benefits from as much “free capital” as the capital stock’s ability to

grow on its own shrinks. Finally
∂K̂j

∂ρ is more negative, and therefore increasing ρ reduces K̂j more,

when ρ is smaller in magnitude. Thus the effect of increasing ρ is higher when ρ is smaller.

A.2.3 Maximum chemical stock capacity of soil C

∂K̂j

∂C
= 1 (A.8)
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A one unit increase in the soil’s ability to tolerate synthetic compounds results in a one unit

increase in the stock of clean soil, or a one unit decrease in the stock of synthetic compounds, at

the stationary solution. This result stems from the fact that the amount of clean soil is defined

as the difference between the soil’s ability to tolerate synthetic compounds and the actual stock of

dirty soil. Therefore increasing the soils ability to tolerate synthetics, even while keeping actual

stocks of synthetic compounds fixed, will by definition result in an 1 to 1 increase in the stock of

clean soil.

A.2.4 Effect of per-period synthetic compound use on crop production αc

∂K̂j

∂αc
=

1

µ︸︷︷︸
≥0

αbγcc︸ ︷︷ ︸
≤0

≤ 0 (A.9)

The stock of clean soil at the stationary solution decreases as the effect αcthat per-period synthetic

compound use has on crop production increases
∂K̂j

∂αc
≤ 0. This makes intuitive sense, since if, all

else equal, fertilizers and pesticides yield greater productivity boosts the farmer will choose to use

more of these compounds. This results in a smaller stock of clean soils. Note that
∂K̂j

∂αc
becomes

less negative as αb increases in value. This makes sense, since if soil bacteria, which depend on

the stock of clean soils, are more important to crop production, then we should be less willing to

erode our stock of clean soils as synthetic compounds become more productive. Note also that
∂K̂j

∂αc

becomes less negative as γcc becomes more negative. Again, this makes sense, since if per-period

application of synthetic compounds becomes more detrimental to soil bacteria, which help crop

production, then we should be less willing to apply synthetic compounds, and thus erode our stock

of clean soils, as synthetic compounds become more productive.

A.2.5 Linear part γc of the effect that per-period synthetic compound use has on soil

bacteria

∂K̂j

∂γc
=

1

µ︸︷︷︸
≥0

γcc︸︷︷︸
≤0

≤ 0 (A.10)

The stock of clean soil at the stationary solution decreases as per-period synthetic compound use

becomes less detrimental to soil bacteria health:
∂K̂j

∂γc
≤ 0.

∂K̂j

∂γc
≤ 0 makes sense intuitively, because if per-period application of synthetic compounds

becomes less harmful to soil bacteria, which are themselves beneficial to crop production, then in

any given period farmers will face less of an incentive not to use synthetic compounds, and will

therefore choose to apply these compounds at greater rates. All else equal this should, in turn,

result in greater stocks of synthetic compound at any given period, including the in the period

at which the farmer reaches the stationary solution. If the farmer accumulates a greater stock of
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synthetic compounds at the stationary solution, by definition they accumulate smaller stocks of

clean soils.

A.2.6 Soil bacteria’s effect αb on crop production

∂K̂j

∂αb
=

1
Pj

− αc

µ︸︷︷︸
≥0

α2
bγcc︸ ︷︷ ︸
≤0

(A.11)

We see that soil bacteria’s effect αb on crop production has an ambiguous effect on the stock

K̂j of clean soil at the stationary solution. Its effect is mediated by crop prices Pj and the effect

αc of per-period synthetic compound application has on crop production.

We are more likely to have
∂K̂j

∂αb
≥ 0 such that the stock of clean soils at the stationary solution

increases as soil bacteria become more important to production, when crop prices Pj are higher,

since a greater crop price incentivizes the farmer to produce more, and since as αb increases they

are better able to produce more by increasing their stock of clean soils.

The stock of clean soils at the stationary solution also increases as soil bacteria become more

important to production when the effect αc of per-period synthetic compound use on production

is higher, since then a farmer does not have to apply as much fertilizer or pesticide in order to

produce at any given level of production.

Given a large enough αc so that 1
Pj
−αc ≤ 0, then

∂K̂j

∂αb
is also more positive when the effect αb of

soil bacteria on crop production is smaller in magnitude. Intuitively, this means that when synthetic

compounds are sufficiently important to production, then the stock of clean soil at the stationary

solution increases, but at a diminishing rate, as soil bacteria’s effect on production increases. This

diminishing nature of
∂K̂j

∂αb
arises because as αb increases the farmer does not have to increase the

stock of clean soil by as much in order to achieve a given level of productivity gain from their soil

bacteria. The farmer has an incentive not to increase K̂j by too much, because this would mean

losing out on the productive effects of their synthetic compounds, which are significant, since we

have assumed αc to be large.

Given a large enough αc so that 1
Pj

− αc ≤ 0,
∂K̂j

∂αb
is also more positive when the effect γcc of

chemical inputs on soil microbe production is smaller in magnitude. Thus, when chemical inputs

have less of a detrimental effect γcc on soil microbe production, then the larger the effect αb that

soil microbes have on crop production, the higher the stock of clean soils at the stationary solution.

This is because the grower can still benefit from the productive effects of chemical inputs without

harming soil microbe production as much, and also benefit from the productive effects of soil

microbes.
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A.2.7 Other comparative statics with ambiguous sign

∂K̂j

∂µ
=

 1

ρ+ µ
+

1

µ︸ ︷︷ ︸
≥0


C − K̂j︸ ︷︷ ︸

≥0

+
γc +

αc−P−1
j

αb

(ρ+ µ) γccµ︸ ︷︷ ︸
≤0

(A.12)

∂K̂j

∂γcc
=

1

µγ2cc

 1

αb︸︷︷︸
≥0

(
1

Pj
− αc

)
+

γK︸︷︷︸
≥0

(µ+ ρ)
− γc︸︷︷︸

≤0

 (A.13)

A.3 Stock of clean soils K̃j below which there is no trade-off involved with net

investment

The stationary rate of return on capital Rj(K) is undefined when ∂G(K,0)
∂I = 0. The condition that

∂G(K,0)
∂I = 0 simplifies to:

(
Pj ·

(
αb

(
γc + γccµ

(
C −K

))
+ αc

)
− 1
)
= 0 (A.14)

Let K̃j be defined as the stock of clean soils at which ∂G(K,0)
∂I = 0. In other words, at the stock

of clean soils K̃j , the marginal effect of net investment I on the net gain function G(K, I) when

net investment is 0 is 0. K̃j is given by:

K̃j =

αc−P−1
j

αb
+ γc

γccµ
+ C (A.15)

For K < K̃j ,
∂G(K,0)

∂I > 0 (i.e., net investment has a positive effect on contemporaneous net

gain starting from a net investment of I = 0), and for K ≤ K̃j ,
∂G(K,0)

∂I ≥ 0 (i.e., net investment

has a non-negative effect on contemporaneous net gain starting from a net investment of I = 0).

Since our analysis using the stationary rate of return on capital R(K) assumes that ∂G(K,I)
∂I < 0

(i.e., net investment has a strictly negative effect on contemporaneous net gain), we cannot use

the stationary rate of return on capital Rj(K) and the comparison between the stationary rate of

return on capital Rj(K) and ρ to describe the optimal solution when K ≤ K̃j .

To see this, we find that for K < K̃j , Rj(K) ≤ −µ ≤ 0:

Rj(K) = −µ︸︷︷︸
≤0

+

γK︸︷︷︸
≥0

γccµ
(
C −K

)
+ γc +

αc − P−1
j

αb︸ ︷︷ ︸
<0

≤ −µ ≤ 0, (A.16)

which would suggest that for K < K̃j , since K < K̃j , Rj(K) ≤ −µ < ρ, the farmer will always

disinvest in clean soil until K is driven down to K = 0. But disinvesting would not make sense
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when ∂G(K,I)
∂I > 0 (i.e., net investment has a positive effect on contemporaneous net gain), which

is the case when K < K̃j , since net investment increases the future stock K of clean soil and the

stock K of clean soil has a positive effect on net gain (i.e., ∂G(K,0)
∂K ≥ 0):

∂G(K, 0)

∂K
= µ

∂G(K, 0)

∂I︸ ︷︷ ︸
≥0

+Pj · αbγK︸ ︷︷ ︸
≥0

≥ 0. (A.17)

Thus, since our analysis using the stationary rate of return on capital Rj(K) makes the

assumption of the prototype economic control model that ∂G(K,I)
∂I < 0 (i.e., net investment has

a strictly negative effect on contemporaneous net gain), we cannot use the stationary rate of return

on capital Rj(K) and the comparison between the stationary rate of return on capital R(K) and

ρ to describe the optimal solution when K ≤ K̃j .

Instead, based on the feature that for K ≤ K̃j , net investment I has a non-negative effect on

contemporaneous net gain starting from a net investment of I = 0, ∂G(K,0)
∂I ≥ 0, and moreover

that net investment increases the future stock K of clean soil and the stock K of clean soil has a

positive effect on net gain (i.e., ∂G(K,0)
∂K ≥ 0), then we would expect that a farmer with K ≤ K̃j

would invest in the stock of clean soil, not disinvest, since there is no trade-off involved with net

investment: net investment not only increases future net gain, but also current net gain as well.

Thus, for K ≤ K̃j , the farmer will invest in clean soil.

Although K̃j does not actually matter that much for describing investment behavior, it has

important economic content and intuition, since K̃j (if it exists) is the threshold below which net

investment has a non-negative effect on contemporaneous net gain starting from a net investment

of I = 0. A farmer with K ≤ K̃j does not face any trade-off involved with net investment: net

investment not only increases future net gain, but also current net gain as well. In addition, another

important thing about K̃j was to note that our standard interpretation of how the relative value

of R(K) determines investment behavior becomes invalid for K < K̃j . Another important aspect

of K̃j is it determines which parameter space we are in.

We confirm that K̂j ≥ K̃j :

K̂j = K̃j −
γK

(ρ+ µ) γccµ
(A.18)

K̂j = K̃j −

γK︸︷︷︸
≥0

(ρ+ µ)︸ ︷︷ ︸
≥0

γcc︸︷︷︸
≤0

µ︸︷︷︸
≥0︸ ︷︷ ︸

≤0

≥ K̃j (A.19)

Thus, since for K ≤ K̃j , the farmer will invest in clean soil, this means that for K0j ≤ K̃j , if
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the stationary solution K̂j exists, the farmer will continue to invest in clean soil until he reaches

the stationary solution K̂j .

K̃j is a decreasing function of prices Pj :

∂K̃j

∂Pj
=

1

αb︸︷︷︸
≥0

γcc︸︷︷︸
≤0

µ︸︷︷︸
≥0

P 2
j︸︷︷︸

>0

≤ 0 (A.20)

The intuition is as follows. The threshold K̃j is such that for all K ≤ K̃j ,
∂G(K,0)

∂I ≥ 0 (i.e., net

investment has a non-negative effect on contemporaneous net gain starting from a net investment

of I = 0). A higher level of net investment I(t) in the stock of clean soil affects the farmer in the

following ways. In the current period t, given the clean soil stock K(t) for that period t, a higher

level of net investment I(t) means a lower level of chemical input use c(t). The time-t benefits of

chemical input use c(t) (which a farmer who wishes to increase net investment I(t) in the stock

of clean soil would forego) come through the beneficial effects of chemical input use c(t) on crop

output f(·). There are two time-t costs of chemical input use c(t) (which a farmer who wishes

to increase net investment I(t) in the stock of clean soil would no longer incur). First, there is a

unit price to chemical input use, which we normalize to 1. Second, chemical input use decreases

beneficial soil microbes b(t), and this decrease in beneficial soil microbes b(t) may then have an

adverse impact to crop output f(·). In addition to the time-t costs and benefits of a lower level

of chemical input use c(t), a higher level of net investment I(t) also means a higher level of future

clean soil stock K.

When prices Pj are lower, the threshold K̃j below which net investment has a non-negative

effect on contemporaneous net gain starting from a net investment of I = 0 is higher because

with lower prices Pj , a farmer who net invests would have less revenue to forego from the foregone

beneficial effects of chemical input use c(t) on crop revenue f(·), and thus the costs of net investing

are lower and more likely to be outweighed by its benefits, which include foregoing the price of

chemical input use as well as the adverse effect of chemical input use on soil microbes.

Neither K̃j nor K̂j will exist if either γcc = 0 (i.e., the negative effects of chemical input use c(t)

on beneficial soil microbes b(t) are linear rather than convex) or µ = 0 (i.e., synthetic compounds

in the soil do not decay on their own).

If either γcc = 0 or µ = 0, then the condition that ∂G(K,I)
∂I ≥ 0 (i.e., net investment has a

non-negative effect on contemporaneous net gain) simplifies to:

P−1
j ≥ αbγc + αc (A.21)
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A.4 Effects of Price Pj on Optimal Solution for each stage j ∈ {con, org}

As shown above, K̂j and K̃j are both decreasing functions of price Pj .

Also as shown above, if either γcc = 0 (i.e., the negative effects of chemical input use c(t) on

beneficial soil microbes b(t) are linear rather than convex) or µ = 0 (i.e., synthetic compounds in

the soil do not decay on their own) so that Rj(K) is a constant (that does not depend on K), then

the constant Rj(K) is lower when prices are higher.

A.4.1 Very low Pj

If γcc ̸= 0 and µ ̸= 0 so that both K̃j and K̂j exist, then since K̃j is a decreasing function of Pj ,

for very low Pj we will have K̃j > C, and therefore K ≤ K̃j ≤ K̂j for all feasible K, and the farmer

will continue to invest such that K approaches K̂j until K reaches its upper bound C.

The condition for K̃j > C simplifies to:

P−1
j > −αb (γccµ− γc) + αc (A.22)

If either γcc = 0 (i.e., the negative effects of chemical input use c(t) on beneficial soil microbes

b(t) are linear rather than convex) or µ = 0 (i.e., synthetic compounds in the soil do not decay on

their own) so that Rj(K) is a constant (that does not depend onK), then if prices are low enough to

satisfy the following condition for net investment to have a non-negative effect on contemporaneous

net gain (so that Rj(K) is not useful for analyzing net investment):

P−1
j ≥ αbγc + αc, (A.23)

then the farmer will again invest in clean soil until K = C.

A.4.2 Very high Pj

Alternatively, if γcc ̸= 0 and µ ̸= 0 so that both K̃j and K̂j exist, then for very high Pj , we will

have K̃j < 0 , and therefore K ≥ K̃j for all feasible K.

In this case, the farmer’s capital stock will approach the stationary solution and reaches it if

K̂j ∈ [0, C]. If K̂j > C, then the farmer will approach K̂j from below until they reach the blocked

state K = C, where they will stay indefinitely. If K̂j < 0 (and therefore does not exist since it is

less than 0), the farmer will approach K̂j from above until they reach the blocked state K = 0 ,

where they will stay indefinitely.

The condition for K̃j < 0 simplifies to:

P−1
j < −αb

(
−γccµC − γc

)
+ αc (A.24)

If either γcc = 0 (i.e., the negative effects of chemical input use c(t) on beneficial soil microbes

b(t) are linear rather than convex) or µ = 0 (i.e., synthetic compounds in the soil do not decay on
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their own) so that Rj(K) is a constant (that does not depend on K), then if prices are high enough

to satisfy the condition that net investment has a negative effect on contemporaneous net gain (so

that Rj(K) is useful for analyzing net investment):

P−1
j < αbγc + αc (A.25)

as well as the following condition for Rj(K) < ρ:

P−1
j <

αb

ρ+ µ
((ρ+ µ)γc − γK) (A.26)

then the farmer will always disinvest until he reaches K = 0 since Rj(K) < ρ.

A.4.3 Intermediate Pj

Finally, if γcc ̸= 0 and µ ̸= 0 so that both K̃j and K̂j exist, then for certain intermediate values of

Pj , it will be possible to have K̃j ∈ [0, C]. For K0j ≤ K̃j , the farmer will continue to invest in clean

soil and approach the stationary solution K̂j until he reaches the stationary solution K̂j ≤ C. For

K0j > K̃j , the farmer will approach and eventually reach the stationary solution K̂j ≤ C by either

investing, as in the case in which K0j < K̂j ; or by disinvesting, as in the case in which K0j > K̂j .

The condition for K̃j ∈ [0, C] is given by:

−αb (γccµ− γc) + αc ≤ P−1
j ≤ −αb

(
−γccµC − γc

)
+ αc (A.27)

If either γcc = 0 (i.e., the negative effects of chemical input use c(t) on beneficial soil microbes

b(t) are linear rather than convex) or µ = 0 (i.e., synthetic compounds in the soil do not decay on

their own) so that Rj(K) is a constant (that does not depend on K), then if prices are low enough

that Rj(K) > ρ:

P−1
j >

αb

ρ+ µ
((ρ+ µ)γc − γK) (A.28)

but also high enough that net investment has a negative effect on contemporaneous net gain (so

that Rj(K) is useful for analyzing net investment):

P−1
j < αbγc + αc, (A.29)

then the farmer will always invest until he reaches K = C since Rj(K) > ρ.

If either γcc = 0 (i.e., the negative effects of chemical input use c(t) on beneficial soil microbes

b(t) are linear rather than convex) or µ = 0 (i.e., synthetic compounds in the soil do not decay

on their own) so that Rj(K) is a constant (that does not depend on K), then if prices satisfy the

condition that Rj(K) = ρ:

P−1
j =

αb

ρ+ µ
((ρ+ µ)γc − γK) (A.30)
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but are also high enough that net investment has a negative effect on contemporaneous net gain

(so that Rj(K) is useful for analyzing net investment):

P−1
j < αbγc + αc, (A.31)

then the farmer will will stay at K = K0j since Rj(K) = ρ.

A.5 Unconstrained Solution for Stage j when K̂j Exists: Deriving using Taylor

series expansion

To solve for the farmer’s optimal stage j trajectories, we start by solving for the unconstrained

solution for each stage j by using second-order Taylor series approximations of the net gain

function G(K, I). Since the net gain function G(K, I) is quadratic, these second-order Taylor

series approximations and the solutions derived using them are exact. In other words, the second-

order Taylor series approximations of the net gain function G(K, I) is an exact second-order Taylor

series expansion of the net gain function G(K, I).

When K̂j exists, we can write a Taylor Series approximation of G(K, I) around the stationary

solution
(
K̂j , 0

)
, and use this approximation to solve for K∗ and I∗.

The net gain function G(K, I) is quadratic, so the second-order Taylor series approximation

and the solutions derived using it are exact. In other words, the second-order Taylor series

approximations of the net gain function G(K, I) is an exact second-order Taylor series expansion

of the net gain function G(K, I).

