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Abstract
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1 Introduction

Ethanol has attracted considerable attention both as an environmentally-friendly alternative

to imported oil, and as a way to boost farm profits and improve rural livelihoods. Fuel

ethanol can play different roles in the energy market, as an energy substitute for gasoline,

or as an additive (oxygenate and/or octane booster) to gasoline (Irwin and Good, 2017). In

the United States, a boom in the construction of corn-ethanol plants, known as the second

US ethanol boom, began in the mid-1990s and hit full-stride by the early 2000s.1 During

the second US ethanol boom, federal and state policies supporting ethanol coincided with

increases in petroleum prices that made ethanol more competitive as an energy substitute

for gasoline (Gallagher, 2009). Over this time period, the number of operational ethanol

plants rose from 35 plants in 1991, to 50 plants in 1999, to 192 plants in September of 2010,

for a total capacity of 13 billion gallons per year.

This paper focuses on ethanol plant entry decisions in the Midwestern USA during

the second US ethanol boom. In particular, we examine whether the presence of existing

ethanol plants affects ethanol plant entry decisions at the county level.

There are two main channels through which existing ethanol plants may affect ethanol

plant entry decisions. The first is a competition effect: if there is more than one ethanol plant

located in the same region, these plants may compete in the local feedstock input market

and/or in the local fuel ethanol output market. All else equal, a competition effect would

deter ethanol plants from entering in regions where there are other ethanol plants already

present. High transportation costs in both the feedstock and ethanol markets may be one rea-

son for localized competition among neighboring plants. Empirical evidence has shown that

industries with high transport costs are less geographically concentrated (Behrens, Brown

and Bougna, 2018).

Feedstock is approximately 70% of the cost of producing corn-ethanol, and trans-

portation costs for the bulky grains constitute a significant share (Whittington, 2006). As a

consequence, the distance from a plant to the feedstock production area is extremely impor-

tant. For example, Sarmiento, Wilson and Dahl (2012) find that competition in feedstock

procurement can lead to a negative competition effect in localized corn markets, and that

a shift in demand from a new plant could increase corn feedstock prices. Similarly, Zhang

and Irwin (2007) find that, owing to transportation costs, the degree to which the expand-

ing ethanol market is capitalized in farmland values varies systematically with proximity to

ethanol plants and grain elevators. Thus, owing to high transportation costs, neighboring

1The first US ethanol boom stemmed from the desire for more energy self-sufficiency in the aftermath
of the oil embargoes in 1973 and 1979, and led to the construction of 153 new plants by 1985 (DOE, 2008).
For a more detailed discussion of the first and second US ethanol boom, see Lin Lawell (2017).
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ethanol plants may compete in the local feedstock input market.

Fuel ethanol transportation is more difficult, and thus is more expensive, than gasoline

transportation because ethanol can easily absorb water during the transportation process,

ethanol has corrosive properties, ethanol vapor is flammable at a wider range of concen-

trations than gasoline, and ethanol fires cannot be put out with water. As a consequence,

unlike gasoline, which can be transported via pipelines, fuel ethanol must be transported

using specialized tank trucks and tank cars (Jaehne, 2008; Truant, 2011). Rail is the primary

form of transport used to ship ethanol from the Midwestern US to each coast. Rail transport

has become increasingly congested given the growth in domestic crude oil production (EIA,

2015; Bushnell, Hughes and Smith, 2021), consolidation of the nation’s largest railroads

(Henrickson and Wilson, 2015), and the small number of firms that operate most national

rail routes (Preonas, 2019). Neighboring ethanol plants may therefore compete over access

to transportation for their ethanol output, leading to higher marketing costs for fuel ethanol.

Thus, owing to high transportation costs, neighboring ethanol plants may also compete in

the local fuel ethanol output market.

In addition to the competition effect, a second channel through which existing ethanol

plants may affect ethanol plant entry decisions is an agglomeration effect (Goetz, 1997; El-

lison and Glaeser, 1999; McCann and Vroom, 2010; Zhu et al., 2011; Ahlfeldt et al., 2015;

Kerr and Kominers, 2015; Gaubert, 2018; Michael Pflüger and Tabuchi, 2019; Verstraten,

Verweij and Zwaneveld, 2019; Mantegazzi, McCann and Venhorst, 2020; Ehrl and Monas-

terio, 2021; Rosenthal and Strange, 2020), whereby ethanol plants may receive net benefits

from being in a location together with other ethanol plants. Existing plants in a region may

have developed transportation and marketing infrastructure and/or an educated work force

from which entering plants can benefit (Lambert et al., 2008). All else equal, an agglom-

eration effect would encourage potential ethanol plants to enter in regions where there are

other ethanol plants already present.

We examine whether the presence of existing ethanol plants affects ethanol plant

entry decisions at the county level using discrete response panel models. Our results show

that existing ethanol plants have a negative effect on the probability of ethanol plant entry

in a given county. The net negative competition effect dissipates with distance. We also find

that existing conglomerates and large ethanol producing firms in neighboring counties have

a positive effect on ethanol plant entry, while existing singlet plants in neighboring counties

do not. These results provide evidence for both local competition among ethanol plants

within counties, as well as possible agglomeration benefits from existing conglomerates and

large ethanol producing firms in neighboring counties.

The balance of our paper proceeds as follows. In Section 2, we review the relevant
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literature. We present our empirical model in Section 3. We describe our data in Section 4.

We present our results in Section 5. Section 6 concludes.

2 Literature Review

2.1 Ethanol entry and location decisions

The first branch of literature on which we build is that on models of firm entry and location

decisions. For excellent reviews of this literature, see Goetz (1997) and Bartik (1985). In em-

pirical models of firm entry and location decisions, firm entry, particularly in manufacturing,

is often modeled as a function of output market prices and access, input costs and access,

and the policy environment. In some papers, such as Goetz (1997), location decisions involve

a two-step process in which potential entrants first choose regions for broader consideration

based on one set of criteria, and then narrow the choice within each region based on another

set of criteria. Factors that affect firm entry and location decisions considered in the previous

literature include competition effects (Seim, 2006; Clapp, Ross and Zhou, 2019; Arcidiacono

et al., 2020), spatial competition (Durham, Sexton and Song, 1996; Biscaia and Mota, 2013;

Sesmero, Balagtas and Pratt, 2015; Wang et al., 2020), agglomeration effects (Goetz, 1997;

Ellison and Glaeser, 1999; McCann and Vroom, 2010; Zhu et al., 2011; Ahlfeldt et al., 2015;

Kerr and Kominers, 2015; Gaubert, 2018; Michael Pflüger and Tabuchi, 2019; Verstraten,

Verweij and Zwaneveld, 2019; Clapp, Ross and Zhou, 2019), and economies of scale (Jia,

2008). Using a unique dataset of Texas hotels, McCann and Vroom (2010) find evidence

that incumbents take actions that allow them to benefit from entrants who generate positive

agglomeration externalities that outweigh their negative competitive effects.

In the previous literature on ethanol plant location decisions, Sarmiento, Wilson and

Dahl (2012) use a cross-sectional discrete choice model to analyze the agricultural character-

istics and spatial dimensions that determine ethanol plant location, and find a large negative

effect of a nearby plant on the probability of another plant locating nearby, and furthermore,

that this effect decreases with distance. Similarly, Lambert et al. (2008) use a cross-sectional

discrete choice model with spatial clustering to look at factors that affect the presence of

ethanol plants and proposed plants in a given county, and find a negative impact on the loca-

tion of plants that entered between 2000 and 2007. Haddad, Taylor and Owusu (2010) model

state-by-state spatial determinants of plant location. Cotti and Skidmore (2010) estimate a

model of investment in ethanol over time using aggregate state-level data on investments.

We build on the previous literature on ethanol plant entry by using panel data to

examine whether the presence of existing ethanol plants affects ethanol plant entry decisions
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at the county level.