We define the following values:

G1 =
∂G(K̂j , 0)

∂K
= −µ

(
Pj ·

(
αb

(
γccµ

(
C − K̂j

)
+ γc

)
+ αc

)
− 1
)
+ Pj · αb (γK) (A.32)

G2 =
∂G(K̂j , 0)

∂I
= −

(
Pj ·

(
αb

(
γccµ

(
C − K̂j

)
+ γc

)
+ αc

)
− 1
)

(A.33)

G11 =
∂2G(K̂j , 0)

∂K2
= Pj · αb

(
γccµ

2
)

(A.34)

G22 =
∂2G(K̂j , 0)

∂I2
= Pjαbγcc (A.35)

G12 = G21 =
∂2G(K̂j , 0)

∂K∂I
= Pj · αbµγcc (A.36)

With the first and second order partials of G in now hand, the second order Taylor series

approximation of the gain function G(K, I) around a stationary solution (K̂j , 0) can be written as:
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G(K, I) ≈ G(K̂j , 0)+G1·(K−K̂j)+G2·(I−0)+G11·
(K − K̂j)

2

2
+G22·

(I − 0)2

2
+G12·(K−K̂j)·(I−0)

(A.37)

With this Taylor series approximation of the gain function we can, in turn, derive an explicit

closed-form solution to the second-order approximation of the optimal control problem for K(t)

and I(t). To this end, we begin by noting that the Hamiltonian can now be approximated as:

H = G(K̂j , 0)+G1 ·(K−K̂j)+G2 ·(I)+G11 ·
(K − K̂j)

2

2
+G22 ·

(I)2

2
+G12 ·(K−K̂j)·(I)+pI (A.38)

Where p is the shadow price of capital. Letting

X = K − K̂j , (A.39)

we can re-write the Hamiltonian as

H = G(K̂j , 0) +G1 ·X +G2 · I +G11 ·
X2

2
+G22 ·

I2

2
+G12 ·X · I + pI. (A.40)

The first criteria of the maximum principle,

∂H

∂I
= 0 (A.41)

implies

G2 +G22 · I +G12 ·X + p = 0, (A.42)

so that

Ĩ(X, p) = −(G2 +G12 ·X + p)

G22
. (A.43)

From this expression for the maximized investment value we get the maximized Hamiltonian:

H̃ = G(K̂j , 0)+G1 ·X+G2 · Ĩ(X, p)+G11 ·
X2

2
+G22 ·

Ĩ(X, p)2

2
+G12 ·X · Ĩ(X, p)+pĨ(X, p) (A.44)

In preparation for examining the second criteria of the maximum principle, we’ll first derive

expressions for ∂H̃
∂K , p(t), ṗ(t), and ρ. Beginning with ∂H̃

∂K , note that ∂H̃
∂K = ∂H̃

∂X · ∂X
∂K = ∂H̃

∂X , since

∂X
∂K =

∂(K−K̂j)
∂K = 1. Then we have

∂H̃

∂K
= G1+G2·

∂Ĩ(X, p)

∂X
+G11·X+G22·Ĩ(X, p)

∂Ĩ(X, p)

∂X
+G12·Ĩ(X, p)+G12·X ·∂Ĩ(X, p)

∂X
+p

∂Ĩ(X, p)

∂X
(A.45)
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⇒ ∂H̃

∂K
= G1 +G11 ·X +G12 · Ĩ(X, p) + [

G2 +G12 ·X + p

G22
+ Ĩ(X, p)]

∂Ĩ(X, p)

∂X
·G22 (A.46)

But from (A.43) we know that G2+G12·X+p
G22

+ Ĩ(X, p) = 0. So we have

∂H̃

∂K
= G1 +G11 ·X +G12 · Ĩ(X, p) (A.47)

To get our expressions for p(t) and ṗ(t), we solve (A.43) for p(t):

p(t) = −(G2 +G22 · I(t) +G12 ·X(t)) (A.48)

and taking the time derivative of (A.48) we get

ṗ(t) = −G22 · İ(t)−G12 · Ẋ(t) (A.49)

And to get an expression for ρ remember that a stationary solution must satisfy

R(K̂j) = ρ (A.50)

⇒
−∂G(K̂j ,0)

∂K

∂G(K̂j ,0)
∂I

= ρ (A.51)

⇒ ρ = −G1

G2
(A.52)

Now, we continue by examining the second criteria of the maximum principle. Remember this

criteria requires that:

ṗ(t) = −∂H̃

∂K
+ ρp(t) (A.53)

Plugging in (A.47), (A.48), and (A.49) gives:

−G22 · İ(t)−G12 · Ẋ(t) =

− (G1 +G11 ·X +G12 · Ĩ(X, p))− ρ(G2 +G22 · I(t) +G12 ·X(t))

(A.54)

⇒ G22 · İ(t) +G12 · Ẋ(t) =

(G1 +G11 ·X +G12 · Ĩ(X, p)) + ρ(G2 +G22 · I(t) +G12 ·X(t))
(A.55)

Note that Ẋ = d(K−K̂)
dt = d(K)

dt = K̇ = I. Evaluating at I = Ĩ gives
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G22 ·
˙̃
I(t) +G12 · Ĩ(t) =

(G1 +G11 ·X +G12 · Ĩ(X, p)) + ρ(G2 +G22 · Ĩ(t) +G12 ·X(t))
(A.56)

Plugging (A.52) into the RHS and simplifying then gives

G22 ·
˙̃
I(t) = G11 ·X + ρG22 · Ĩ(t) + ρG12 ·X(t) (A.57)

⇒ ˙̃
I(t)− ρĨ(t)− G11 ·X + ρG12 ·X(t)

G22
= 0 (A.58)

But remembering

Ĩ(t) =
∂K

∂t
=

∂(K − K̂)

∂t
=

∂X

∂t
(A.59)

and that therefore also

˙̃I(t) =
∂Ĩ(t)

∂t
=

∂2X

∂t2
(A.60)

we can rewrite (A.58) as the following second-order linear ODE

∂2X(t)

∂t2
− ρ

∂X(t)

∂t
− G11 + ρG12

G22
X(t) = 0 (A.61)

We guess a solution to (A.61) of the form:

X(t) = X(0)e−at (A.62)

then (A.61) becomes

X(0)e−ata2 + ρX(0)e−ata− G11 + ρG12

G22
X(0)e−at = 0 (A.63)

Note that if we assume a finite t and a, and that K0j ̸= K̂ so that X(0) ̸= 0, then we can divide

both sides of the above equation by X(0)e−at to get

a2 + ρa− G11 + ρG12

G22
= 0 (A.64)

Applying the quadratic formula, and taking the positive root since we want X(t) = K(t)− K̂j

to converge to 0 as K → K̂j . we get the following solution for a:
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a =

√(ρ
2

)2
+

G11 + ρG12

G22
− ρ

2
(A.65)

⇒ a =

√(ρ
2

)2
+ µ2 + ρµ− ρ

2
(A.66)

⇒ a = µ (A.67)

The rate of approach to the stationary solution equals the rate at which synthetic compounds

decompose from the farmer’s soils. Since the speed of approach a ≥ 0 in order for X(t) = K(t)−K̂j

to converge to 0 as K → K̂j , this means that, in order for K → K̂j , we must have µ ≥ 0. Moreover,
∂a
∂µ = 1 > 0, which means that the farmer will reach the stationary solution faster when the rate of

decay is greater.

Given our solution for a we can now solve for the optimal policy for capital by rearranging

equation (A.62) as follows:

X(t) = X(0)e−at (A.68)

⇒ Kj(t) = K̂j + (K0Sj
− K̂j)e

−µt (A.69)

We get our optimal policy for investment by taking the time derivative of the equation for Kj(t)

above and simplifying as follows:

Ij(t) =
dKj(t)

dt
= −a(K0Sj

− K̂j)e
−at (A.70)

⇒ Ij(t) = µ(K̂j −Kj(t)) (A.71)

Since our gain function is quadratic, our Taylor series approximation of the farmer’s interior

solution is the same as the exact interior solution. Therefore our unconstrained Taylor series

approximation will be the same as our unconstrained exact solution.

In the next section we derive the exact solution and also apply the upper and lower bound

constraints that the farmer faces on I(t). These are the same constrained trajectories that we

would get from applying the upper and lower bound constraints on investment to our Taylor series

approximation of the farmer’s interior solution, since, again, we assume our gain function to be

quadratic, and therefore our Taylor series approximation is exact.

A.6 Solution for Stage j when K̂j Exists: Directly Deriving Exact Solution and

Imposing Lower and Upper Bound Constraints

We now derive the exact solution directly when K̂j exists, show that the exact unconstrained

solution is the same as what we derived using a second-order Taylor series approximation, and then
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impose the lower and upper bound constraints on I(t) to obtain the constrained optimal solution

for each stage j.

The upper-bound constraint M(K) on net investment I comes from constraint that chemical

input use c(t) is non-negative.

The lower-bound constraint m(K) on net investment I comes from upper bound c to chemical

input use c(t). The upper bound c to chemical input use c(t) may depend on the total stock of

synthetic compounds present in the soil C(t), and which may represent, for example, the maximum

recommended dose for any given application; the maximum chemical input dose that is not lethal to

crops and/or humans; the maximum chemical dose above which consumers will no longer purchase

the crop; and/or the maximum chemical input flow at any point in time that does not destroy the

farmer’s land and soil.

We assume that c = µ(X)C when µ(X) > 0 and c > 0 when µ(X) = 0. Since investment is

bounded from below by µ(X)(C −K(t))− c, the trajectory for net investment must satisfy:I(t) ≥ −µ(X)K(t) if µ(X) > 0

I(t) > µ(X)(C −K(t)) if µ(X) = 0
(A.72)

Our derivation of the exact solution is as follows. The Hamiltonian is given by:

H =Pj · f
(
(g(K, I)) ,

(
µ(C −K)− I

))
−
(
µ(X)(C −K)− I

)
+ pI (A.73)

+ λ1

(
I −

(
µ(C −K)− c

))
+ λb

(
µ(C −K)− I

)
(A.74)

(A.75)

where

λ1

(
I −

(
µ(C −K)− c

))
= 0

λb

(
µ(C −K)− I

)
= 0

A.6.1 Interior solution for I(t) (OT2/OT3/OT4)

When I(t) is interior we will have λ1 = 0 and λb = 0.

With

f(b, c) = αbb+ αcc+Ay (A.76)

so that ∂f
∂b = αb and

∂f
∂c = αc, and

g(K, I) =
1

2
γcc
(
µ
(
C −K

)
− I
)2

+ γc
(
µ
(
C −K

)
− I
)
+ γKK +Ab (A.77)

so that
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∂g(K, I)

∂K
=
(
−µγcc

(
µ
(
C −K

)
− I
)
− γcµ+ γK

)
(A.78)

and

∂g(K, I)

∂I
=
(
−γcc

(
µ
(
C −K

)
− I
)
− γc

)
(A.79)

the first two conditions of the maximum principle can be re-expressed as follows:

∂H

∂I
= Pj ·

(
∂f

∂b

∂g

∂I
+

∂f

∂c
(−1)

)
+ 1 + p = 0 (A.80)

⇒
(
−
(
Pj ·

(
αb

(
−γcc

(
µ
(
C −K

)
− I
)
− γc

)
− αc

)
+ 1
))

= p (A.81)

and

ṗ(t) = −
(
Pj ·

(
∂f

∂b

∂g

∂K
− µ · ∂f

∂c

)
+ µ

)
+ ρp(t) (A.82)

⇒ ṗ(t) = −
(
Pj ·

(
αb

(
−µγcc

(
µ
(
C −K

)
− I
)
− γcµ+ γK

)
− µ · αc

)
+ µ

)
+ ρp(t) (A.83)

and the transversality condition requires that

lim
t→∞

p(t)K∗(t)e−ρt = 0. (A.84)

We solve this system of equations as follows. Note that taking the time derivative of the first

condition of the maximum principle we get

ṗ = −Pj · αbγcc

(
µK̇ + İ

)
(A.85)

We can substitute this new identity for ṗ, as well as our identity for p from the first condition

of the maximum principle, into our expression for ṗ from the second condition of the maximum

principle, we get the following second order differential equation for K(t):

(µ+ ρ)µ
(
K(t)− K̂j

)
+ ρ · K̇(t)− K̈(t) = 0 (A.86)

This is a second order differential equation with solution:

K(t) = c1e
−µ·t + c2e

(µ+ρ)·t + K̂j (A.87)

Our initial condition requires that:

K0j = c1e
−µ·0 + c2e

(µ+ρ)·0 + K̂j (A.88)
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⇒ c1 + c2 + K̂j = K0j (A.89)

⇒ c2 = K0j − K̂j − c1 (A.90)

Note that we can take the time derivative of our preliminary solution for K(t) to derive the

following preliminary equation for K̇(t):

K̇(t) = −µ · c1e−µ·t + (µ+ ρ) · c2e(µ+ρ)·t (A.91)

Plugging in Equation (A.90) into the above, we obtain:

K(t) =
(
c1e

−µ·t +
(
K0j − K̂j − c1

)
e(µ+ρ)·t + K̂j

)
(A.92)

I(t) = K̇(t) =
(
−µ · c1e−µ·t + (µ+ ρ) ·

(
K0j − K̂j − c1

)
e(µ+ρ)·t

)
(A.93)

Therefore

p(t) =
(
−
(
Pj ·

(
αb

(
−γcc

(
µ
(
C −K

)
− I
)
− γc

)
− αc

)
+ 1
))

(A.94)

can now be written as:

p(t) =
(
−Pjαbγcc (2µ+ ρ) ·

(
K0j − K̂j − c1

)
e(µ+ρ)·t − Pj ·

(
αb

(
−γcc

(
µC − µK̂j

)
− γc

)
− αc

)
− 1
)

(A.95)

We can use this expression, together with

K(t) =
(
c1e

−µ·t +
(
K0j − K̂j − c1

)
e(µ+ρ)·t + K̂j

)
(A.96)

to determine the range of values for c1 that satisfy the transversality condition:

lim
t→∞

p(t)K∗(t)e−ρt = 0 (A.97)

lim
t→∞

(
c1a
(
K0j − K̂j − c1

)
+ a

(
K0j − K̂j − c1

)2
e(2µ+ρ)·t + aK̂j

(
K0j − K̂j − c1

)
eµ·t +

(
K0j − K̂j − c1

)
eµ·t · b

)
(A.98)

with a = −Pjαbγcc (2µ+ ρ). Assuming a ̸= 0, then the transversality condition is satisfied if and

only if

c1 =
(
K0j − K̂j

)
(A.99)
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So the farmer’s optimal trajectory is:

Kj(t) = K̂j + (K0Sj
− K̂j)e

−µt (A.100)

Ij(t) = µ(K̂j −Kj(t)) (A.101)

To derive trajectories for c(t) and C(t) under an interior solution for I(t), we can write:

c(K, I) = µ
(
C −K(t)

)
− I(t) (A.102)

⇒ c(K, I) = µ
(
C − K̂j

)
∀t ≥ 0, (A.103)

and

C(K, I) = C −K(t) (A.104)

⇒ C(K, I) = C − K̂j −
(
K0j − K̂j

)
· e−µ·t. (A.105)

We also have the following expressions for soil microbes b(t) and crop output y(t) under an

interior solution for I(t):

g(K, I;X) =

(
γcµ

(
C − K̂j

)
+

1

2
γcc

(
µ
(
C − K̂j

))2
+ γKK̂j +Ab + γK

(
K0j − K̂j

)
· e−µ·t

)
,

(A.106)

f̃(b, c;X) = αb

(
γcµ

(
C − K̂j

)
+

1

2
γcc

(
µ
(
C − K̂j

))2
+ γKK̂j +Ab

)
(A.107)

+ αcµ
(
C − K̂j

)
+Ay + αbγK

(
K0j − K̂j

)
· e−µ·t

A.6.2 Lower corner solution for I(t) (OT1)

On the other hand if I(t) has a lower corner solution (such that the lower bound constraint on I(t)

binds, but the upper bound constraint does not) we will have λ1 ≥ 0 and λb = 0.

In this case, the Hamiltonian is given by:
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H =Pj · f
(
(g(K, I)) ,

(
µ(C −K)− I

))
−
(
µ(X)(C −K)− I

)
+ pI (A.108)

+ λ1

(
I −

(
µ(C −K)− c

))
(A.109)

(A.110)

Condition [#1] of the Maximum Principle will then yield:

∂H

∂I
= Pj ·

(
∂f

∂b

∂g

∂I
+

∂f

∂c
(−1)

)
+ 1 + p+ λ1 = 0 (A.111)

⇒ −
(
Pj ·

(
∂f

∂b

∂g

∂I
− ∂f

∂c

)
+ 1

)
− λ1 = p (A.112)

⇒
(
−
(
Pj ·

(
αb

(
−γcc

(
µ
(
C −K

)
− I
)
− γc

)
− αc

)
+ 1
)
− λ1

)
= p (A.113)

and

∂H

∂λ1
= (I + (µ− κ)K) = 0 (A.114)

∂H

∂λ1
= 0 ⇒ −

(
µ(C −K)− c

)
= 0. (A.115)

Given:

−∂H

∂K
= −

(
Pj ·

(
∂f

∂b

∂g

∂K
+

∂f

∂c
(−µ)

)
+ µ+ λ1µ

)
(A.116)

[#2] yields:

ṗ(t) = −
(
Pj ·

(
∂f

∂b

∂g

∂K
− µ · ∂f

∂c

)
+ µ+ λ1µ

)
+ ρp(t) (A.117)

The transversality condition [#3] requires that

lim
t→∞

p(t)K∗(t)e−ρt = 0. (A.118)

We can use (A.115) to find the farmer’s optimal trajectories when the lower bound constraint

on I(t) binds as follows:

I(t) =
(
µ(C −K)− c

)
(A.119)
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Remember that the upper bound constraint on per-period synthetic compound use, c, is assumed

to satisfy the following conditions:

• c = µ(X)C when µ(X) > 0

• and c > 0 when µ(X) = 0

When µ(X) = 0, then K̂j does not exist, so the case when µ(X) = 0 does not apply when K̂j

exists.

When µ ̸= 0 the farmer’s optimal constrained trajectory is:

K(t) = K(0) · e−µ·t ∀ t (A.120)

I(t) = −µK(t)∀ t (A.121)

c(t) = c = µC ∀ t (A.122)

C(t) = C −K(0) · e−µ·t ∀ t (A.123)

Given g̃(C(t), c(t)) = γcc+
1
2γccc

2 + γK
(
C − C(t)

)
+Ab:

b(t) = max{γcc+
1

2
γccc

2 + γK ·
(
K(0) · e−µ·t)+Ab, 0} ∀ t (A.124)

Given f(c(t), b(t)) = αcc(t) + αbb(t) +Ay:

y(t) = αc · c+ αb · b(t)LC +Ay ∀ t (A.125)

The lower bound to I binds when the optimal unconstrained synthetic compound level c∗∗j
exceeds the upper bound for synthetic compound use (i.e., if c∗∗j > c). If the optimal unconstrained

synthetic compound level c∗∗j exceeds the upper bound for synthetic compound use (i.e., if c∗∗j > c),

this means that the PDV of the entire stream of MNB of an additional unit of synthetic compound

c(t) today is still greater than 0 at c = c.

When K̂j exists, the optimal unconstrained synthetic compound level c∗∗j is given by c∗∗ = ĉj .

If c∗∗ = ĉj > c, this means K̂j < 0. A negative K̂j means that even at K = 0, the marginal net

benefit of synthetic compound use at c = c is positive.

So a sufficient condition for the farmer to adopt a lower corner solution when µ ̸= 0 and K̂j

exists, assuming that K0j ̸= K̂j , is for the marginal net benefit of synthetic compound use to be

positive, even when we are accounting for convex costs, and even when those convex costs are

evaluated at c(t) = c.
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When the lower bound constraint on investment binds, the multiplier λ1 on the lower bound

constraint is given by:

λ1(t) = Pj ·
(
αc + αb

(
γcc · c(t) + γc −

1

(µ+ ρ)
γK

))
− 1︸ ︷︷ ︸

MNB of c(t)

(A.126)

If K̂j is positive and greater than K(t), then the farmer is never at the lower corner solution

for I(t). This makes sense since if K̂j > K(t), then means we will be investing in the stock of clean

soil to increase K(t) and approach K̂j from below.

The lower bound binds when K̂j < 0. A negative K̂j means that even at K = 0, the marginal

net benefit of synthetic compound use at c = c is positive. In this case the farmer is always at

the lower corner solution for I(t), and the farmer’s capital trajectory converges to K(t) = 0 from

above.

So a sufficient condition for the farmer to adopt a lower corner solution when µ ̸= 0, assuming

that K0j ̸= K̂j , is for the marginal net benefit of synthetic compound use to be positive, even when

we are accounting for convex costs, and even when those convex costs are evaluated at c(t) = c.