2.2 Ethanol investment

A second strand of literature upon which we build is that on ethanol investment. The

previous literature on ethanol investment includes studies that estimate the viability of

ethanol plants. Many of these studies have focused largely on break-even or net present

value analysis, return on investment, or similar assessments in a deterministic framework,

with sensitivity analyses conducted on important costs, technologies, or prices (Whims, 2002;

Gallagher et al., 2006; Eidman, 2007; Ellinger, 2007; Dal-Mas et al., 2011). To evaluate the

viability of ethanol plants under stochastic conditions, price risk and cost risk have been

incorporated by some studies to evaluate the profitability of a representative ethanol plant

(Richardson et al., 2007; Richardson, Lemmer and Outlaw, 2007; Gallagher, Shapouri and

Brubaker, 2007; Dal-Mas et al., 2011); in addition, Jouvet, Le Cadre and Orset (2012) also

incorporate uncertainty in demand and competition. Markel, Sims and English (2018) use a

real options framework to isolate the effect of fuel market uncertainty and policy uncertainty

on the decision to enter and exit the biofuel market. Other studies of ethanol investment

have estimated the most profitable plant size under different market conditions (Gallagher,

Brubaker and Shapouri, 2005; Gallagher, Shapouri and Brubaker, 2007; Khoshnoud, 2012).

Several recent studies analyze ethanol plant investment option values (Schmit, Luo and

Tauer, 2009; Gonzalez, Karali and Wetzstein, 2012) based on engineering cost information

and various simulations.

The previous literature also includes studies of how government policies impact in-

vestment in ethanol plants. Schmit, Luo and Tauer (2009) and Schmit, Luo and Conrad

(2011) use dynamic programming methods to show that without government policies, the

recent expansionary periods would have not existed and market conditions in the late 1990s

would have led to some plant closure. Babcock (2013) similarly finds that government sup-

port is important for the development of ethanol industry. On the other hand, Babcock

(2011) argues that the recent high gasoline prices and phase-out of MTBE increased ethanol

prices far above levels needed to justify investment in a corn ethanol plant, which means that

government support might not be necessary. Cotti and Skidmore (2010) find that state-level

producer tax credits can have a significant effect on a state’s ethanol production capacity.

Bielen, Newell and Pizer (2018) estimate the incidence of the Volumetric Ethanol Excise Tax

Credit (VEETC) and find compelling evidence that ethanol producers captured two-thirds

of the subsidy, and suggestive evidence that a small portion of this benefit accrued to corn

farmers. Maxwell and Davison (2014) and Ghoddusi (2017) conduct a real options analyses
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of ethanol plants in the presence of biofuels subsidies and mandates, respectively. Other

studies have examined the effect of government policies on investment in ethanol plants

econometrically (Herath Mudiyanselage, Lin and Yi, 2013; Thome and Lin Lawell, 2021; Yi

and Lin Lawell, 2021a; Yi and Lin Lawell, 2021b; Yi, Lin Lawell and Thome, 2021). The

previous literature also includes studies of the Renewable Fuel Standard and the effects of

renewable fuel mandates on markets and/or welfare (de Gorter and Just, 2009; Lapan and

Moschini, 2012; Holland et al., 2014; Chen et al., 2014; Lade and Lin Lawell, 2015; Skolrud et

al., 2016; Lemoine, 2016; Moschini, Lapan and Kim, 2017; Just, 2017; Skolrud and Galinato,

2017; Korting and Just, 2017; Lade, Lin Lawell and Smith, 2018a; Korting, de Gorter and

Just, 2019; Lade, Lin Lawell and Smith, 2018b; Irwin, McCormack and Stock, 2020; Landry

and Bento, 2020; Afkhami and Ghoddusi, 2020; Thome and Lin Lawell, 2021; Lade and Lin

Lawell, 2021).

We build on the previous literature on ethanol investment by examining competition

effects and agglomeration effects during the second US ethanol boom.