A.6.3 Upper corner solution for I(t) (OT5)

On the other hand if I(t) has an upper corner solution (such that the upper bound constraint on

I(t) binds, but the lower bound constraint does not) we will have λ1 = 0 and λb ≥ 0. Then the

Maximum Principle will yield:

[#1]:

∂H

∂I
= Pj ·

(
∂f

∂b

∂g

∂I
+

∂f

∂c
(−1)

)
+ 1 + p− λb = 0 (A.127)

⇒ −
(
Pj ·

(
∂f

∂b

∂g

∂I
− ∂f

∂c

)
+ 1

)
+ λb = p (A.128)

⇒
(
−
(
Pj ·

(
αb

(
−γcc

(
µ
(
C −K

)
− I
)
− γc

)
− αc

)
+ 1
)
+ λb

)
= p (A.129)

and

∂H

∂λb
=
(
µ(C −K)− I

)
= 0 (A.130)

µ
(
C −K(t)

)
− I(t) = 0 (A.131)

[#2]:
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−∂H

∂K
= −

(
Pj ·

(
∂f

∂b

∂g

∂K
+

∂f

∂c
(−µ)

)
+ µ− λbµ

)
(A.132)

so that

ṗ(t) = −
(
Pj ·

(
∂f

∂b

∂g

∂K
− µ · ∂f

∂c

)
+ µ− λbµ

)
+ ρp(t) (A.133)

and [#3]: the transversality condition requires that

lim
t→∞

p(t)K∗(t)e−ρt = 0 (A.134)

We can use (A.131) to find the farmer’s optimal trajectories when the upper bound constraint

on I(t) binds as follows:

µC − µK(t)− I(t) = 0 (A.135)

⇒ µK(t) + K̇(t) = µC (A.136)

⇒
(
µK(t) + K̇(t)

)
· eµ·t = µC · eµ·t (A.137)

⇒
∫ t

s=0

(
µK(s) + K̇(s)

)
· eµ·sds =

∫ t

s=0
µC · eµ·sds (A.138)

⇒ K(s) · eµ·s]t0 = C · eµ·s
]s
0

(A.139)

⇒ K(t) · eµ·t −K0j = C · eµ·t − C (A.140)

⇒ K(t) = C −
(
C −K0j

)
e−µ·t (A.141)

I(t) = µ ·
(
C −K0j

)
e−µ·t (A.142)

⇒ I(t) = µ ·
(
C −K(t)

)
(A.143)

To determine when upper bound for I(t) binds or not, ewe compare the interior solution for

I(t):
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I(K(t))Int = µ(K̂j −K(t)Int) (A.144)

to the upper corner solution for I(t):

I(K(t))UC = µ ·
(
C −K(t)UC

)
(A.145)

in order to determine the conditions under which the interior solution falls above the upper corner

solution, at which point the upper bound constraint on I(t) will bind: we examine the following

inequality

I(K(t))UC < I(K(t))Int (A.146)

µ ·
(
C −K(t)UC

)
< µ(K̂j −K(t)Int) (A.147)

⇒ C < K̂j (A.148)

Note that if C < K̂j , then we have I(t)UC < I(t)Int for all t . In this case the farmer is stuck at

the upper corner solution indefinitely. On the other hand if C ≥ K̂j , then we have I(t)UC ≥ I(t)Int

for all t . In this case the farmer’s investment trajectory will never be constrained by its upper

bound, and we will have λb = 0∀t.

If C < K̂j , then we are stuck at the upper corner solution indefinitely such that we will have

λb(t) ≥ 0 indefinitely, so we are able to use the transversality condition to get more information

about λb(t) and derive the closed form solution above.

When K̂j > C, the optimal solution is to continue to invest as fast as possible until K = C. In

this case, the upper bound on I(t) always binds and the farmer’s optimal solutions take the form:

K∗
j (t) = K(t)UC, Sj = C −

(
C −K0j

)
e−µ·t (A.149)

I∗j (t) = I(t)UC, Sj = µ ·
(
C −K(t)UC, Sj

)
(A.150)

c∗j (t) = 0 (A.151)

C∗
j (t) =

(
C −K0j

)
e−µ·t (A.152)

b∗j (t) =
(
γK
(
C −

(
C −K0j

)
e−µ·t)+Ab

)
(A.153)

y∗j (t) = αb

(
γK
(
C −

(
C −K0j

)
e−µ·t)+Ab

)
+Ay (A.154)
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To determine λb:

For the intervals of time over which we have an upper corner solution for I(t), we have a

continuous λb(t). In that we can solve for λb(t) as follows. From (A.129) we have:

p(t) =
(
−
(
Pj ·

(
αb

(
−γcc

(
µ
(
C −K(t)

)
− I(t)

)
− γc

)
− αc

)
+ 1
)
+ λb(t)

)
(A.155)

or, given (A.141) and (A.143):

p(t) = (Pj · (αbγc + αc)− 1 + λb(t)) (A.156)

Taking the time derivative of both sides of the equation above we get:

ṗ(t) = λ̇2(t) (A.157)

But from the second condition of the maximum principle, [#2], we have:

ṗ(t) = −∂H

∂K
+ ρp(t) (A.158)

where

−∂H

∂K
= −

(
Pj ·

(
∂f

∂b

∂g

∂K
+

∂f

∂c
(−µ)

)
+ µ− λbµ

)
, (A.159)

so that

ṗ(t) = −
(
Pj ·

(
∂f

∂b

∂g

∂K
− µ · ∂f

∂c

)
+ µ− λbµ

)
+ ρp(t). (A.160)

Given our assumed functional forms for f and g, the equation above can be written as:

ṗ(t) = −
(
Pj ·

(
αb

(
−µγcc

(
µ
(
C −K

)
− I
)
− γcµ+ γK

)
− µ · αc

)
+ µ− λbµ

)
+ ρp(t) (A.161)

We can substitute (A.141), (A.143), (A.156) and (A.157) into the above to get:

λ̇2(t) = −
(
Pj ·

(
αb

(
−µγcc

(
µ
(
C −

(
C +

(
K0j − C

)
e−µ·t)) (A.162)

−µ ·
(
C −K0j

)
e−µ·t)− γcµ+ γK

)
− µ · αc

)
+ µ− λbµ

)
+ ρ (Pj · (αbγc + αc)− 1 + λb(t))

We simplify the equation above and solve the resulting second order ODE for λb(t):

λb(t) =
(
Pjαbγccµ

(
K̂j − C

)(
·e(µ+ρ)·t − 1

)
+ λb(0) · e(µ+ρ)·t

)
(A.163)
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Note that we can make use of the transversality condition to find λb(0) because as we previously

showed, whenever the upper bound on investment binds, it will bind for all t ≥ 0.

So, substituting p(t) = (Pj · (αbγc + αc)− 1 + λb(t)), (A.163), andK(t)UC =
(
C +

(
K0j − C

)
· e−µ·t)

into our transversality condition, we get

lim
t→∞

(
CPjαb

(
γc +

αc − P−1
j

αb
− γccµ

(
K̂j − C

))
e−ρt + C

(
Pjαbγccµ

(
K̂j − C

)
+ λb(0)

)
· eµ·t

+Pjαb

(
K0j − C

)(
γc +

αc − P−1
j

αb
− γccµ

(
K̂j − C

))
e−(ρ+µ)t

+
(
K0j − C

) (
Pjαbγccµ

(
K̂j − C

)
+ λb(0)

))
= 0

which is equivalent to:

lim
t→∞

(
C
(
Pjαbγccµ

(
K̂j − C

)
+ λb(0)

)
· eµ·t

+
(
K0j − C

) (
Pjαbγccµ

(
K̂j − C

)
+ λb(0)

))
= 0

which is satisfied if

λb(0) = −Pjαbγccµ
(
K̂j − C

)
(A.164)

So we have

λb(t) =
(
Pjαbγccµ

(
K̂j − C

)(
·e(µ+ρ)·t − 1

)
− Pjαbγccµ

(
K̂j − C

)
· e(µ+ρ)·t

)
(A.165)

⇒ λb(t) = −Pjαbγccµ
(
K̂j − C

)
∀t ≥ 0 (A.166)

p(t) =
(
Pj · (αbγc + αc)− 1− Pjαbγccµ

(
K̂j − C

))
(A.167)

⇒ p(t) = αb

(
γc +

αc − P−1
j

αb
− γccµ

(
K̂j − C

))
(A.168)

A.7 Optimal Solution for Stage j When R(K) is Constant Because µ = 0

If µ = 0 (i.e., synthetic compounds in the soil do not decay on their own) then Rj(K) is a constant

(that does not depend on K).
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A.7.1 Optimal Trajectories 1” [OT1”]: Disinvest to K = 0

When γcc ̸= 0 but µ = 0 the gain function is non-linear in I, and therefore the optimal policy will

not be MRA. If the lower corner solution for I does not bind (because c∗∗j ≤ c), we will have an

interior soluion.

If neither constraint on I(t) binds and I(t)∗ is interior, the conditions of the Maximum Principle

yield:

[#1]:

∂H

∂I
= Pj ·

(
∂f

∂b

∂g

∂I
+

∂f

∂c
(−1)

)
+ 1 + p = 0 (A.169)

⇒ p(t) = −Pj · (αb (−γc)− αc)− Pjαbγcc · I(t)− 1 (A.170)

⇒ I(t) =
γc +

αc−P−1
j

αb

γcc
− 1

Pjαbγcc
p(t) (A.171)

[#2]:

−∂H

∂K
= −

(
Pj ·

(
∂f

∂b

∂g

∂K
+

∂f

∂c
(−µ)

)
+ µ

)
(A.172)

or, given µ = 0,

−∂H

∂K
= −Pj ·

(
∂f

∂b

∂g

∂K

)
(A.173)

so that

ṗ(t) = −Pj ·
(
∂f

∂b

∂g

∂K

)
+ ρp(t) (A.174)

⇒ ṗ(t) = − (Pj · (αbγK)) + ρp(t) (A.175)

and [#3]: the transversality condition requires that

lim
t→∞

p(t)K∗(t)e−ρt = 0 (A.176)

Using (A.175), we can solve for p(t) as follows:
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ṗ(t)− ρp(t) = −PjαbγK (A.177)

⇒ p(t) =
PjαbγK

ρ
+

(
p(0)− PjαbγK

ρ

)
· eρ·t (A.178)

Substituting (A.178) into (A.171) yields:

I(t) =
γc +

αc−P−1
j

αb
− 1

ργK

γcc
−
(

p(0)

Pjαbγcc
− γK

ργcc

)
· eρ·t (A.179)

And integrating the above yields:

K(t) =

γc +
αc−P−1

j

αb
− 1

ργK

γcc
t− 1

ρ

(
p(0)

Pjαbγcc
− γK

ργcc

)
· eρ·t (A.180)

+
1

ρ

(
p(0)

Pjαbγcc
− γK

ργcc

)
+K0j

)
where K0j is given.

We then substitute (A.171) and (A.180) into our transversality condition to see if we can learn

more about p(0).

lim
t→∞

p(t)K∗(t)e−ρt = 0 (A.181)

⇒ lim
t→∞

PjαbγK
ρ

γc +
αc−P−1

j

αb
− 1

ργK

γcc
t+

1

ρ

(
p(0)

Pjαbγcc
− γK

ργcc

)
+K0j

 e−ρt (A.182)

−PjαbγK
ρ

1

ρ

(
p(0)

Pjαbγcc
− γK

ργcc

)

+

(
p(0)− PjαbγK

ρ

)γc +
αc−P−1

j

αb
− 1

ργK

γcc
t+

1

ρ

(
p(0)

Pjαbγcc
− γK

ργcc

)
+K0j

 e−2ρt

− 1

ρPjαbγcc

(
p(0)− PjαbγK

ρ

)2

· e−ρ·t

)
= 0

Applying l’Hospital’s rule we see that this limit is equivalent to:

lim
t→∞

(
−PjαbγK

ρ

1

ρ

(
p(0)

Pjαbγcc
− γK

ργcc

))
= 0 (A.183)

So we see that the transversality condition will be satisfied if:
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p(0) =
PjαbγK

ρ
(A.184)

Let’s make this assumption. Then we have that

p(t) =
PjαbγK

ρ
(A.185)

I(t) =
γc +

αc−P−1
j

αb
− 1

ργK

γcc
(A.186)

⇒ I(t) =

γK

γc+
αc−P−1

j
αb

γK
− 1

ρ


γcc

(A.187)

⇒ I(t) =
γK
γcc

(
R(K)−1 − ρ−1

)
(A.188)

⇒ I(t) =
γK

(−γcc)

(
ρ−1 −R(K)−1

)
(A.189)

and

K(t) =


γK

γc+
αc−P−1

j
αb

γK
− 1

ρ


γcc

t+K0j

 (A.190)

⇒ K(t) =
γK
γcc

(
R(K)−1 − ρ−1

)
· t+K0j (A.191)

⇒ K(t) =
γK

(−γcc)

(
ρ−1 −R(K)−1

)
· t+K0j (A.192)

However, note that if R(K) is constant (as when µ = 0), and R(K) ≤ ρ, as we’ve assumed,

then the equation for K(t) that we have derived above implies K is weakly decreasing in t, and

strictly decreasing when R(K) < ρ and γK ̸= 0. When this is the case, K(t)∗ will eventually fall

below zero, and the farmer will have to switch to a constrained optimal solution so as to prevent

K from violating our non-negativity condition. We solve for the first moment at which K(t)∗ = 0,

which we will denote T (µ)K=0, below:

K(T (µ)K=0) =
γK

(−γcc)

(
ρ−1 −R(K)−1

)
· T (µ)K=0 +K0j = 0 (A.193)
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T (µ)K=0 =
−K0j

γK
(−γcc)

(ρ−1 −R(K)−1)
(A.194)

⇒ T (µ)K=0 =
K0j

γK
(−γcc)

· (R(K)−1 − ρ−1)
≥ 0 (A.195)

⇒ T (µ)K=0 =
K0j

γK
(−γcc)

·

γc+
αc−P−1

j
αb

γK
− 1

ρ

 ≥ 0 (A.196)

So ∀t ≤ T (µ)K=0 the farmer adopts the unconstrained optimal solution:

K(t)∗ =

(
γK

(−γcc)

(
ρ−1 −R(K)−1

)
· t+K0j

)
∀t ≤ T (µ)K=0 (A.197)

and

I(t)∗ =
γK

(−γcc)

(
ρ−1 −R(K)−1

)
∀t ≤ T (µ)K=0. (A.198)

Otherwise, when t > T (µ)K=0 the farmer adopts the constrained optimal solution:

K(t) = 0, ∀t > T (µ)K=0 (A.199)

and

I(t) = 0, ∀t > T (µ)K=0. (A.200)

We therefore have the overall solution:

K(t) =


γK

(−γcc)

(
ρ−1 −R(K)−1

)
· t+K0j , ∀t ≤ T (µ)K=0

0, ∀t > T (µ)K=0

(A.201)

and

I(t) =


γK

(−γcc)

(
ρ−1 −R(K)−1

)
, ∀t ≤ T (µ)K=0

0, ∀t > T (µ)K=0

(A.202)

Given this solution, we can solve for c(t) as follows:

c(t) = µ︸︷︷︸
=0

(
C −K(t)

)
− I(t) (A.203)

⇒ c(t) = −I(t) (A.204)
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⇒ c(t) =


γK
γcc

·
(
ρ−1 −R(K)−1

)
, ∀t ≤ T (µ)K=0

0, ∀ > T (µ)K=0

(A.205)

We solve for C(t) as follows:

C(t) = C −K(t) (A.206)

⇒ C(t) =

C0j +
γK
γcc

(
ρ−1 −R(K)−1

)
· t ∀t ≤ T (µ)K=0

C ∀t > T (µ)K=0

(A.207)

We solve for b(t) as follows:

b(t) = γcc(t) +
1

2
γccc(t)

2 + γKK(t) +Ab (A.208)

b(t) =



γK ·
(((

γc−γK ·t
γcc

)
− 1

2 · (γcc)−1 · γK ·
(
ρ−1 −R(K)−1

))
·
(
ρ−1 −R(K)−1

)
+K0j) +Ab, ∀t ≤ T (µ)K=0

Ab, ∀t > T (µ)K=0

(A.209)

We solve for y(t) as follows:

y(t) = αcc(t) + αbb(t) +Ay (A.210)

y(t) =



αbγK

(
1
γcc

·
(
αc
αb

+ γc − γK ·
(
t+ 1

2 ·
(
ρ−1 −R(K)−1

)))
·
(
ρ−1 −R(K)−1

)
+K0j +

Ab+
Ay
αb

γK

)
, ∀t ≤ T (µ)K=0

αbAb +Ay, ∀t > T (µ)K=0

(A.211)
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B Discrete Transitions

B.1 Discrete Analysis for OT1

The sign of ∂∆(ϵ)
∂ϵ is given by:

∂∆(ϵ)

∂ϵ
≥ Pcon · αb ·

1

(µ+ ρ)
· γK︸ ︷︷ ︸

≥0

(B.1)

Thus, ∆(ϵ) is linear and weakly increasing in ϵ.

Let ϵ∗ be the value of ϵ such that ∆(ϵ∗) = 0. Note that ∆(ϵ∗) = 0. The range of ϵ yielding

∆(ϵ) ≥ 0 is ϵ ≥ ϵ∗ where:

ϵ∗ = − µ+ ρ

PconγK
· 1
ρ︸ ︷︷ ︸

≤0

(Porg − Pcon)

(
Ab +

Ay

αb

)
︸ ︷︷ ︸

≥0

−Pcon


(
1

2
γccµC + γc +

αc − P−1
con

αb

)
µ−

(
Porg

Pcon
− ρ

µ+ ρ

)
γK︸ ︷︷ ︸

≥0

C


(B.2)

This means that when ϵ∗ ≤ 0 the farmer will face Vorg(Korg)− Vcon(Korg − ϵ) > 0∀ϵ ≥ 0, and

will therefore prefer to produce organically for all feasible initial capital stocks (i.e. they always

prefer to produce organically).

Given ∂∆(ϵ∗)
∂ϵ ≥ 0, we will have that:

• The lower the threshold ϵ∗, the larger the set {K0,con = Korg − ϵ : ∆(ϵ) > 0}

• The higher the threshold ϵ∗, the smaller the {K0,con = Korg − ϵ : ∆(ϵ) > 0}

B.1.1 Comparative statics for ∆(ϵ)

First we do a comparative static exercise for ∆ (ϵ) = Vorg(Korg)− Vcon(Korg − ϵ). The results are

summarized in Table B.1 and derived below.
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∂∆(ϵ)

∂Pcon
=

1

ρ
· αb ·

−
(
Ab +

Ay

αb

)
︸ ︷︷ ︸

≤0

+ γK ·
(

ρ

(µ+ ρ)
· ϵ− C

)
︸ ︷︷ ︸

≤0

(B.3)

+

−

µγcc · K̂con︸ ︷︷ ︸
≤0︸ ︷︷ ︸

≥0

+
1

2
(−γcc)µC︸ ︷︷ ︸

≥0

+
P−1
con

αb︸ ︷︷ ︸
≥0



 · µC

︸ ︷︷ ︸
≤0


≤ 0

∂∆(ϵ)

∂Porg
=

1

ρ
· αb ·

(
γK · C +Ab +

Ay

αb

)
︸ ︷︷ ︸

≥0

≥ 0 (B.4)

∂∆(ϵ)

∂ρ
= −Pcon · αb ·

1

ρ2
·


(
γK · C +Ab +

Ay

αb

)
︸ ︷︷ ︸

≥0

·
(
Porg − Pcon

Pcon

)
︸ ︷︷ ︸

≥

+
ρ

(µ+ ρ)
· γK ·

(
ρ

µ+ ρ
· ϵ+ µC ·

(
1

ρ
+

1

(µ+ ρ)

))
︸ ︷︷ ︸

≥0

−
(
1

2
γccµC + γc +

αc − P−1
con

αb

)
· µC︸ ︷︷ ︸

≥0



So that for large enough
(
Porg−Pcon

Pcon

)
we will have ∂∆(ϵ)

∂ρ ≤ 0, and for small enough
(
Porg−Pcon

Pcon

)
and large enough αc we will have ∂∆(ϵ)

∂ρ ≥ 0.
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∂∆(ϵ)

∂µ
= −1

ρ
· Pcon · αb ·

 1

(µ+ ρ)2
· γK︸ ︷︷ ︸

≥0

·
(
ρ · ϵ+ µ · C

)
+ µγcc · K̂con︸ ︷︷ ︸

≥0

·C


︸ ︷︷ ︸

≥0

≤ 0

∂∆(ϵ)

∂C
=

1

ρ
· Pcon · αb︸ ︷︷ ︸

≥0

·

(γK)︸︷︷︸
≥0

·
(
Porg − Pcon

Pcon

)
︸ ︷︷ ︸

≥0

+(−γcc)µ
2K̂con︸ ︷︷ ︸

≤0

 (B.5)

So we will have ∂∆(ϵ)

∂C
≥ 0 for large enough

Porg−Pcon

Pcon
, and ∂∆(ϵ)

∂C
≤ 0 for negative enough K̂con

(as we might have when αc is sufficiently large)

∂∆(ϵ)

∂αb
=

1

ρ
· Pcon ·

(
γK · C +Ab

)
︸ ︷︷ ︸

≥0

·
(
Porg − Pcon

Pcon

)
︸ ︷︷ ︸

≥0

+Pcon · 1

(µ+ ρ)
· γK︸ ︷︷ ︸

≥0

·ϵ

+
1

ρ
· Pcon ·

(
1

2
(−γcc)µC + (−γc) +

1

(µ+ ρ)
· γK

)
· µC︸ ︷︷ ︸

≥0

≥ 0

∂∆(ϵ)

∂γcc
= −1

ρ
· Pcon · αb ·

1

2
·
(
µC
)2 ≤ 0 (B.6)

∂∆(ϵ)

∂γc
= −1

ρ
· Pcon · αb · µC ≤ 0 (B.7)

∂∆(ϵ)

∂γK
=

1

ρ
· Pcon · αb ·

C ·
(
Porg − Pcon

Pcon

)
+

1

(µ+ ρ)︸ ︷︷ ︸
≥0

·
(
ρϵ+ µC

)
 ≥ 0 (B.8)

which means that as the marginal product γK of an additional unit of clean soil increases, the

farmer becomes more likely to prefer organic production.
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∂∆(ϵ)

∂Ay
= (−Pcon · αb) ·

Pcon − Porg

ρPconαb
≥ 0 (B.9)

∂∆(ϵ)

∂Ab
= (−Pcon · αb) ·

Pcon − Porg

ρPcon
≥ 0 (B.10)

∂∆(ϵ)

∂ϵ
= (−Pcon · αb) ·

(
− γK
µ+ ρ

)
≥ 0 (B.11)
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Table B.1: Comparative Statics for ∆ (ϵ) When Conventional Farmer Adopts OT1

Parameter Full Information: OT1

ρ

+

−

Small enough
(
Porg−Pcon

Pcon

)
and large

enough αc.

Large enough
(
Porg−Pcon

Pcon

)
µ −

Porg +

Pcon −
αb +

αc −
γc −
γcc −
γK +

Ay +

Ab +

C

+

−
Large enough

Porg−Pcon

Pcon
.

Large enoughαc

ϵ +

Notes: Table reports comparative statics for ∆ (ϵ) = Vorg(Korg)−Vcon(Korg− ϵ) when the
optimal solution for the conventional farmer is to disinvest as fast as possible until K = 0.
A conventional farmer will prefer producing organically when ∆ (ϵ) > 0.
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B.1.2 Comparative statics for ϵ∗

Now we do comparative statics of ϵ∗ for the parameters: µ, ρ, γcc, γc, γK , α1,αc, Pcon, and Porg.

The results are summarized in Table B.2.

∂ϵ∗

∂Porg
= − µ+ ρ

PconγK
· 1
ρ︸ ︷︷ ︸

≤0


(
Ab +

Ay

αb

)
︸ ︷︷ ︸

≥0

+ γKC︸︷︷︸
≥0︸ ︷︷ ︸

≥0


≤ 0 (B.12)

∂ϵ∗

∂C
= − µ+ ρ

PconγK
· 1
ρ︸ ︷︷ ︸

≤0

(Porg − Pcon) γK︸ ︷︷ ︸
≥0

−µ2PconγccK̂con

 (B.13)

So for sufficiently large organic price premiums ((Porg − Pcon) large) we’ll have
∂ϵ∗

∂C
≤ 0. On the

other hand when synthetic compounds are very effective at increasing yields (such that we have

very large µ2PconγccK̂con), we’ll have
∂ϵ∗

∂C
≥ 0.

∂ϵ∗

∂µ
=

(
1

µ+ ρ

)
ϵ∗ +

(
µ+ ρ

PconγK

)
· 1
ρ

(
Pcon

((
γccµC + γc +

αc − P−1
con

αb

)
−
(

ρ

(µ+ ρ)2

)
γK

)
C

)
(B.14)

Since for a conventional OT1 farmer we have that K̂con < 0 (and K̂org < 0), we have that:

K̂con =
(ρ+ µ)

(
γccµC + γc +

αc−P−1
con

αb

)
− γK

(ρ+ µ) γccµ
≤ 0 (B.15)

Since ρ > 0, µ ≥ 0, and γcc ≤ 0, we know that (ρ+ µ) γccµ ≤ 0 (and in particular if K̂con is

well defined and satisfies K̂con ≤ 0, it must be the case that (ρ+ µ) γccµ < 0). Then if K̂con ≤ 0

and (ρ+ µ) γccµ ≤ 0 it must be the case that:

(ρ+ µ)

(
γccµC + γc +

αc − P−1
con

αb

)
− γK ≥ 0 (B.16)

Given γK ≥ 0, we know that γK ≥ ρ
ρ+µ · γK ≥ 0 (since 0 ≤ ρ

ρ+µ ≤ 1). Thus

(ρ+ µ)

(
γccµC + γc +

αc − P−1
con

αb

)
− ρ

(ρ+ µ)
γK ≥ 0 (B.17)
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Thus:

∂ϵ∗

∂µ
=

(
1

µ+ ρ

)
ϵ∗ +

(
C

γK

)
· 1
ρ︸ ︷︷ ︸

≥0

·

(µ+ ρ)

(
γccµC + γc +

αc − P−1
con

αb

)
− ρ

(µ+ ρ)
γK︸ ︷︷ ︸

≥0

 ≥ 0 (B.18)

where:

ϵ∗ =

(
µ+ ρ

γK
·
(
1

2
γccµC + γc +

αc − P−1
con

αb

)
− 1

)
· µ
ρ
· C

− 1

γK
· µ+ ρ

ρ
·
(
γK · C +Ab +

Ay

αb

)
︸ ︷︷ ︸

≥0

·
(
Porg − Pcon

Pcon

)

∂ϵ∗

∂µ
=

1

ρ
·
(

1

γK
·
(
1

2
· (−γcc) · C − 1

(µ+ ρ)2
· γK

)
· µ2 · C (B.19)

+

− 1

γK
·
(
γKC +Ab +

Ay

αb

)
︸ ︷︷ ︸

≥0

·
(
Porg − Pcon

Pcon

)
︸ ︷︷ ︸

≥0


︸ ︷︷ ︸

≤0

+
2µ+ ρ

µ+ ρ
·
(

C

γK

)
·
(
(µ+ ρ)

(
γccµC + γc +

αc − P−1
con

αb

)
− ρ

(µ+ ρ)
γK

)
︸ ︷︷ ︸

≥0



We have then that ∂ϵ∗

∂µ ≤ 0 for large enough organic price premia
Porg−Pcon

Pcon
, or large enough

Ab +
Ay

αb
, such that factors of production other than synthetic compounds and soil bacteria are

sufficiently important in determining yields. We will have ∂ϵ∗

∂µ ≥ 0, on the other hand, if both the

organic price premia
Porg−Pcon

Pcon
are sufficiently small and also (µ+ ρ) is sufficiently large.

∂ϵ∗

∂ρ
=

(
1

ρ
− 1

µ+ ρ

)
︸ ︷︷ ︸

≥0

(
C − ϵ∗

)
(B.20)
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The sign of
(
C − ϵ∗

)
is ambiguous, and will depend on other parameter values. What we can

say is that
(
C − ϵ∗

)
≥ 0 is a necessary condition for the feasible set of initial capital stock for

which the farmer prefers to produce organically to be non-empty. So if the feasible set of initial

capital stocks for which the farmer prefers to produce organically to be non-empty then we will

have ∂ϵ∗

∂ρ ≥ 0, such that increasing the interest rate (so that the farmer cares less about the future)

increases ϵ∗, and contracts the set of initial capital stock at which the farmer prefers to produce

organically.

∂ϵ∗

∂γcc
=

µ+ ρ

γK
· 1
ρ

(
1

2

(
µC
)2) ≥ 0 (B.21)

∂ϵ∗

∂γc
=

µ+ ρ

γK
· µ
ρ
C ≥ 0 (B.22)

∂ϵ∗

∂γK
=

1

γ2K
· µ+ ρ

ρ︸ ︷︷ ︸
≥0

·


(
Porg − Pcon

Pcon

)(
Ab +

Ay

αb

)
︸ ︷︷ ︸

≥0

+

(
1

2
γccµC + γc +

αc − P−1
con

αb

)
︸ ︷︷ ︸

≥0

·
(
−µC

)︸ ︷︷ ︸
≤0︸ ︷︷ ︸

≤0


,

(B.23)

where
(
1
2γccµC + γc +

αc−P−1
con

αb

)
≥ 0 comes from the fact that for a conventional OT1 farmer we

have K̂con. So we see that we will have:

• ∂ϵ∗

∂γK
≥ 0 when:

1. We have large enough organic price premia
Porg−Pcon

Pcon

2. or large enough Ab +
Ay

αb
, such that factors of production other than synthetic compounds

and soil bacteria are sufficiently important in determining yields.

• We will have ∂ϵ∗

∂γK
≤ 0 when both:

1. We have small enough organic price premia,
Porg−Pcon

Pcon

2. and small enough Ab +
Ay

αb
, such that factors of production other than synthetic compounds

and soil bacteria are sufficiently unimportant for determining yields.
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∂ϵ∗

∂αb
=

1

α2
b

· µ+ ρ

ρ
· 1

γK


(
Porg − Pcon

Pcon

)
·Ay︸ ︷︷ ︸

≥0

−
(
αc − P−1

con

)︸ ︷︷ ︸
≥0

· µC︸︷︷︸
≥0

 (B.24)

where αc − P−1
con ≥ 0 comes from K̂con ≤ 0, which is satisfied in for a conventional OT1 farmer,

since:

K̂con =
(ρ+ µ)

(
γccµC + γc +

αc−P−1
con

αb

)
− γK

(ρ+ µ) γccµ︸ ︷︷ ︸
≤0

≤ 0 (B.25)

⇒ (ρ+ µ)︸ ︷︷ ︸
≥0

γccµC︸ ︷︷ ︸
≤0

+ γc︸︷︷︸
≤0

+
αc − P−1

con

αb

− γK︸︷︷︸
≥0

≥ 0 (B.26)

⇒ αc − P−1
con

αb
≥ 0 (B.27)

⇒ αc − P−1
con ≥ 0 (B.28)

So we have that:

∂ϵ∗

∂αb
=

1

α2
b

· µ+ ρ

ρ
· 1

γK︸ ︷︷ ︸
≥0

·


(
Porg − Pcon

Pcon

)
·Ay︸ ︷︷ ︸

≥0

−
(
αc − P−1

con

)︸ ︷︷ ︸
≥0

· µC︸︷︷︸
≥0

 (B.29)

We have ∂ϵ∗

∂αb
≥ 0 when:

1. We have large enough organic price premia
Porg−Pcon

Pcon

2. or large enough Ay, such that factors of production other than synthetic compounds and soil

bacteria are sufficiently important in determining yields.

We will have ∂ϵ∗

∂αb
≤ 0 when both:

1. We have small enough organic price premia
Porg−Pcon

Pcon

2. and small enough Ay, such that factors of production other than synthetic compounds and

soil bacteria are sufficiently unimportant for determining yields.
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∂ϵ∗

∂αc
=

µ+ ρ

ρ
· 1

γK
· 1

αb
· µC ≥ 0 (B.30)

So that increasing the benefit of synthatic compounds (αc) increases the value of (ϵ
∗) and shrinks

the set of initial capital stocks for which the farmer prefers to produce organically.

∂ϵ∗

∂Pcon
=

1

Pcon

 µ+ ρ

PconγK
· 1
ρ
Porg

(
Ab +

Ay

αb

)
︸ ︷︷ ︸

≥0

+
µ+ ρ

PconγK
· 1
ρ

(
1

αb
µ+ PorgγK

)
C︸ ︷︷ ︸

≥0

 ≥ 0

So that increasing the price at which conventional farmers can sell their crops (Pcon) increases

the value of (ϵ∗) and shrinks the set of initial capital stocks for which the farmer prefers to produce

organically.
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Table B.2: Comparative Statics for ϵ∗ When Conventional Farmer Adopts OT1

Parameter Full Information: OT1

ρ
−

+

ρ and γK large enough,(
Porg

Pcon
− 1
)
and ϵ small enough.

(
Ab +

Ay

αb

)
sufficiently large

µ
−

+

Porg−Pcon

Pcon
large enough, or

Ab +
Ay

αb
large enough.

Porg−Pcon

Pcon
small enough, and

(µ+ ρ) large enough.

Porg -

Pcon +

αb

−

+

Porg−Pcon

Pcon
small enough, and

Ay small enough.

Porg−Pcon

Pcon
large enough, or

Ay large enough.

αc +

γc +

γcc +

γK

−

+

Porg−Pcon

Pcon
small enough, and

Ab +
Ay

αb
small enough.

Porg−Pcon

Pcon
large enough, or

Ab +
Ay

αb
large enough.

Ay +

Ab +

c0 0

C0 0

C
−
+

(Porg − Pcon) large enough
(Porg − Pcon) small enough

Notes: Table reports comparative statics for ϵ∗+ when the optimal solution for the
conventional farmer is to disinvest as fast as possible until K = 0. A conventional farmer
will prefer producing organically for all K0,con = Korg − ϵ at least ϵ∗+ lower than Korg.
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B.1.3 Comparative statics for threshold organic price premium
(
Porg−Pcon

Pcon

)∗
We also want to find how large the price premium needs to be in order to induce the fully informed

farmer to prefer organic management. We derive this requirement for
(
Porg−Pcon

Pcon

)
below.

The range of
(
Porg−Pcon

Pcon

)
yielding ∆(ϵ) ≥ 0 is

Porg−Pcon

Pcon
≥
(
Porg−Pcon

Pcon

)∗
, where:

(
Porg − Pcon

Pcon

)∗
=

(
1
2γccµC + γc +

αc−P−1
con

αb

)
· µC − 1

(µ+ρ) · γK ·
(
µC + ρ · ϵ

)
γK · C +Ab +

Ay

αb

(B.31)

We now conduct a comparatic statics analysis for threshold organic price premium
(
Porg−Pcon

Pcon

)∗
.

The results are summarized in Table B.3.

Given that:
∂∆(ϵ)

∂
(
Porg−Pcon

Pcon

) ≥ 1

ρ
· Pcon · αb ·

(
γK · C +Ab +

Ay

αb

)
︸ ︷︷ ︸

≥0

(B.32)

then any change in parameter values that increases the value of
(
Porg−Pcon

Pcon

)∗
will shrink the set of

organic price premia for which ∆(ϵ) ≥ 0.

∂
(
Porg−Pcon

Pcon

)∗
∂ϵ

=
− 1

(µ+ρ) · γK · ρ

γK · C +Ab +
Ay

αb

≤ 0 (B.33)

∂
(
Porg−Pcon

Pcon

)∗
∂ρ

=
µ · γK
(µ+ ρ)2

· C − ϵ

γK · C +Ab +
Ay

αb

≥ 0 (B.34)

∂
(
Porg−Pcon

Pcon

)∗
∂µ

=

(
γccµK̂con

)
︸ ︷︷ ︸

≥0

·C +
1

(µ+ ρ)
· γK ·

(
µ

µ+ ρ
· C +

ρ

µ+ ρ
· ϵ
)

︸ ︷︷ ︸
≥0

γK · C +Ab +
Ay

αb︸ ︷︷ ︸
≥0

≥ 0 (B.35)
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∂
(
Porg−Pcon

Pcon

)∗
∂γK

= −
(
γK · C +Ab +

Ay

αb

)−2

︸ ︷︷ ︸
≤0

(B.36)

·



µγcc

(
K̂con − 1

2
C

)
︸ ︷︷ ︸

≥0

+
1

µ+ ρ
· γK

 · µC2

︸ ︷︷ ︸
≥0

+

(
Ab +

Ay

αb

)
· µC + ρ · ϵ

µ+ ρ︸ ︷︷ ︸
≥0


≤ 0

∂
(
Porg−Pcon

Pcon

)∗
∂ · C

=

(
γK · C +Ab +

Ay

αb

)−1

︸ ︷︷ ︸
≥0

(B.37)

·


(
γK · C +Ab +

Ay

αb

)−1

︸ ︷︷ ︸
≥0

·

 1

(µ+ ρ)
· γK · ρ

µ
· ϵ

C︸ ︷︷ ︸
≥0

+(−γcc)µ

(
K̂con − 1

2
C

)
︸ ︷︷ ︸

≤0

 · γKµC︸ ︷︷ ︸
≥0

+ γccµ
2 · K̂con︸ ︷︷ ︸
≥0



We will have
∂
(

Porg−Pcon
Pcon

)∗

∂·C ≤ 0 for small enough ρ, small enough γK and small enough(
Ab +

Ay

αb

)
(i.e synthetic compounds being relatively important, and the economic agent we caring

enough about the future). We will have
∂
(

Porg−Pcon
Pcon

)∗

∂·C ≥ 0 for large enough ρ.

∂
(
Porg−Pcon

Pcon

)∗
∂Ay

=

(
γK · C +Ab +

Ay

αb

)−2

·
(
− 1

αb

)
︸ ︷︷ ︸

≤0

·

γcc · µ
(
K̂con − 1

2
C

)
· µC︸ ︷︷ ︸

≥0

+

(
−ρ

(µ+ ρ)

)
· γK · ϵ︸ ︷︷ ︸

≤0


(B.38)
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We will have
∂
(

Porg−Pcon
Pcon

)∗

∂Ay
≥ 0 for large enough ρ and non-zero ϵ. We will have

∂
(

Porg−Pcon
Pcon

)∗

∂Ay
≤ 0

for small enough ρ or ϵ.

∂
(
Porg−Pcon

Pcon

)∗
∂Ab

=

(
γK · C +Ab +

Ay

αb

)−2

︸ ︷︷ ︸
≥0

·

µ (−γcc) ·
(
K̂con − 1

2
C

)
· µC︸ ︷︷ ︸

≤0

+

(
ρ

µ+ ρ

)
· γK · ϵ︸ ︷︷ ︸

≥0


(B.39)

We will have
∂
(

Porg−Pcon
Pcon

)∗

∂Ab
≥ 0 for large enough ρ and non-zero ϵ. We will have

∂
(

Porg−Pcon
Pcon

)∗

∂Ab
≤ 0

for small enough ρ or ϵ.

∂
(
Porg−Pcon

Pcon

)∗
∂αb

=
Ay(

αb ·
(
γK · C +Ab

)
+Ay

)2︸ ︷︷ ︸
≥0

·

γccµ ·
(
K̂con − 1

2
C

)
· µC︸ ︷︷ ︸

≥0

+
−ρ

(µ+ ρ)
· γK · ϵ︸ ︷︷ ︸

≤0


(B.40)

+

(
−
(
αc−P−1

con
αb

)
· µC

)
(
αb

(
γK · C +Ab

)
+Ay

)︸ ︷︷ ︸
≤0

We will have
∂
(

Porg−Pcon
Pcon

)∗

∂αb
≥ 0 for small enough ρ and and large enough Ay. We will have

∂
(

Porg−Pcon
Pcon

)∗

∂αb
≤ 0 for large enough ρ.

∂
(
Porg−Pcon

Pcon

)∗
∂γcc

=
1
2

(
µC
)2

γK · C +Ab +
Ay

αb

≥ 0 (B.41)

∂
(
Porg−Pcon

Pcon

)∗
∂γc

=
µC

γK · C +Ab +
Ay

αb

≥ 0 (B.42)
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∂
(
Porg−Pcon

Pcon

)∗
∂αc

=

(
1
αb

)
· µC

γK · C +Ab +
Ay

αb

≥ 0 (B.43)

∂
(
Porg−Pcon

Pcon

)∗
∂Pcon

=

(
P−2
con
αb

)
· µC

γK · C +Ab +
Ay

αb

≥ 0 (B.44)
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Table B.3: Comparative Statics for
(
Porg−Pcon

Pcon

)∗
When Conventional Farmer Adopts OT1

Parameter Full Information: OT1

ϵ -

ρ +

µ +

γK -

C
−

+

For small enough ρ, γK , and (Ab +
Ay

ab
)

For large enough ρ

Ay

−

+

For small enough ρ or ϵ

For large enough ρ and non-zero ϵ

Ab

−

+

For small enough ρ or ϵ

For large enough ρ and non-zero ϵ

αb

−

+

For large enough ρ

For small enough ρ and large enough Ay

γcc +

γc +

αc +

Pcon +

Notes: Table reports comparative statics for
(
Porg−Pcon

Pcon

)∗
when the optimal solution for

the conventional farmer is to disinvest as fast as possible until K = 0. A conventional

farmer will prefer producing organically if
Porg−Pcon

Pcon
>
(
Porg−Pcon

Pcon

)∗
.