3 Empirical Model

To analyze whether the presence of existing ethanol plants affects ethanol plant entry deci-

sions at the county level during the second US ethanol boom, we empirically model the entry

decision of potential entrants who have not yet entered. In particular, we estimate discrete

response panel models in which the dependent variable is the probability of ethanol plant

entry. Once a potential entrant i enters, it is no longer a potential entrant and therefore

exits the sample.

The primary discrete response panel model we estimate is the following fixed effects

logit model:

Pr(Iikt = 1) = 1 − F (−(N ′
ktδN +G′

ktδG +X ′
ktδX + Yeart

′γ + νk)) , (1)

where Iikt is an indicator of whether potential entrant i enters by building a new ethanol

plant in county k in year t ; Nkt is the number of existing plants in county k at the start

of year t ; Gkt describes the policy environment; Xkt are economic factors; Yeart is either a

year effect or a time trend depending on the specification; νk is a county fixed effect that

controls for time-invariant unobservable county traits, such as size or promotion of business

development, transportation infrastructure, and size and availability of labor force;2 and

2The size and availability of the labor force relevant for ethanol plants are unlikely to change much over
the time period of our analysis, and have been treated as fixed in previous studies of ethanol plant location
decisions. For example, to measure labor quality and availability in their multi-year analysis, Lambert et al.
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F (·) is the logistic cumulative distribution function. Standard errors for the fixed effects

logit model are calculated using the observed information matrix.

We also estimate the following linear probability fixed effects model:

Pr(Iikt = 1) = N ′
ktδN +G′

ktδG +X ′
ktδX + Yeart

′γ + νk. (2)

Standard errors for the linear probability fixed effects model are clustered at the county level.

There are several reasons to estimate both a fixed effects logit model and a linear

probability fixed effects model. The fixed effects logit model in (1) is preferred for our

particular data set since there are relatively few instances of ethanol plant entry: because

the probability of entry is relatively low, we are on the left side of the distribution, and it is

therefore advantageous to use a logit model. The fixed effects logit relies upon within-county

variation for identification, however, which means that we can only use data from counties

that had at least one entrant during the time period of our data set. The fixed effects

logit therefore will not detect an effect on the probability of entry of variables that vary

more spatially than they do across time. We therefore also estimate the linear probability

model in (2) because a linear probability model is easier to implement and its estimates are

consistent if we control for the heteroskedastic errors; and because we can include the full

data sample and account for within and cross-sectional variation.

The coefficient on the number of existing plants Nkt measures the net effects of the

competition and agglomeration effects. Since Nkt is the number of existing ethanol plants

open at the start of the period in which the entry decision is made, and is therefore pre-

determined before the entry decision is made, it is not endogenous. In the data, the maximum

number of plants in existence in any county is three. Because of the time necessary to

construct a plant, the potential entrant necessarily observes previously existing plants before

deciding whether to enter. We include two measures of the number of existing plants Nkt:

the number of existing plants in the county (existing plants), and the number of existing

plants in the contiguous counties bordering the given county (spatial lag of existing plants).

The coefficients on existing plants and spatial lag of existing plants measure the impact of

existing competitor plants on the probability of entry.

The covariates in Gkt describe the policy environment faced by the corn-ethanol

industry. State and federal policies can affect the expected payoff from entering through the

cost of inputs, expected revenues, and building costs.

Several government policies have coincided with the second US ethanol boom. First,

(2008) use demographic and economic variables extracted from the 2000 United States Census to construct
the percent of individuals over the age of twenty-five with a high school diploma in each county in the year
2000.
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the Clean Air Act Amendments of 1990 mandated the use of oxygenates, which include

ethanol, in gasoline. The subsequent phase out and ban of the oxygenate methyl tertiary-

butyl ether (MTBE) as a gasoline additive beginning in the late 1990s further increased

the demand for ethanol. Second, the Renewable Fuel Standard (RFS) was created under

the Energy Policy Act of 2005 with the goal of accelerating the use of fuels derived from

renewable sources (EPA, 2021). The initial RFS (RFS1) mandated that a minimum of

4 billion gallons be used in 2006, rising to 7.5 billion gallons by 2012. Two years later,

the Energy Independence and Security Act of 2007 greatly expanded the biofuel mandate

volumes, creating the RFS2, which requires steadily increasing volumes of biofuel to be

blended into the nation’s fuel supply, reaching 37 billion gallons (bgal) a year by 2022. Third,

many states have offered tax credits to ethanol producers (Cotti and Skidmore, 2010).