B.2 Discrete Analysis for OT2/OT3/OT4

The sign of ∂∆(ϵ)
∂ϵ is given by:

∂∆(ϵ)

∂ϵ
=

PconαbγK
µ+ ρ

· ϵ ≥ 0 (B.45)

Thus, ∆(ϵ) is linear and weakly increasing in ϵ.

Let ϵ∗ be the value of ϵ such that ∆(ϵ∗) = 0.

When Korg = C, the range of ϵ yielding ∆(ϵ) ≥ 0 is ϵ ≥ ϵ∗ where:
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ϵ∗ =
1

γK
· µ+ ρ

ρ
·

1

2
·

(
γc +

αc−P−1
con

αb
− γK

µ+ρ

)2
(−γcc)︸ ︷︷ ︸
≥0

−
(
Porg

Pcon
− 1

)
·
(
γK · C +Ab +

Ay

αb

)
︸ ︷︷ ︸

≥0

 (B.46)

For a conventional OT2/OT3/OT4 farmer, there is a possibility that ϵ∗ exceeds C. When this

happens there will be no feasible ϵ for which ∆(ϵ) ≥ 0, and there will therefore be no feasible capital

stock for which the fully informed farmer facing OT2/OT3/OT3 conditions will prefer to produce

organically. ϵ∗ will be more likely to exceed C when the farmer faces small organic price premia.

Under OT2/OT3/OT4 conditions, we have:

K̂j ≤ C ⇒ γc +
αc − P−1

j

αb
− γK

(ρ+ µ)
≥ 0, (B.47)

and

K̂j ≥ 0 ⇒ γc +
αc − P−1

j

αb
≤ (−γcc)µC +

γK
(ρ+ µ)

(B.48)

Also, given:

K̂con =
(ρ+ µ)

(
γccµC + γc +

αc−P−1
con

αb

)
− γK

(ρ+ µ) γccµ
= C +

(ρ+ µ)
(
γc +

αc−P−1
con

αb

)
− γK

(ρ+ µ) γccµ︸ ︷︷ ︸
≤0

≤ C (B.49)

we know that
(
C − K̂con

)
→ 0 implies:

(ρ+ µ)
(
γc +

αc−P−1
con

αb

)
− γK

(ρ+ µ) γccµ︸ ︷︷ ︸
≤0

→ 0 (B.50)

or

γc +
αc − P−1

con

αb
− γK

(ρ+ µ)︸ ︷︷ ︸
≥0

→ 0 (B.51)

⇒ αc

αb︸︷︷︸
≥0

+

(
− 1

αb · Pcon
+ γc −

γK
(ρ+ µ)

)
︸ ︷︷ ︸

≤0

→ 0 (B.52)
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⇒ αc → αb ·
(

1

αb · Pcon
− γc +

γK
(ρ+ µ)

)
︸ ︷︷ ︸

≥0

(B.53)

That is,
(
C − K̂con

)
→ 0, given constant C, implies small enough αc, such that αc︸︷︷︸

≥0

−αb ·(
1

αb · Pcon
− γc +

γK
(ρ+ µ)

)
︸ ︷︷ ︸

≥0

approaches 0 from above.

B.2.1 Comparative statics for ∆(ϵ)

Now we discuss the signs of ∂∆(ϵ)
∂i , imposing the assumption that Korg = C.

The results are summarized in Table B.4.

∂∆(ϵ)

∂Porg
=

1

ρ
·
(
Ay + αb

(
Ab + CγK

))
︸ ︷︷ ︸

≥0

≥ 0

∂∆(ϵ)

∂Pcon
=

(
−1

ρ
· αb

)
︸ ︷︷ ︸

≤0

·

Ab +
Ay

αb︸ ︷︷ ︸
≥0

+µ ·

P−1
con

αb
+

1

2
· (−γcc)µ ·

(
C − K̂con

)
︸ ︷︷ ︸

≥0

 ·
(
C − K̂con

)
︸ ︷︷ ︸

≥0

+ γK

(
C − ρ

µ+ ρ
ϵ

)
︸ ︷︷ ︸

≥0

 ≤ 0 (B.54)

∂∆(ϵ)

∂µ
= −1

ρ
Pconαb

γK
(µ+ ρ)

(
−ρC + µK̂con

ρ+ µ
+

(
C +

ρ

µ+ ρ
· ϵ
))

(B.55)
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∂∆(ϵ)

∂µ
= −1

ρ
·
(
Pcon · αb ·

γK
µ+ ρ

)
︸ ︷︷ ︸

≥0

·


C −

ρ+

(
K̂con

C

)
︸ ︷︷ ︸

≤1

·µ

ρ+ µ︸ ︷︷ ︸
≤1

·C

︸ ︷︷ ︸
≥0

+
ρ

µ+ ρ
· ϵ︸ ︷︷ ︸

≥0


≤ 0 (B.56)

∂∆(ϵ)

∂ρ
= ρ−2Pconαb︸ ︷︷ ︸

≥0

·


 ρ

(µ+ ρ)2
· (−γK)︸ ︷︷ ︸

≤0

+
1

2
· (−γcc)µ

(
C − K̂con

)
︸ ︷︷ ︸

≥0

 ·µ
(
C − K̂con

)
︸ ︷︷ ︸

≥0

+

(
ρ

µ+ ρ

)2

· (−γK) · ϵ︸ ︷︷ ︸
≤0

+

(
Ay

αb
+Ab + γK · C

)
·
(
−Porg − Pcon

Pcon

)
︸ ︷︷ ︸

≤0

 (B.57)

So we will have ∂∆(ϵ)
∂ρ ≥ 0 for small enough γK and small enough organic price premium

Porg−Pcon

Pcon
.

On the other hand we will have ∂∆(ϵ)
∂ρ ≤ 0 for large enough

Porg−Pcon

Pcon
.

∂∆(ϵ)

∂γc
= −1

ρ
· Pconαbµ ·

(
C − K̂con

)
︸ ︷︷ ︸

≥0

≤ 0 (B.58)

∂∆(ϵ)

∂γcc
= −1

ρ
· Pconαb ·

1

2
·
(
µ
(
C − K̂con

))2
≤ 0 (B.59)

∂∆(ϵ)

∂γK
=

1

ρ
· Pconαb ·


(
Porg − Pcon

Pcon

)
︸ ︷︷ ︸

≥0

C +
µ

µ+ ρ
·
(
C − K̂con

)
︸ ︷︷ ︸

≥0

+
ρ

µ+ ρ
· ϵ︸︷︷︸

≥0


︸ ︷︷ ︸

≥0

≥ 0 (B.60)
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∂∆(ϵ)

∂C
=

1

ρ
· (Porg − Pcon)︸ ︷︷ ︸

≥0

·αb · γK ≥ 0 (B.61)

∂∆(ϵ)

∂αb
=

1

ρ
· Pcon ·


(
Porg − Pcon

Pcon

)
·
(
Ab + γK · C

)
︸ ︷︷ ︸

≥0

+
ρ

µ+ ρ
· γK · ϵ︸ ︷︷ ︸

≥0

+
1

2
γcc

(
µ
(
C − K̂con

))2
︸ ︷︷ ︸

≤0

+
αc − P−1

con

αb
· µ
(
C − K̂con

)
︸ ︷︷ ︸

≥0︸ ︷︷ ︸
?


(B.62)

So we will have ∂∆(ϵ)
∂αb

≥ 0 for large enough
Porg−Pcon

Pcon
, and we will have ∂∆(ϵ)

∂αb
≤ 0 for large enough

ĉ = µ
(
C − K̂con

)
, given γcc ̸= 0. Note that ĉ = µ

(
C − K̂con

)
will be larger for larger C or µ, or

smaller K̂con. Given

K̂con =
(µ+ ρ)

(
γccµC + γc +

αc−P−1
con

αb

)
− γK

(µ+ ρ) γccµ
≥ 0

⇒ (µ+ ρ)

(
γccµC + γc +

αc − P−1
con

αb

)
− γK ≤ 0

we know that K̂con will be smaller for smaller −γcc, −γc, or γK , or bigger αc.

∂∆(ϵ)

∂Ay
=

1

ρ
(Porg − Pcon)︸ ︷︷ ︸

≥0

≥ 0 (B.63)

∂∆(ϵ)

∂Ab
=

1

ρ
· αb · (Porg − Pcon)︸ ︷︷ ︸

≥0

≥ 0 (B.64)

B-20



∂∆(ϵ)

∂αc
= −1

ρ
· Pcon · µ

(
C − K̂con

)
︸ ︷︷ ︸

≥0

≤ 0 (B.65)

∂∆(ϵ)

∂ϵ
=

1

µ+ ρ
· PconαbγK ≥ 0 (B.66)
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Table B.4: Comparative Statics for ∆ (ϵ) When Conventional Farmer Adopts OT2/OT3/OT4 and Korg = C

Parameter i Sign Condition

Ab +

Ay +

Pcon −
Porg +

C +

µ −

ρ
−

+

Large enough
Porg−Pcon

Pcon
.

Small γK and
Porg−Pcon

Pcon
.

γcc −
γc −
γK +

αb

−

+

Large enough ĉ = µ
(
C − K̂con

)
, given γcc ̸= 0.

(Note that ↑ ĉ ⇒↑ C, µ, αc, ↓ |γcc| , |γc| , γK).

Large enough
Porg−Pcon

Pcon
.

αc −
ϵ +

Notes: Table reports comparative statics for ∆ (ϵ) when K̂j ∈ [0,K0,j ] ∀j ∈ {con, org}, assuming Korg = C (not responsive
to assumption that c = µC (looks the same either way)). A conventional farmer is said to prefer producing organically when
∆ (ϵ) > 0.
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B.2.2 Comparative statics for ϵ∗

We now calculate the partials of ϵ∗ with respect to our model parameters. We assume organic

certification requires having pristine soils, such that Korg = C.

The results are summarized in Table B.5.

∂ϵ∗

∂µ
=

1

ρ
· 1

γK
·

1

2
· µ ·

(
γc +

αc − P−1
con

αb
+

γK
ρ+ µ

)
︸ ︷︷ ︸

≥0

(
C − K̂con

)
︸ ︷︷ ︸

≥0

(B.67)

+

(
−γK ·

(
Porg

Pcon
+ 1

)
C −

(
Porg

Pcon
− 1

)
·
(
Ab +

Ay

αb

))
︸ ︷︷ ︸

≤0


The sign of ∂ϵ∗

∂µ is still ambiguous without futher restrictions to our parameter values. However,

we can see that for large enough organic premia we will have ∂ϵ∗

∂µ ≥ 0. On the other hand, for small

enough organic premia we will have

∂ϵ∗

∂µ
→ 1

ρ
· 1

γK
·

1

2
· µ2 (−γcc)

(
C − K̂con

)2
︸ ︷︷ ︸

≥0

− γK

(
C +

ρ

ρ+ µ
· C +

µ

ρ+ µ
· K̂con

)
︸ ︷︷ ︸

≥0

 (B.68)

Therefore, given small enough organic price premia (such that the value of ∂ϵ∗

∂µ is close enough

to the value of the expression we have above), and large enough K̂con (s.t.
(
C − K̂con

)
→ 0), we

will have ∂ϵ∗

∂µ ≤ 0 .

Since
(
C − K̂con

)
→ 0 implies that αc︸︷︷︸

≥0

−αb ·
(

1

αb · Pcon
− γc +

γK
(ρ+ µ)

)
︸ ︷︷ ︸

≥0

approaches 0 from

above, we will have ∂ϵ∗

∂µ ≤ 0 for small enough organic price premia, and and small enough αc.

∂ϵ∗

∂ρ
= −

(
µ

ρ

)2

·

(
C − K̂con

(ρ+ µ)2
+Korg −

1

µ
C

)
(B.69)

Given Korg = C, this yields:
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∂ϵ∗

∂ρ
= −

(
µ

ρ

)2

·

C − K̂con

(ρ+ µ)2︸ ︷︷ ︸
≥0

+
1

µ
(µ− 1)︸ ︷︷ ︸

≤0

C

 (B.70)

The sign of ∂ϵ∗

∂ρ is ambiguous, but we can see that for large enough µ (such that 1
µ (µ− 1)︸ ︷︷ ︸

≤0

C → 0)

we will have ∂ϵ∗

∂ρ ≤ 0. On the other hand, for small enough αc such that C−K̂con

(ρ+µ)2
→ 0, we will have

∂ϵ∗

∂ρ ≥ 0.

∂ϵ∗

∂γK
=

µ+ ρ

ρ
· 1

γ2K
·

Porg

Pcon
·

(
1

2
γccµ

(
C −Korg

)
+ γc +

αc − P−1
org

αb

)
µ
(
C −Korg

)
+

(
Porg

Pcon
− 1

)
·
(
Ab +

Ay

αb

)
︸ ︷︷ ︸

≥0

(B.71)

+


1

2
· γcc ·

γc +
αc−P−1

con
αb

− 1
(ρ+µ)γK

γcc

2

︸ ︷︷ ︸
≤0

+
γK

(ρ+ µ)
·

(
γc +

αc−P−1
con

αb
− 1

(ρ+µ)γK

)
γcc︸ ︷︷ ︸

≤0




The sign of ∂ϵ∗

∂γK
is still ambiguous, but we can see that as

(
Ab +

Ay

αb

)
increases in magnitude

eventually ∂ϵ∗

∂γK
will become non-negative ( ∂ϵ∗

∂γK
≥ 0). On the other hand, as the organic price

premia shrinks (such that
(
Porg

Pcon
− 1
)

→ 0), and the certification criteria becomes stricter (such

that
(
C −Korg

)
→ 0), we will eventually get ∂ϵ∗

∂γK
≤ 0.

∂ϵ∗

∂γcc
=

µ+ ρ

ρ
· 1

γK︸ ︷︷ ︸
≥0

·

−Porg

Pcon
· 1
2

(
µ
(
C −Korg

))2︸ ︷︷ ︸
≤0

+
1

2
· 1

γ2cc

(
γc +

αc − P−1
con

αb
− 1

(ρ+ µ)
γK

)2

︸ ︷︷ ︸
≥0


(B.72)

The sign of ∂ϵ∗

∂γcc
is still ambiguous, but we can see that as

Porg

Pcon
(which reflects the organic premium)

increases in magnitude eventually ∂ϵ∗

∂γcc
will become non-positive ( ∂ϵ∗

∂γcc
≤ 0). On the other hand,
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as the organic certification becomes stricter
(
Korg → C

)
, ∂ϵ∗

∂γcc
eventually becomes non-negative

( ∂ϵ∗

∂γcc
≥ 0).

∂ϵ∗

∂γc
=

µ+ ρ

ρ
· 1

γK
·


−Porg

Pcon
· µ
(
C −Korg

)
︸ ︷︷ ︸

≤0

+
1

(−γcc)

(
γc +

αc − P−1
con

αb
− γK

(ρ+ µ)

)
︸ ︷︷ ︸

≥0︸ ︷︷ ︸
≥0


(B.73)

The sign of ∂ϵ∗

∂γc
is still ambiguous, but we can see that as

Porg

Pcon
(which reflects the organic premium)

increases in magnitude eventually ∂ϵ∗

∂γc
will become non-positive ( ∂ϵ

∗

∂γc
≤ 0). On the other hand, as the

organic certification becomes stricter
(
Korg → C

)
, ∂ϵ∗

∂γc
eventually becomes non-negative ( ∂ϵ

∗

∂γc
≥ 0).

∂ϵ∗

∂Pcon
=

µ+ ρ

ρ
· 1

γK︸ ︷︷ ︸
≥0

·

Porg

P 2
con

µ
(
C −Korg

)
︸ ︷︷ ︸

≥0

·

(
1

2
γccµ

(
C −Korg

)
+ γc +

αc − P−1
org

αb

)
(B.74)

+
1

(−γcc)
·
(
P−2
con

αb

)
︸ ︷︷ ︸

≥0

·
(
γc +

αc − P−1
con

αb
− 1

(ρ+ µ)
γK

)
︸ ︷︷ ︸

≥0

+
Porg

P 2
con

(
γK ·Korg +Ab +

Ay

αb

)
︸ ︷︷ ︸

≥0


The sign of ∂ϵ∗

∂Pcon
is still ambiguous. However, we can see that for relatively large C and organic

certification criteria is weak enough (such that
(
1
2γccµ

(
C −Korg

)
+ γc +

αc−P−1
org

αb

)
≤ 0 and also

such that
(
C −Korg

)
is relatively large, so that

Porg

P 2
con

µ
(
C −Korg

)
·
(
1
2γccµ

(
C −Korg

)
+ γc +

αc−P−1
org

αb

)
is negative and has a large magnitude), then we will have ∂ϵ∗

∂Pcon
≤ 0. On the other hand, when

the certification criteria is strict enough (so that
(
C −Korg

)
is close enough to zero), we will have

∂ϵ∗

∂Pcon
≥ 0.

∂ϵ∗

∂C
=

µ

ρ︸︷︷︸
≥0

(µ+ ρ)

γK
· Porg

Pcon︸ ︷︷ ︸
≥0

·

(−γcc)µ
(
C −Korg

)︸ ︷︷ ︸
≥0

−

γc +
αc − P−1

org

αb︸ ︷︷ ︸
≥0


− 1

 (B.75)

The sign of ∂ϵ∗

∂C
is still ambiguous. However, we can see that for relatively large C (such that
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(
C −Korg

)
is relatively large), we will have ∂ϵ∗

∂C
≥ 0. On the other hand, for sufficiently strict

certification criteria (such that
(
C −Korg

)
→ 0) we will have ∂ϵ∗

∂C
≤ 0.

∂ϵ∗

∂Korg
=

µ+ ρ

ρ
· 1

γK
· Porg

Pcon
· µ︸ ︷︷ ︸

≥0

γccµ
(
C −Korg

)︸ ︷︷ ︸
≤0

+ γc +
αc − P−1

org

αb︸ ︷︷ ︸
≥0

+

(
1− µ+ ρ

ρ
· Porg

Pcon

)
︸ ︷︷ ︸

≤0

(B.76)

We see that the sign of ∂ϵ∗

∂Korg
is ambiguous. We have that for large enough αc, small enough γK

, and Korg ̸= 0 , we will have ∂ϵ∗

∂Korg
≥ 0. On the other hand, for weak enough initial certification

criteria (such that
(
C −Korg

)
is sufficiently large), |γcc| large enough, and µ ̸= 0, we will have

∂ϵ∗

∂Korg
≤ 0.

∂ϵ∗

∂αc
=

µ+ ρ

ρ
· 1

γK
· 1

αb︸ ︷︷ ︸
≥0

·

Porg

Pcon
µ
(
Korg − C

)
︸ ︷︷ ︸

≤0

+
1

(−γcc)

(
γc +

αc − P−1
con

αb
− 1

(ρ+ µ)
γK

)
︸ ︷︷ ︸

≥0

 (B.77)

The sign of ∂ϵ∗

∂αc
is ambiguous, but we see that if Korg ̸= C and the organic premium is high

enough, then we will have ∂ϵ∗

∂αc
≤ 0. On the other hand, if the certification criteria is strict enough

(such that
(
Korg − C

)
is close enough to zero), then we will have ∂ϵ∗

∂αc
≥ 0.

∂ϵ∗

∂αb
=

µ+ ρ

ρ
· 1

γK︸ ︷︷ ︸
≥0

· 1
α2
b

·

Porg

Pcon
µ
(
C −Korg

)
︸ ︷︷ ︸

≥0

·
(
αc − P−1

org

)︸ ︷︷ ︸
≥0

+

(
Porg

Pcon
− 1

)
·Ay︸ ︷︷ ︸

≥0

(B.78)

+
1

γcc

(
γc +

αc − P−1
con

αb
− 1

(ρ+ µ)
γK

)(
αc − P−1

con

)
︸ ︷︷ ︸

≤0

 ≥ 0

The sign of ∂ϵ∗

∂αb
is ambiguous. However, we can see that if factors of production other than

soil bacteria and synthetic compounds are relatively unimportant for production (so that Ay → 0),

and the certification criteria is sufficiently strict (such that
(
C −Korg

)
→ 0), then we will have
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∂ϵ∗

∂αb
≤ 0. On the other hand, if the organic price premium is high enough and also either Ay ̸= 0

or Korg ̸= C, then we will have ∂ϵ∗

∂αb
≥ 0.

∂ϵ∗

∂Ab
=

µ+ ρ

ρ
· 1

γK
·
(
1− Porg

Pcon

)
≤ 0 (B.79)

∂ϵ∗

∂Ay
=

µ+ ρ

ρ
· 1

γK
·
(
1− Porg

Pcon

)
· 1

αb
≤ 0 (B.80)

B-27



Table B.5: Comparative Statics for ϵ∗ When Conventional Farmer Adopts OT2/OT3/OT4 and Korg = C

Parameter i Sign Condition

Ab −
Ay −
Pcon +

Porg −
C −

µ
−

+

Small enough (Porg − Pcon) and
(
C − K̂con

)
. Given constant C, the latter implies small enough αc.

Large (Porg − Pcon) .

ρ

−

+

0

Large enoughµ.

Small enough αc (so that K̂j ↑and K̂j → C
−
).

For: (1) small enough αc and also large enough µ; or (2) small enough µ.

γcc +

γc +

γK

−

+

For
Porg

Pcon
small enough.

For
Porg

Pcon
large enough, and (Ab+Ay)̸=0.

αb

−

+

For small enough Ay or
Porg

Pcon
.

For large enough Ay and
Porg

Pcon
.

αc +

Notes: Table reports comparative statics for ϵ∗ when K̂j ∈ [0, C]∀j ∈ {con, org}, assuming Korg = C (not responsive
to assumption that c = µC (looks the same either way)). A conventional farmer will prefer producing organically for all
K0,con = Korg − ϵ at least ϵ∗ lower than Korg.
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B.2.3 Comparative statics for threshold organic price premium
(
Porg−Pcon

Pcon

)∗
Next we are interested in describing how large the organic price premium needs to be in order to

induce a fully informed farmer facing OT2/OT3/OT4 conditions to prefer to produce organically.

We derive an inequality describing the necessary conditions below.

Given the assumption that Korg = C, and assuming conventional crop prices are not zero, the

threshold organic price premium is given by:

(
Porg − Pcon

Pcon

)∗
=

(
1
2 · (−γcc)µ

2
(
C − K̂con

)2
− ρ

µ+ρ · γK · ϵ
)

(
γKC +Ab +

Ay

αb

) (B.81)

Then we can determine how
(
Porg−Pcon

Pcon

)∗
changes in response to changes in our model parameters

by examining the signs of the partials below. The results are summarized in Table B.6.

∂
(
Porg−Pcon

Pcon

)∗
∂ϵ

= − ρ

µ+ ρ
· γK ·

(
γKC +Ab +

Ay

αb

)−1

≤ 0 (B.82)

∂
(
Porg−Pcon

Pcon

)∗
∂ρ

=

γK · µ︸ ︷︷ ︸
≥0

·
(
K0 − K̂con

)
(µ+ ρ)2︸ ︷︷ ︸

≥0

·
(
γKC +Ab +

Ay

αb

)
︸ ︷︷ ︸

≥0

(B.83)

where under OT2/OT3/OT4 conditions we have that K̂con ∈ [0, C]. So we will have
∂
(

Porg−Pcon
Pcon

)∗

∂ρ ≥

0 for large enough initial capital stock, K0, and we will have
∂
(

Porg−Pcon
Pcon

)∗

∂ρ ≤ 0 for small enough

initial capital stock, K0.

∂
(
Porg−Pcon

Pcon

)∗
∂µ

=
γK

µ+ ρ︸ ︷︷ ︸
≥0

·

(
C − µ · K̂con + ρ ·K0

µ+ ρ

)
·
(
γKC +Ab +

Ay

αb

)−1

︸ ︷︷ ︸
≥0

(B.84)

Under OT2/OT3/OT4 conditions we have that K̂con ∈ [0, C]. In all cases we also have that

K0 ∈ [0, C]. Therefore, it must be the case that
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(
C − µ · K̂con + ρ ·K0

µ+ ρ

)
≥ 0. (B.85)

So we have that

∂
(
Porg−Pcon

Pcon

)∗
∂µ

=
γK

µ+ ρ︸ ︷︷ ︸
≥0

·

(
C − µ · K̂con + ρ ·K0

µ+ ρ

)
︸ ︷︷ ︸

≥0

·
(
γKC +Ab +

Ay

αb

)−1

︸ ︷︷ ︸
≥0

≥ 0 (B.86)

∂
(
Porg−Pcon

Pcon

)∗
∂γK

=

µ · K̂con + ρ ·K0

µ+ ρ
− C︸ ︷︷ ︸

≤0

+

1

2
· γcc ·

(
µ
(
C − K̂con

))2
︸ ︷︷ ︸

≤0

+
ρ

µ+ ρ
· γK ·

(
C −K0

)
︸ ︷︷ ︸

≥0(
γKC +Ab +

Ay

αb

)
︸ ︷︷ ︸

≥0

· C


·
(
γKC +Ab +

Ay

αb

)−1

︸ ︷︷ ︸
≥0

(B.87)

Here we will have that
∂
(

Porg−Pcon
Pcon

)∗

∂γK
≤ 0 if K0 is sufficiently large (and therefore sufficiently

close to C). On the other hand we will have
∂
(

Porg−Pcon
Pcon

)∗

∂γK
≥ 0 if both K̂con is sufficiently large

(and therefore sufficiently close to C) and also
(
γKC +Ab +

Ay

αb

)
is sufficiently small.

∂
(
Porg−Pcon

Pcon

)∗
∂C

=

1

2
· γcc ·

(
µ ·
(
C − K̂con

))2
︸ ︷︷ ︸

≤0

+
ρ

µ+ ρ
· γK ·

(
C −K0

)
︸ ︷︷ ︸

≥0

·
(
γKC +Ab +

Ay

αb

)−2

· γK︸ ︷︷ ︸
≥0

(B.88)

The farmer will face
∂
(

Porg−Pcon
Pcon

)∗

∂C
≥ 0 when K̂con is sufficiently large (and therefore sufficiently
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close to C). On the other hand the farmer will face
∂
(

Porg−Pcon
Pcon

)∗

∂C
≤ 0 when K0 is sufficiently large

(and therefore sufficiently close to C).

∂
(
Porg−Pcon

Pcon

)∗
∂Ay

=

1

2
· γcc ·

(
µ ·
(
C − K̂con

))2
︸ ︷︷ ︸

≤0

+
ρ

µ+ ρ
· γK ·

(
C −K0

)
︸ ︷︷ ︸

≥0


·
(
γKC +Ab +

Ay

αb

)−2

·
(

1

αb

)
︸ ︷︷ ︸

≥0

(B.89)

The farmer will face
∂
(

Porg−Pcon
Pcon

)∗

∂Ay
≥ 0 when K̂con is sufficiently large (and therefore sufficiently

close to C). On the other hand the farmer will face
∂
(

Porg−Pcon
Pcon

)∗

∂Ay
≤ 0 when K0 is sufficiently large

(and therefore sufficiently close to C).

∂
(
Porg−Pcon

Pcon

)∗
∂Ab

=

1

2
· γcc ·

(
µ ·
(
C − K̂con

))2
︸ ︷︷ ︸

≤0

+
ρ

µ+ ρ
· γK ·

(
C −K0

)
︸ ︷︷ ︸

≥0

 ·
(
γKC +Ab +

Ay

αb

)−2

︸ ︷︷ ︸
≥0

(B.90)

The farmer will face
∂
(

Porg−Pcon
Pcon

)∗

∂Ab
≥ 0 when K̂con is sufficiently large (and therefore sufficiently

close to C). On the other hand the farmer will face
∂
(

Porg−Pcon
Pcon

)∗

∂Ab
≤ 0 when K0 is sufficiently large

(and therefore sufficiently close to C).
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∂
(
Porg−Pcon

Pcon

)∗
∂αb

=

µ
(
K̂con − C

)
︸ ︷︷ ︸

≤0

·
(
Pconαc − 1

Pconα2
b

)

+

1

2
· (−γcc) ·

(
µ ·
(
C − K̂con

))2
︸ ︷︷ ︸

≥0

+
ρ

µ+ ρ
· γK ·

(
K0 − C

)
︸ ︷︷ ︸

≤0(
γKC +Ab +

Ay

αb

)
︸ ︷︷ ︸

≥0

· Ay

α2
b︸︷︷︸

≥0


·
(
γKC +Ab +

Ay

αb

)−1

︸ ︷︷ ︸
≥0

(B.91)

The farmer will therefore face
∂
(

Porg−Pcon
Pcon

)∗

∂αb
≤ 0, for example, when K̂con is sufficiently large

(and therefore sufficiently close to C). On the other hand we will have
∂
(

Porg−Pcon
Pcon

)∗

∂αb
≥ 0 when both

K0 is sufficiently large (and therefore sufficiently close to C), and the marginal revenue associated

with conventional synthetic compound use is sufficiently close to the marginal cost of synthetic

compound use such that Pconαc → 1.

∂
(
Porg−Pcon

Pcon

)∗
∂γcc

=
1

2
·
(
µ
(
C − K̂con

))2
·
(
γKC +Ab +

Ay

αb

)−1

≥ 0 (B.92)

∂
(
Porg−Pcon

Pcon

)∗
∂γc

= µ
(
C − K̂con

)
·
(
γKC +Ab +

Ay

αb

)−1

≥ 0 (B.93)

∂
(
Porg−Pcon

Pcon

)∗
∂αc

= µ ·
(
C − K̂con

)
·
(

1

αb

)
·
(
γKC +Ab +

Ay

αb

)−1

≥ 0 (B.94)

∂
(
Porg−Pcon

Pcon

)∗
∂Pcon

= µ
(
C − K̂con

)
·
(
P−2
con

αb

)
·
(
γKC +Ab +

Ay

αb

)−1

≥ 0 (B.95)
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Table B.6: Comparative Statics for
(
Porg−Pcon

Pcon

)∗
When Conventional Farmer Adopts

OT2/OT3/OT4 and Korg = C

Parameter Full Information: OT2/OT3/OT4

ϵ -

ρ
−

+

For small enoughK0.

For large enoughK0.

µ +

γK

−

+

Sufficiently large K0.

Sufficiently large K̂con and

small enough
(
γKC +Ab +

Ay

αb

)
.

C
−

+

Sufficiently large K0.

Sufficiently large K̂con.

Ay

−

+

Sufficiently large K0.

Sufficiently large K̂con.

Ab

−

+

Sufficiently large K0.

Sufficiently large K̂con.

αb

−

+

Sufficiently large K̂con.

Sufficiently large K0 and
Pconαc → 1+.

γcc +

γc +

αc +

Pcon +

c0 0

Notes: Table reports comparative statics for
(
Porg−Pcon

Pcon

)∗
when K̂j ∈ [0, C]∀j ∈ {con, org},

assuming Korg = C (not responsive to assumption that c = µC (looks the same either way)).
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B.3 Discrete Analysis for OT3’

When γcc = 0 and µ ̸= 0, Rcon(K) = ρ ∀K implies:

−µ+
γK

γc +
αc−P−1

con
αb

= ρ (B.96)

⇒ γK

γc +
αc−P−1

con
αb

= µ+ ρ (B.97)

⇒ γc +
αc − P−1

con

αb
=

γK
µ+ ρ

(B.98)

B.3.1 Comparative statics for ∆(ϵ)

Now we discuss the signs of ∂∆(ϵ)
∂i , imposing the assumption that Korg = C.

The results are summarized in Table B.7.

∂∆OT3′(ϵ)

∂ρ
= − 1

ρ2
· Pcon · αb ·

((
Porg − Pcon

Pcon

)(
γKC +Ab +

Ay

αb

)
(B.99)

+

(ρ− 1) ·

(
µ+ρ−1
ρ−1

)
· µ+ ρ

(µ+ ρ)2

 · γK · ϵ



So we have the following sufficient conditions

• ∂∆OT3′ (ϵ)
∂ρ ≤ 0 for

– Sufficiently large
Porg−Pcon

Pcon

• ∂∆OT3′ (ϵ)
∂ρ ≥ 0 for

– Sufficiently small
Porg−Pcon

Pcon
and µ, and ρ < 1

∂∆OT3′(ϵ)

∂µ
= −Pcon · αb ·

1

(µ+ ρ)2
· γK · ϵ ≤ 0 (B.100)
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∂∆OT3′(ϵ)

∂Porg
=

1

ρ
· αbγKC +

1

ρ
αb

(
Ab +

Ay

αb

)
≥ 0 (B.101)

∂∆OT3′(ϵ)

∂Pcon
= −1

ρ
· αb ·

Ab +
Ay

αb
+ γK ·

 µ

µ+ ρ
+

C

ϵ︸︷︷︸
≥1

−1

 · ϵ

 ≤ 0 (B.102)

∂∆OT3′(ϵ)

∂αb
=

1

ρ
· Pcon ·

((
Porg − Pcon

Pcon

)
·
(
γKC +Ab

)
+

ρ

µ+ ρ
· γK · ϵ

)
≥ 0 (B.103)

∂∆OT3′(ϵ)

∂γK
=

1

ρ
· Pcon · αb ·

((
Porg − Pcon

Pcon

)
· C +

ρ

µ+ ρ
· ϵ
)

≥ 0 (B.104)

∂∆OT3′(ϵ)

∂C
=

1

ρ
(Porg − Pcon) · αbγK ≥ 0 (B.105)

∂∆OT3′(ϵ)

∂Ab
=

1

ρ
αb (Porg − Pcon) ≥ 0 (B.106)

∂∆OT3′(ϵ)

∂Ay
=

1

ρ
(Porg − Pcon) ≥ 0 (B.107)
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∂∆OT3′(ϵ)

∂ϵ
=

1

ρ
· Pcon · αb · γK ·

1− µ

µ+ ρ︸ ︷︷ ︸
≤1

 ≥ 0 (B.108)

B.3.2 Comparative statics for ϵ∗

We now calculate the partials of ϵ∗ with respect to our model parameters. We assume organic

certification requires having pristine soils, such that Korg = C.

The results are summarized in Table B.8.

Next we consider the partials of ϵ∗ w.r.t. our model parameters.

Assuming Pcon · αb · γK · ρ
µ+ρ · ̸= 0, we can then write:

ϵ∗ = −µ+ ρ

ρ
·
(
Porg − Pcon

Pcon

)(
C +

(
Ab +

Ay

αb

)
· γ−1

K

)
≤ 0 (B.109)

Given

∂∆OT3′(ϵ)

∂ϵ
=

1

ρ
· Pcon · αb · γK

(
1− µ

µ+ ρ

)
≥ 0, (B.110)

ϵ∗ ≤ 0 implies that the OT3’ farmer prefers organic given any initial capital stock. Still, we may

at some point be interested in how the value of ϵ∗ responds to changes in our parameter values in

this case, so we will calculate the partials of ϵ∗ wrt to these model parameters.

∂ϵ∗

∂ρ
=

1

ρ
·
(
µ+ ρ

ρ
− 1

)
︸ ︷︷ ︸

≥0

·
(
Porg − Pcon

Pcon

)(
C +

(
Ab +

Ay

αb

)
· γ−1

K

)
≥ 0 (B.111)

∂ϵ∗

∂µ
= −

(
Porg − Pcon

Pcon

)(
C +

(
Ab +

Ay

αb

)
· γ−1

K

)
≤ 0 (B.112)
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∂ϵ∗

∂Porg
= −µ+ ρ

ρ
·
(
C +

(
Ab +

Ay

αb

)
· γ−1

K

)
≤ 0 (B.113)

∂ϵ∗

∂Pcon
=

µ+ ρ

ρ
·
(

1

Pcon
+

Porg − Pcon

P 2
con

)(
C +

(
Ab +

Ay

αb

)
· γ−1

K

)
︸ ︷︷ ︸

≥0

≥ 0 (B.114)

∂ϵ∗

∂αb
=

µ+ ρ

ρ
·
(
Porg − Pcon

Pcon

)(
Ay

α2
b

· γ−1
K

)
≥ 0 (B.115)

∂ϵ∗

∂γK
=

µ+ ρ

ρ
·
(
Porg − Pcon

Pcon

)
·
(
Ab +

Ay

αb

)
· γ−2

K ≥ 0 (B.116)

∂ϵ∗

∂C
= −µ+ ρ

ρ
·
(
Porg − Pcon

Pcon

)
≤ 0 (B.117)

∂ϵ∗

∂Ab
= −µ+ ρ

ρ
·
(
Porg − Pcon

Pcon

)(
γ−1
K

)
≤ 0 (B.118)

∂ϵ∗

∂Ay
= −µ+ ρ

ρ
·
(
Porg − Pcon

Pcon

)(
1

αb
· γ−1

K

)
≤ 0 (B.119)
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B.3.3 Comparative statics for threshold organic price premium
(
Porg−Pcon

Pcon

)∗
Next we are interested in describing how large the organic price premium needs to be in order to

induce a fully informed farmer facing OT3’ conditions to prefer to produce organically. We derive

an inequality describing the necessary conditions below.

Assuming that Pcon ̸= 0, and assuming that 1
ραb

(
γKC +Ab +

Ay

αb

)
̸= 0, we can write:

(
Porg − Pcon

Pcon

)∗
= − 1

C +
(
Ab +

Ay

αb

)
· γ−1

K

· ρ

µ+ ρ
· ϵ ≤ 0 (B.120)

Given

∂∆OT3′(ϵ)

∂
(
Porg−Pcon

Pcon

) =
1

ρ
· Pcon · αb ·

(
γKC +Ab +

Ay

αb

)
≥ 0, (B.121)

(
Porg−Pcon

Pcon

)∗
≤ 0 implies that the OT3’ farmer prefers organic given any non-negative price

premium. Still, we may at some point be interested in how the value of
(
Porg−Pcon

Pcon

)∗
responds

to changes in our parameter values in this case, so we will calculate the partials of
(
Porg−Pcon

Pcon

)∗
wrt to these model parameters.

Then we can determine how
(
Porg−Pcon

Pcon

)∗
changes in response to changes in our model parameters

by examining the signs of the partials below. The results are summarized in Table B.9.

∂
(
Porg−Pcon

Pcon

)∗
∂ϵ

= − 1

C +
(
Ab +

Ay

αb

)
· γ−1

K

· ρ

µ+ ρ
≤ 0 (B.122)

∂
(
Porg−Pcon

Pcon

)∗
∂ρ

= − 1

C +
(
Ab +

Ay

αb

)
· γ−1

K

· µ

(µ+ ρ)2
· ϵ ≤ 0 (B.123)

∂
(
Porg−Pcon

Pcon

)∗
∂µ

=
1

C +
(
Ab +

Ay

αb

)
· γ−1

K

· ρ

(µ+ ρ)2
· ϵ ≥ 0 (B.124)
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∂
(
Porg−Pcon

Pcon

)∗
∂Pcon

= 0 (B.125)

∂
(
Porg−Pcon

Pcon

)∗
∂αb

=
1(

C +
(
Ab +

Ay

αb

)
· γ−1

K

)2 ·
(
−Ay

α2
b

· γ−1
K

)
· ρ

µ+ ρ
· ϵ ≤ 0 (B.126)

∂
(
Porg−Pcon

Pcon

)∗
∂γK

=
1(

C +
(
Ab +

Ay

αb

)
· γ−1

K

)2 ·
(
−
(
Ab +

Ay

αb

)
· γ−2

K

)
· ρ

µ+ ρ
· ϵ ≤ 0 (B.127)

∂
(
Porg−Pcon

Pcon

)∗
∂Ay

=
1(

C +
(
Ab +

Ay

αb

)
· γ−1

K

)2 ·
(

1

αb
· γ−1

K

)
· ρ

µ+ ρ
· ϵ ≥ 0 (B.128)

∂
(
Porg−Pcon

Pcon

)∗
∂Ab

=
1(

C +
(
Ab +

Ay

αb

)
· γ−1

K

)2 · γ−1
K · ρ

µ+ ρ
· ϵ ≥ 0 (B.129)

∂
(
Porg−Pcon

Pcon

)∗
∂C

=
1(

C +
(
Ab +

Ay

αb

)
· γ−1

K

)2 · ρ

µ+ ρ
· ϵ ≥ 0 (B.130)
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Table B.7: Comparative Statics for ∆OT3′ (ϵ) For Conventional OT3’ Farmer When Korg = C

Summary of ∂∆OT3′ (ϵ)
∂i

i Sign Condition

ρ
−

+

Large
Porg−Pcon

Pcon
.

Small
Porg−Pcon

Pcon
and µ, and ρ¡1.

µ -

Porg +

Pcon -

αb +

αc N/A N/A

γc N/A N/A

γcc N/A N/A

γK +

Ay +

Ab +

C +

ϵ +

Notes: Table reports comparative statics for ∆ (ϵ), assuming that Korg = C and
Rcon(K) = ρ∀K, and assuming Korg = C (Does not depend on whether or not c = µC).
A conventional farmer is said to prefer producing organically when ∆ (ϵ) > 0.

* Does not depend on whether or not c = µC
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Table B.8: Comparative Statics for ϵ∗ For Conventional OT3’ Farmer When Korg = C

Summary of ∂ϵ∗

∂i

i Sign Condition

ρ +

µ -

Porg -

Pcon +

αb +

αc N/A N/A

αc N/A N/A

γcc N/A N/A

γK +

Ay -

Ab -

c0 N/A N/A

C0 N/A N/A

C -

Notes: Table reports comparative statics for ϵ∗ assuming that Korg = C and Rcon(K) =
ρ∀K, and assuming Korg = C (Does not depend on whether or not c = µC). A
conventional farmer will prefer producing organically for all K0,con = Korg − ϵ at least
ϵ∗ lower than Korg.
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Table B.9: Comparative Statics for
(
Porg−Pcon

Pcon

)∗
For Conventional OT3’ Farmer When Korg = C

Summary of
∂
(

Porg−Pcon
Pcon

)∗

∂i

i Sign Condition

ϵ -

ρ -

µ +

Pcon 0

αb -

αc N/A N/A

γc N/A N/A

γcc N/A N/A

γK -

Ay +

Ab +

c0 N/A N/A

C0 N/A N/A

C +

Notes: Table reports comparative statics for
(
Porg−Pcon

Pcon

)∗
assuming that Korg = C and

Rcon(K) = ρ∀K, and assuming Korg = C (Does not depend on whether or not c = µC).

* Does not depend on whether or not c = µC
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C Investment Under Uncertainty

C.1 Threshold organic premium under no uncertainty

When there is no uncertainty about Porg and Porg is not stochastic but instead known and fixed,

the threshold P ∗
org,det(K) is given by:

P ∗
org,det(K) =

Vcon(K)

1
ρ · αb

(
γKC +Ab +

Ay

αb

) (C.1)

where Vcon(K) comes from our solutions to the conventional problem.

We now confirm, for each of OT1, OT2/OT3/OT4, and OT3’, that when Korg = C, P ∗
org,det(K)

yields the same threshold organic premium
(
Porg−Pcon

Pcon

)∗
deterministic

that we previously derived in

our local discrete analysis when there is no uncertainty and when Korg = C.

C.1.1 Conventional OT1 farmer

Previously we found that when there is no uncertainty and Korg = C, the range of
(
Porg−Pcon

Pcon

)
yielding ∆(ϵ) ≥ 0 for a convetional OT1 farmer is

Porg−Pcon

Pcon
≥
(
Porg−Pcon

Pcon

)∗
deterministic

, where:

(
Porg − Pcon

Pcon

)∗

deterministic

=

(
1
2γccµC + γc +

αc−P−1
con

αb

)
· µC − 1

(µ+ρ) · γK ·
(
µC + ρ · ϵ

)
γK · C +Ab +

Ay

αb

(C.2)

From our OT1 analysis we know that:

Vcon(K) =
1

ρ
· Pconαb ·

(
ρ

(µ+ ρ)
γKK0 +

(
1

2
γccµC + γc +

αc − P−1
con

αb

)
· µC +Ab +

Ay

αb

)
(C.3)

and so P ∗
org(K) can be written as

P ∗
org,det(K) =

1
ρ · Pconαb ·

(
ρ

(µ+ρ)γKK0 +
(
1
2γccµC + γc +

αc−P−1
con

αb

)
· µC +Ab +

Ay

αb

)
1
ρ · αb

(
γKC +Ab +

Ay

αb

) (C.4)

P ∗
org,det(K) =

Pcon

(
ρ

(µ+ρ) · γK ·K +
(
1
2γccµC + γc +

αc−P−1
con

αb

)
· µC +Ab +

Ay

αb

)
γKC +Ab +

Ay

αb

(C.5)

From this equation we can derive an organic price premium needed to induce a preference for

organic management:

C-1



P ∗
org,det(K) =

Pcon

(
ρ

(µ+ρ) · γK ·K +
(
1
2γccµC + γc +

αc−P−1
con

αb

)
· µC +Ab +

Ay

αb

)
γKC +Ab +

Ay

αb

(C.6)

P ∗
org,det(K)

Pcon
=

(
ρ

(µ+ρ) · γK ·K +
(
1
2γccµC + γc +

αc−P−1
con

αb

)
· µC +Ab +

Ay

αb

)
γKC +Ab +

Ay

αb

(C.7)

P ∗
org,det(K)

Pcon
− 1 =

(
ρ

(µ+ρ) · γK ·K +
(
1
2γccµC + γc +

αc−P−1
con

αb

)
· µC +Ab +

Ay

αb

)
γKC +Ab +

Ay

αb

− 1 (C.8)

P ∗
org,det(K)− Pcon

Pcon
=

ρ
(µ+ρ) · γK ·K +

(
1
2γccµC + γc +

αc−P−1
con

αb

)
· µC +Ab +

Ay

αb
− γKC −Ab − Ay

αb

γKC +Ab +
Ay

αb

(C.9)

P ∗
org,det(K)− Pcon

Pcon
=

(
1
2γccµC + γc +

αc−P−1
con

αb

)
· µC − γKC + ρ

(µ+ρ) · γK ·K

γKC +Ab +
Ay

αb

(C.10)

P ∗
org,det(K)− Pcon

Pcon
=

(
1
2γccµC + γc +

αc−P−1
con

αb

)
· µC − γK ·

(
C − ρ

(µ+ρ) ·K
)

γKC +Ab +
Ay

αb

(C.11)

If we define K in terms of its distance from C, ϵ, such that K = C − ϵ we then have:

P ∗
org,det(K)− Pcon

Pcon
=

(
1
2γccµC + γc +

αc−P−1
con

αb

)
· µC − γK ·

(
C − ρ

µ+ρ ·
(
C − ϵ

))
γKC +Ab +

Ay

αb

(C.12)

P ∗
org,det(K)− Pcon

Pcon
=

(
1
2γccµC + γc +

αc−P−1
con

αb

)
· µC − γK ·

(
µ+ρ
µ+ρ · C − ρ

µ+ρ ·
(
C − ϵ

))
γKC +Ab +

Ay

αb

(C.13)

P ∗
org,det(K)− Pcon

Pcon
=

(
1
2γccµC + γc +

αc−P−1
con

αb

)
· µC − γK ·

(
µ

µ+ρ · C + ρ
µ+ρ · ϵ

)
γKC +Ab +

Ay

αb

(C.14)
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P ∗
org,det(K)− Pcon

Pcon
=

(
1
2γccµC + γc +

αc−P−1
con

αb

)
· µC − 1

µ+ρ · γK ·
(
µ · C + ρ · ϵ

)
γKC +Ab +

Ay

αb

(C.15)

Note that this organic price premium is the same as the
(
Porg−Pcon

Pcon

)∗
deterministic

that we derived

in our OT1 local discrete analysis when Korg = C.

C.1.2 Conventional OT2/OT3/OT4 farmer

Previously we found that when there is no uncertainty and Korg = C, the range of
(
Porg−Pcon

Pcon

)
yielding ∆(ϵ) ≥ 0 for OT2/OT3/OT4 is

Porg−Pcon

Pcon
≥
(
Porg−Pcon

Pcon

)∗
deterministic

, where:

(
Porg − Pcon

Pcon

)∗

deterministic

=

1
2 · 1

(−γcc)
·
(
γc +

αc−P−1
con

αb
− γK

(µ+ρ)

)2
− ρ

µ+ρ · γK · ϵ

γKC +Ab +
Ay

αb

(C.16)

(
Porg − Pcon

Pcon

)∗

deterministic

=

1
2 · αb

(−γcc)
· 1
ρ ·
(
γc +

αc−P−1
con

αb
− γK

(µ+ρ)

)2
− 1

µ+ρ · αbγK · ϵ
1
ρ · αb

(
γKC +Ab +

Ay

αb

) (C.17)

(
Porg − Pcon

Pcon

)∗

deterministic

=

1
ρ · αb · 1

2 · (−γcc) · µ2 ·
(
K̂con − C

)2
− 1

µ+ρ · αbγK · ϵ
1
ρ · αb

(
γKC +Ab +

Ay

αb

) (C.18)

From our OT2/OT3/OT4 analysis we know that:

Vcon(K) = Pconαb

(
1

ρ
·
(
Ab +

Ay

αb

)
+

µ

ρ

(
γc +

αc − P−1
con

αb

)
C

+
1

2
· 1
ρ

(
γcc
(
µC
)2 − 1

γcc

(
γccµC + γc +

αc − P−1
con

αb
− 1

(ρ+ µ)
γK

)2
)

+
γK

µ+ ρ
·Korg −

γK
µ+ ρ

· ϵ

)
or

Vcon(K) = (C.19)

1

ρ
· Pconαb

(
ρ

µ+ ρ
· γK ·K0 +

(
γc +

αc − P−1
con

αb

)
· µC +Ab +

Ay

αb
+

1

2
· γccµ2

(
C

2 − K̂2
con

))
and so P ∗

org(K) can be written as

C-3



P ∗
org(K) =

1
ρ · Pconαb

(
ρ

µ+ρ · γK ·K0 +
(
γc +

αc−P−1
con

αb

)
· µC +Ab +

Ay

αb
+ 1

2 · γccµ2
(
C

2 − K̂2
con

))
1
ρ · αb

(
γKC +Ab +

Ay

αb

)
(C.20)

P ∗
org(K) =

Pcon

(
ρ

µ+ρ · γK ·K0 +
(
γc +

αc−P−1
con

αb

)
· µC +Ab +

Ay

αb
+ 1

2 · γccµ2
(
C

2 − K̂2
con

))
γKC +Ab +

Ay

αb

(C.21)

From this equation we can derive an organic price premium needed to induce a preference for

organic management:

P ∗
org(K) =

Pcon

(
ρ

µ+ρ · γK ·K0 +
(
γc +

αc−P−1
con

αb

)
· µC +Ab +

Ay

αb
+ 1

2 · γccµ2
(
C

2 − K̂2
con

))
γKC +Ab +

Ay

αb

(C.22)

P ∗
org(K)

Pcon
=

ρ
µ+ρ · γK ·K0 +

(
γc +

αc−P−1
con

αb

)
· µC +Ab +

Ay

αb
+ 1

2 · γccµ2
(
C

2 − K̂2
con

)
γKC +Ab +

Ay

αb

(C.23)

P ∗
org(K)

Pcon
− 1 =

ρ
µ+ρ · γK ·K0 +

(
γc +

αc−P−1
con

αb

)
· µC +Ab +

Ay

αb
+ 1

2 · γccµ2
(
C

2 − K̂2
con

)
γKC +Ab +

Ay

αb

(C.24)

−
γKC +Ab +

Ay

αb

γKC +Ab +
Ay

αb

If we define K0 in terms of its distance from C, ϵ, such that K0 = C − ϵ we then have:

P ∗
org(K)− Pcon

Pcon
= (C.25)

ρ
µ+ρ · γK ·

(
C − ϵ

)
+ µ

µ+ρ · γK · C − µ
µ+ρ · γK · C +

(
γc +

αc−P−1
con

αb

)
· µC + 1

2 · γccµ2
(
C

2 − K̂2
con

)
γKC +Ab +

Ay

αb

− γKC

γKC +Ab +
Ay

αb
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P ∗
org(K)− Pcon

Pcon
=

− ρ
µ+ρ · γK · ϵ− µ

µ+ρ · γK · C +
(
γc +

αc−P−1
con

αb

)
· µC + 1

2 · γccµ2
(
C

2 − K̂2
con

)
γKC +Ab +

Ay

αb

(C.26)

P ∗
org(K)− Pcon

Pcon
=

(
γc +

αc−P−1
con

αb
− 1

µ+ρ · γK
)
· µC + 1

2 · γccµ2
(
C

2 − K̂2
con

)
− ρ

µ+ρ · γK · ϵ

γKC +Ab +
Ay

αb

(C.27)

P ∗
org(K)− Pcon

Pcon
=

 (µ+ρ)

(
γc+

αc−P−1
con

αb

)
−γK

(µ+ρ)

 · µC + 1
2 · γccµ2

(
C

2 − K̂2
con

)
− ρ

µ+ρ · γK · ϵ

γKC +Ab +
Ay

αb

(C.28)

P ∗
org(K)− Pcon

Pcon
=

 (µ+ρ)

(
γc+

αc−P−1
con

αb

)
−γK

(µ+ρ)µγcc

 · γccµ2C + 1
2 · γccµ2

(
C

2 − K̂2
con

)
− ρ

µ+ρ · γK · ϵ

γKC +Ab +
Ay

αb

(C.29)

P ∗
org(K)− Pcon

Pcon
= (µ+ρ)

(
γccµC+γc+

αc−P−1
con

αb

)
−γK

(µ+ρ)µγcc
− C

 · γccµ2C + 1
2 · γccµ2

(
C

2 − K̂2
con

)
− ρ

µ+ρ · γK · ϵ

γKC +Ab +
Ay

αb

(C.30)

P ∗
org(K)− Pcon

Pcon
=

(
K̂con − C

)
· γccµ2C + 1

2 · γccµ2
(
C

2 − K̂2
con

)
− ρ

µ+ρ · γK · ϵ

γKC +Ab +
Ay

αb

(C.31)

P ∗
org(K)− Pcon

Pcon
=

1
2 · (−γcc)µ

2
(
2
(
C − K̂con

)
· C −

(
C

2 − K̂2
con

))
− ρ

µ+ρ · γK · ϵ

γKC +Ab +
Ay

αb

(C.32)

P ∗
org(K)− Pcon

Pcon
=

1
2 · (−γcc)µ

2
(
C

2 − 2K̂con · C + K̂2
con

)
− ρ

µ+ρ · γK · ϵ

γKC +Ab +
Ay

αb

(C.33)
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P ∗
org(K)− Pcon

Pcon
=

1
2 · (−γcc)µ

2 ·
(
K̂con − C

)2
− ρ

µ+ρ · γK · ϵ

γKC +Ab +
Ay

αb

(C.34)

Note that this organic price premium is the same as the
(
Porg−Pcon

Pcon

)∗
deterministic

that we derived

in our OT2/OT3/OT4 local discrete analysis when Korg = C.

C.1.3 Conventional OT3’ farmer

Previously we found that when there is no uncertainty and Korg = C, the range of
(
Porg−Pcon

Pcon

)
yielding ∆(ϵ) ≥ 0 for OT3’ is

Porg−Pcon

Pcon
≥
(
Porg−Pcon

Pcon

)∗
deterministic

, where:

(
Porg − Pcon

Pcon

)∗

deterministic

= − 1

C +
(
Ab +

Ay

αb

)
· γ−1

K

· ρ

µ+ ρ
· ϵ ≤ 0 (C.35)

From our OT3’ analysis we know that:

Gcon(K) = Pcon · αb ·
(
γK ·

(
µ

µ+ ρ
·
(
C −K0

)
+K

)
+Ab +

Ay

αb

)
(C.36)

Vcon(K) = (C.37)

1

ρ
· Pcon · αb ·

(
γK ·

(
µ

µ+ ρ
·
(
C −K0

)
+K

)
+Ab +

Ay

αb

)
and so P ∗

org,det(K) can be written as

P ∗
org,det(K) =

1
ρ · Pcon · αb ·

(
γK ·

(
µ

µ+ρ ·
(
C −K0

)
+K

)
+Ab +

Ay

αb

)
1
ρ · αb

(
γKC +Ab +

Ay

αb

) (C.38)

P ∗
org,det(K) =

Pcon ·
(
γK ·

(
µ

µ+ρ ·
(
C −K0

)
+K

)
+Ab +

Ay

αb

)
γKC +Ab +

Ay

αb

(C.39)

From this equation we can derive an organic price premium needed to induce a preference for

organic management:

P ∗
org,det(K) =

Pcon ·
(
γK ·

(
µ

µ+ρ ·
(
C −K0

)
+K

)
+Ab +

Ay

αb

)
γKC +Ab +

Ay

αb

(C.40)

P ∗
org,det(K)

Pcon
=

γK ·
(

µ
µ+ρ ·

(
C −K0

)
+K

)
+Ab +

Ay

αb

γKC +Ab +
Ay

αb

(C.41)
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P ∗
org,det(K)

Pcon
− 1 =

γK ·
(

µ
µ+ρ ·

(
C −K0

)
+K

)
+Ab +

Ay

αb

γKC +Ab +
Ay

αb

(C.42)

−
γKC +Ab +

Ay

αb

γKC +Ab +
Ay

αb

If we define K0 in terms of its distance from C, ϵ, such that K0 = C − ϵ we then have:

P ∗
org,det(K)− Pcon

Pcon
= (C.43)

γK ·
(

µ
µ+ρ ·

(
C − C + ϵ

)
+K

)
γKC +Ab +

Ay

αb

− γKC

γKC +Ab +
Ay

αb

P ∗
org,det(K)− Pcon

Pcon
=

γK ·
(

µ
µ+ρ · ϵ+K − C

)
γKC +Ab +

Ay

αb

(C.44)

P ∗
org,det(K)− Pcon

Pcon
=

µ
µ+ρ · ϵ+K − C

C +
(
Ab +

Ay

αb

)
· γ−1

K

. (C.45)

Since in case OT3’, when K follows the farmer’s optimal trajectory we will have K(t) = K0 ≡
C − ϵ ∀t, the equation above can be expressed as

P ∗
org,det(K)− Pcon

Pcon
=

µ
µ+ρ · ϵ+ C − ϵ− C

C +
(
Ab +

Ay

αb

)
· γ−1

K

, (C.46)

P ∗
org,det(K)− Pcon

Pcon
=

µ
µ+ρ · ϵ− µ+ρ

µ+ρ · ϵ

C +
(
Ab +

Ay

αb

)
· γ−1

K

, (C.47)

or

P ∗
org,det(K)− Pcon

Pcon
=

− ρ
µ+ρ · ϵ

C +
(
Ab +

Ay

αb

)
· γ−1

K

(C.48)
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(
Porg − Pcon

Pcon

)∗

deterministic

= − 1

C +
(
Ab +

Ay

αb

)
· γ−1

K

· ρ

µ+ ρ
· ϵ (C.49)

Note that this organic price premium is the same as the
(
Porg−Pcon

Pcon

)∗
deterministic

that we derived

in our OT3’ local discrete analysis when Korg = C.

C.2 Threshold organic premium under uncertainty

Now we will analyze the uncertainty case where Porg is stochastic. Let’s assume that Porg evolves

as a first-order Markov process P ′
org

iid∼ FPorg(·|Porg).

For simplicity we also assume that at = 0 does not give the farmer information about the

distribution of Porg because, for example, the distribution of Porg is known to the farmer ahead of

the starting period and is not affected by their adoption decision in the current period.

Assuming that αb

(
γKC +Ab +

Ay

αb

)
̸= 0, we can find a value of Porg for each K at which the

value of continuing to produce conventionally is equal to the value of producing organically. We

will denote this value as P ∗
org(K).

P ∗
org(K) =

Vcon(K)

1
ρ · αb

(
γKC +Ab +

Ay

αb

) (C.50)

+
E [Vorg(Porg(Torg(Porg(t),K

∗(t))))− Vcon(K
∗(Torg(Porg(t),K

∗(t)))) | Porg,K]

1
ρ · αb

(
γKC +Ab +

Ay

αb

)

where K∗(t) is the solution for a conventional OT1 farmer; where Torg(Porg,K) is the time at which

the farmer adopts organic (i.e., the first time t when a(Porg,K) = 1, and therefore the first time

t when Vorg(Porg) > G∗
con(K) + β · E

[
v(P ′

org,K
′) | Porg,K

]
); and where a conventional farmer will

adopt organic (a = 1) the first time when:

a(Porg,K) = 1{Vorg(Porg) > G∗
con(K) + β · E

[
v(P ′

org,K
′) | Porg,K

]
} (C.51)

C.2.1 Conventional OT1 farmer

Based on our OT1 solution, we know that we can write:
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P ∗
org(K) =

1
ρ · Pconαb ·

(
ρ

(µ+ρ) · γK · (K) +
(
1
2γccµC + γc +

αc−P−1
con

αb

)
· µC +Ab +

Ay

αb

)
1
ρ · αb

(
γKC +Ab +

Ay

αb

) (C.52)

+
E [Vorg(Porg(Torg(Porg(t),K

∗(t))))− Vcon(K
∗(Torg(Porg(t),K

∗(t)))) | Porg,K]

1
ρ · αb

(
γKC +Ab +

Ay

αb

)

P ∗
org(K) =

Pcon

(
ρ

(µ+ρ) · γK · (K) +
(
1
2γccµC + γc +

αc−P−1
con

αb

)
· µC +Ab +

Ay

αb

)
γKC +Ab +

Ay

αb

(C.53)

+
E [Vorg(Porg(Torg(Porg(t),K

∗(t))))− Vcon(K
∗(Torg(Porg(t),K

∗(t)))) | Porg,K]

1
ρ · αb

(
γKC +Ab +

Ay

αb

)

From this equation we can write an expression for the organic price premium required to induce

adoption of organic management when the farmer faces uncertainty in the value of Porg:

P ∗
org(K)

Pcon
=

(
ρ

(µ+ρ) · γK · (K) +
(
1
2γccµC + γc +

αc−P−1
con

αb

)
· µC +Ab +

Ay

αb

)
γKC +Ab +

Ay

αb

(C.54)

+
E [Vorg(Porg(Torg(Porg(t),K

∗(t))))− Vcon(K
∗(Torg(Porg(t),K

∗(t)))) | Porg,K]

Pcon · 1
ρ · αb

(
γKC +Ab +

Ay

αb

)

P ∗
org(K)

Pcon
− 1 =

(
ρ

(µ+ρ) · γK · (K) +
(
1
2γccµC + γc +

αc−P−1
con

αb

)
· µC +Ab +

Ay

αb

)
γKC +Ab +

Ay

αb

− 1 (C.55)

+
E [Vorg(Porg(Torg(Porg(t),K

∗(t))))− Vcon(K
∗(Torg(Porg(t),K

∗(t)))) | Porg,K]

Pcon · 1
ρ · αb

(
γKC +Ab +

Ay

αb

)

P ∗
org(K)

Pcon
− Pcon

Pcon
=

((
1
2γccµC + γc +

αc−P−1
con

αb

)
· µC + ρ

(µ+ρ) · γK ·
(
C − ϵ

)
+Ab +

Ay

αb

)
γKC +Ab +

Ay

αb

(C.56)

−
γKC +Ab +

Ay

αb

γKC +Ab +
Ay

αb

+
E [Vorg(Porg(Torg(Porg(t),K

∗(t))))− Vcon(K
∗(Torg(Porg(t),K

∗(t)))) | Porg,K]

Pcon · 1
ρ · αb

(
γKC +Ab +

Ay

αb

)
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P ∗
org(K)− Pcon

Pcon
=

(
1
2γccµC + γc +

αc−P−1
con

αb

)
· µC − γKC + 1

(µ+ρ) · γK ·
(
ρC − ρϵ

)
γKC +Ab +

Ay

αb

(C.57)

+
E [Vorg(Porg(Torg(Porg(t),K

∗(t))))− Vcon(K
∗(Torg(Porg(t),K

∗(t)))) | Porg,K]

Pcon · 1
ρ · αb

(
γKC +Ab +

Ay

αb

)

(
Porg(K)− Pcon

Pcon

)∗

uncertainty

=

(
1
2γccµC + γc +

αc−P−1
con

αb

)
· µC − 1

(µ+ρ) · γK ·
(
µC + ρϵ

)
γKC +Ab +

Ay

αb

(C.58)

+
E [Vorg(Porg(Torg(Porg(t),K

∗(t))))− Vcon(K
∗(Torg(Porg(t),K

∗(t)))) | Porg,K]

Pcon · 1
ρ · αb

(
γKC +Ab +

Ay

αb

)
(
Porg(K)− Pcon

Pcon

)∗

uncertainty

=

(
Porg − Pcon

Pcon

)∗

deterministic

(C.59)

+
E [Vorg(Porg(Torg(Porg(t),K

∗(t))))− Vcon(K
∗(Torg(Porg(t),K

∗(t)))) | Porg,K]

Pcon · 1
ρ · αb

(
γKC +Ab +

Ay

αb

)
(
Porg(K)− Pcon

Pcon

)∗

uncertainty

=

(
Porg − Pcon

Pcon

)∗

deterministic

(C.60)

+

E [Vorg(Porg(Torg(Porg(t),K
∗(t))))− Vcon(K

∗(Torg(Porg(t),K
∗(t)))) | Porg,K]︸ ︷︷ ︸

≥0

Pcon · 1
ρ
· αb

(
γKC +Ab +

Ay

αb

)
︸ ︷︷ ︸

≥0︸ ︷︷ ︸
≥0

C.2.2 Conventional OT2/OT3/OT4 farmer

Based on our OT2/OT3/OT4 solution, we know that we can write:

P ∗
org(K) =

1
ρ · Pconαb

(
ρ

µ+ρ · γK ·K +
(
γc +

αc−P−1
con

αb

)
· µC +Ab +

Ay

αb
+ 1

2 · γccµ2
(
C

2 − K̂2
con

))
1
ρ · αb

(
γKC +Ab +

Ay

αb

)
(C.61)

+
E [Vorg(Porg(Torg(Porg(t),K

∗(t))))− Vcon(K
∗(Torg(Porg(t),K

∗(t)))) | Porg,K]

1
ρ · αb

(
γKC +Ab +

Ay

αb

)
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P ∗
org(K) =

Pcon

(
ρ

µ+ρ · γK ·K +
(
γc +

αc−P−1
con

αb

)
· µC +Ab +

Ay

αb
+ 1

2 · γccµ2
(
C

2 − K̂2
con

))
γKC +Ab +

Ay

αb

(C.62)

+
E [Vorg(Porg(Torg(Porg(t),K

∗(t))))− Vcon(K
∗(Torg(Porg(t),K

∗(t)))) | Porg,K]

1
ρ · αb

(
γKC +Ab +

Ay

αb

)
From this equation we can write an expression for the organic price premium required to induce

adoption of organic management when the farmer faces uncertainty in the value of Porg:

P ∗
org(K)

Pcon
=

(
ρ

µ+ρ · γK ·K +
(
γc +

αc−P−1
con

αb

)
· µC +Ab +

Ay

αb
+ 1

2 · γccµ2
(
C

2 − K̂2
con

))
γKC +Ab +

Ay

αb

(C.63)

+
E [Vorg(Porg(Torg(Porg(t),K

∗(t))))− Vcon(K
∗(Torg(Porg(t),K

∗(t)))) | Porg,K]

Pcon · 1
ρ · αb

(
γKC +Ab +

Ay

αb

)

P ∗
org(K)

Pcon
− 1 =

(
ρ

µ+ρ · γK ·K +
(
γc +

αc−P−1
con

αb

)
· µC +Ab +

Ay

αb
+ 1

2 · γccµ2
(
C

2 − K̂2
con

))
γKC +Ab +

Ay

αb

− 1

(C.64)

+
E [Vorg(Porg(Torg(Porg(t),K

∗(t))))− Vcon(K
∗(Torg(Porg(t),K

∗(t)))) | Porg,K]

Pcon · 1
ρ · αb

(
γKC +Ab +

Ay

αb

)

P ∗
org(K)

Pcon
− Pcon

Pcon
=

((
γc +

αc−P−1
con

αb

)
· µC + ρ

µ+ρ · γK ·
(
C − ϵ

)
+Ab +

Ay

αb
+ 1

2 · γccµ2
(
C

2 − K̂2
con

))
γKC +Ab +

Ay

αb

(C.65)

−
γKC +Ab +

Ay

αb

γKC +Ab +
Ay

αb

+
E [Vorg(Porg(Torg(Porg(t),K

∗(t))))− Vcon(K
∗(Torg(Porg(t),K

∗(t)))) | Porg,K]

Pcon · 1
ρ · αb

(
γKC +Ab +

Ay

αb

)

P ∗
org(K)− Pcon

Pcon
=

((
γc +

αc−P−1
con

αb

)
· µC − µ

µ+ρ · γK · C − ρ
µ+ρ · γK · ϵ+ 1

2 · γccµ2
(
C

2 − K̂2
con

))
γKC +Ab +

Ay

αb

(C.66)

+
E [Vorg(Porg(Torg(Porg(t),K

∗(t))))− Vcon(K
∗(Torg(Porg(t),K

∗(t)))) | Porg,K]

Pcon · 1
ρ · αb

(
γKC +Ab +

Ay

αb

)
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P ∗
org(K)− Pcon

Pcon
=

 (µ+ρ)

(
γc+

αc−P−1
con

αb

)
−γK

(µ+ρ)

 · µC + 1
2 · γccµ2

(
C

2 − K̂2
con

)
− ρ

µ+ρ · γK · ϵ


γKC +Ab +

Ay

αb

(C.67)

+
E [Vorg(Porg(Torg(Porg(t),K

∗(t))))− Vcon(K
∗(Torg(Porg(t),K

∗(t)))) | Porg,K]

Pcon · 1
ρ · αb

(
γKC +Ab +

Ay

αb

)

P ∗
org(K)− Pcon

Pcon
= (C.68) (µ+ρ)

(
γc+

αc−P−1
con

αb

)
−γK

(µ+ρ)µγcc
+ C − C

 · γccµ2C + 1
2 · γccµ2

(
C

2 − K̂2
con

)
− ρ

µ+ρ · γK · ϵ


γKC +Ab +

Ay

αb

+
E [Vorg(Porg(Torg(Porg(t),K

∗(t))))− Vcon(K
∗(Torg(Porg(t),K

∗(t)))) | Porg,K]

Pcon · 1
ρ · αb

(
γKC +Ab +

Ay

αb

)

P ∗
org(K)− Pcon

Pcon
=

((
K̂con − C

)
· γccµ2C + 1

2 · γccµ2
(
C

2 − K̂2
con

)
− ρ

µ+ρ · γK · ϵ
)

γKC +Ab +
Ay

αb

(C.69)

+
E [Vorg(Porg(Torg(Porg(t),K

∗(t))))− Vcon(K
∗(Torg(Porg(t),K

∗(t)))) | Porg,K]

Pcon · 1
ρ · αb

(
γKC +Ab +

Ay

αb

)

P ∗
org(K)− Pcon

Pcon
=

(
1
2 · (−γcc)µ

2 ·
(
2 ·
(
C − K̂con

)
· C −

(
C

2 − K̂2
con

))
− ρ

µ+ρ · γK · ϵ
)

γKC +Ab +
Ay

αb

(C.70)

+
E [Vorg(Porg(Torg(Porg(t),K

∗(t))))− Vcon(K
∗(Torg(Porg(t),K

∗(t)))) | Porg,K]

Pcon · 1
ρ · αb

(
γKC +Ab +

Ay

αb

)

P ∗
org(K)− Pcon

Pcon
=

(
1
2 · (−γcc)µ

2 ·
(
C

2 − 2K̂conC + K̂2
con

)
− ρ

µ+ρ · γK · ϵ
)

γKC +Ab +
Ay

αb

(C.71)

+
E [Vorg(Porg(Torg(Porg(t),K

∗(t))))− Vcon(K
∗(Torg(Porg(t),K

∗(t)))) | Porg,K]

Pcon · 1
ρ · αb

(
γKC +Ab +

Ay

αb

)
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P ∗
org(K)− Pcon

Pcon
=

1
2 · (−γcc)µ

2 ·
(
K̂con − C

)2
− ρ

µ+ρ · γK · ϵ

γKC +Ab +
Ay

αb

(C.72)

+
E [Vorg(Porg(Torg(Porg(t),K

∗(t))))− Vcon(K
∗(Torg(Porg(t),K

∗(t)))) | Porg,K]

Pcon · 1
ρ · αb

(
γKC +Ab +

Ay

αb

)
(
Porg(K)− Pcon

Pcon

)∗

uncertainty

=

(
Porg − Pcon

Pcon

)∗

deterministic

(C.73)

+
E [Vorg(Porg(Torg(Porg(t),K

∗(t))))− Vcon(K
∗(Torg(Porg(t),K

∗(t)))) | Porg,K]

Pcon · 1
ρ · αb

(
γKC +Ab +

Ay

αb

)
(
Porg(K)− Pcon

Pcon

)∗

uncertainty

=

(
Porg − Pcon

Pcon

)∗

deterministic

(C.74)

+

E [Vorg(Porg(Torg(Porg(t),K
∗(t))))− Vcon(K

∗(Torg(Porg(t),K
∗(t)))) | Porg,K]︸ ︷︷ ︸

≥0

Pcon · 1
ρ
· αb

(
γKC +Ab +

Ay

αb

)
︸ ︷︷ ︸

≥0︸ ︷︷ ︸
≥0

C.2.3 Conventional OT3’ farmer

Based on our OT3’ solution, we know that we can write:

P ∗
org(K) =

1
ρ · Pcon · αb ·

(
γK ·

(
µ

µ+ρ ·
(
C −K0

)
+K

)
+Ab +

Ay

αb

)
1
ρ · αb

(
γKC +Ab +

Ay

αb

) (C.75)

+
E [Vorg(Porg(Torg(Porg(t),K

∗(t))))− Vcon(K
∗(Torg(Porg(t),K

∗(t)))) | Porg,K]

1
ρ · αb

(
γKC +Ab +

Ay

αb

)

P ∗
org(K) =

Pcon ·
(
γK ·

(
µ

µ+ρ ·
(
C −K0

)
+K

)
+Ab +

Ay

αb

)
γKC +Ab +

Ay

αb

(C.76)

+
E [Vorg(Porg(Torg(Porg(t),K

∗(t))))− Vcon(K
∗(Torg(Porg(t),K

∗(t)))) | Porg,K]

1
ρ · αb

(
γKC +Ab +

Ay

αb

)
From this equation we can write an expression for the organic price premium required to induce

adoption of organic management when the farmer faces uncertainty in the value of Porg:
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P ∗
org(K)

Pcon
=

(
γK ·

(
µ

µ+ρ ·
(
C −K0

)
+K

)
+Ab +

Ay

αb

)
γKC +Ab +

Ay

αb

(C.77)

+
E [Vorg(Porg(Torg(Porg(t),K

∗(t))))− Vcon(K
∗(Torg(Porg(t),K

∗(t)))) | Porg,K]

Pcon · 1
ρ · αb

(
γKC +Ab +

Ay

αb

)

P ∗
org(K)

Pcon
− 1 =

(
γK ·

(
µ

µ+ρ ·
(
C −K0

)
+K

)
+Ab +

Ay

αb

)
γKC +Ab +

Ay

αb

− 1 (C.78)

+
E [Vorg(Porg(Torg(Porg(t),K

∗(t))))− Vcon(K
∗(Torg(Porg(t),K

∗(t)))) | Porg,K]

Pcon · 1
ρ · αb

(
γKC +Ab +

Ay

αb

)

P ∗
org(K)

Pcon
− Pcon

Pcon
=

(
γK ·

(
µ

µ+ρ ·
(
C −K0

)
+K

)
+Ab +

Ay

αb

)
γKC +Ab +

Ay

αb

−
γKC +Ab +

Ay

αb

γKC +Ab +
Ay

αb

(C.79)

+
E [Vorg(Porg(Torg(Porg(t),K

∗(t))))− Vcon(K
∗(Torg(Porg(t),K

∗(t)))) | Porg,K]

Pcon · 1
ρ · αb

(
γKC +Ab +

Ay

αb

)

P ∗
org(K)− Pcon

Pcon
=

γK ·
(

µ
µ+ρ ·

(
C −K0

)
+K − C

)
γKC +Ab +

Ay

αb

(C.80)

+
E [Vorg(Porg(Torg(Porg(t),K

∗(t))))− Vcon(K
∗(Torg(Porg(t),K

∗(t)))) | Porg,K]

Pcon · 1
ρ · αb

(
γKC +Ab +

Ay

αb

) .

Given that for the OT3’ solution K(t) = K0 ∀t the equation above can be expressed as:

P ∗
org(K)− Pcon

Pcon
=

γK ·
(

µ
µ+ρ ·

(
C −K0

)
−
(
C −K0

))
γKC +Ab +

Ay

αb

(C.81)

+
E [Vorg(Porg(Torg(Porg(t),K

∗(t))))− Vcon(K
∗(Torg(Porg(t),K

∗(t)))) | Porg,K]

Pcon · 1
ρ · αb

(
γKC +Ab +

Ay

αb

) ,

or
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P ∗
org(K)− Pcon

Pcon
=

γK ·
(

µ
µ+ρ ·

(
C −K0

)
− µ+ρ

µ+ρ ·
(
C −K0

))
γKC +Ab +

Ay

αb

(C.82)

+
E [Vorg(Porg(Torg(Porg(t),K

∗(t))))− Vcon(K
∗(Torg(Porg(t),K

∗(t)))) | Porg,K]

Pcon · 1
ρ · αb

(
γKC +Ab +

Ay

αb

) ,

P ∗
org(K)− Pcon

Pcon
=

γK ·
(
− ρ

µ+ρ · ϵ
)

γKC +Ab +
Ay

αb

(C.83)

+
E [Vorg(Porg(Torg(Porg(t),K

∗(t))))− Vcon(K
∗(Torg(Porg(t),K

∗(t)))) | Porg,K]

Pcon · 1
ρ · αb

(
γKC +Ab +

Ay

αb

) ,

P ∗
org(K)− Pcon

Pcon
= − 1

C +
(
Ab +

Ay

αb

)
· γ−1

K

· ρ

µ+ ρ
· ϵ (C.84)

+
E [Vorg(Porg(Torg(Porg(t),K

∗(t))))− Vcon(K
∗(Torg(Porg(t),K

∗(t)))) | Porg,K]

Pcon · 1
ρ · αb

(
γKC +Ab +

Ay

αb

) ,

(
Porg(K)− Pcon

Pcon

)∗

uncertainty

=

(
Porg − Pcon

Pcon

)∗

deterministic

(C.85)

+
E [Vorg(Porg(Torg(Porg(t),K

∗(t))))− Vcon(K
∗(Torg(Porg(t),K

∗(t)))) | Porg,K]

Pcon · 1
ρ · αb

(
γKC +Ab +

Ay

αb

)
(
Porg(K)− Pcon

Pcon

)∗

uncertainty

=

(
Porg − Pcon

Pcon

)∗

deterministic

(C.86)

+

E [Vorg(Porg(Torg(Porg(t),K
∗(t))))− Vcon(K

∗(Torg(Porg(t),K
∗(t)))) | Porg,K]︸ ︷︷ ︸

≥0

Pcon · 1
ρ
· αb

(
γKC +Ab +

Ay

αb

)
︸ ︷︷ ︸

≥0︸ ︷︷ ︸
≥0
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