Our government policy variables Gkt at the federal level include indicators for the

two versions of the Renewable Fuel Standard (RFS1 and RFS2), which are implemented as

blending mandates. At the state-level, our government policy variables Gkt include the year

the MTBE ban was implemented; MTBE was a popular oxygenate used to meet environ-

mental regulations and also to boost octane level, and ethanol is a substitute for MTBE. We

also include state-level production tax credits.

In particular, the vector Gkt of government policy variables contains indicators of the

different policies. The state policies MTBE Ban and Tax Credit are used in all specifications.

We can only identify the effect of the federal policies RFS1 and RFS2 in the specifications

without year effects because there is no spatial variation in the federal policies in our data.

Thus, the federal policies RFS1 and RFS2 are only included in specifications in which Yeart

is specified as a time trend rather than as year effects.

The covariates in Xkt include economic factors that affect the payoffs from entering.

On the revenue side, we include ethanol price; gasoline price; and proximity to cattle, which

is a proxy for sales price of distillers’ grains (DDGS, or distillers’ dried grains with solubles,

is a co-product of corn-ethanol production which is used for animal feed).3 Gasoline price

could have a positive or negative impact on entry depending on whether ethanol is viewed

as as an energy substitute for gasoline or an oxygenate (additive), respectively.

The vector Xkt also includes covariates describing the cost of ethanol production.

One important factor is availability and cost of corn, the primary feedstock in the region of

focus; local availability is important because transportation is costly (USDA, 2007). Corn is

the largest variable cost in ethanol production (Kwiatkowski et al., 2006; Perrin, Fretes and

3The co-product market is becoming more significant due to lower prices for ethanol (Dhuyvetter, Kastens
and Boland, 2005). There is significant variability in participation in co-product markets (Perrin, Fretes and
Sesmero, 2009). Participation is driven by mill type and plant age; wet mills (corn syrup) and dry mills
(DDGS) produce different co-products (DOE, 2008).
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Sesmero, 2009). To measure the cost and availability of corn, we include the corn price and

the intensity of a county’s corn production. The county corn intensity variable is defined as

the corn acreage divided by the total area of the county. We also construct a spatial lag of

the corn intensity variable, which we define as the corn intensity in the contiguous counties

bordering the given county. We include the natural gas price because it is a major energy

source for milling corn. We also include electricity price; electricity is an important energy

source in some plants.

We also control for whether there is existing biodiesel production capacity in county

k at the start of year t because biodiesel and ethanol plants may compete indirectly in the

feedstock market: while biodiesel production uses soy as a feedstock, much of the Midwest

can be planted to soy or corn. Also, an ethanol plant may be built to satisfy a community

need for crop value-added, and a biodiesel plant may compete for support. To measure the

cost and availability of soy, the feedstock for biodiesel, we also control for soy price and the

intensity of a county’s soy production.

We do not explicitly model transportation costs because data on transportation costs

and infrastructure is generally time-invariant,4 which means the impact cannot be identified

as these variables are absorbed by the county fixed effects.5 To mitigate the possibility of

large changes in transportation costs and infrastructure, we focus on a relatively narrow

time period for our analysis – 1996 to 2008, which corresponds to the latest ethanol boom

in the US – during which transportation costs and infrastructure are more likely to be time-

invariant and therefore absorbed by the county fixed effects. In lieu of explicitly modeling

transportation costs, we include a metro area indicator, which could capture proximity to

market, as well as the potential costs of regulations.

Thus, the vector Xkt of economic variables contains the following exogenous covari-

ates: corn price, soy price, corn intensity and its spatial lag, soy intensity, cow density,

electric price, natural gas price, gasoline price, ethanol price, and the indicator existing

biodiesel. We can only identify the effect of ethanol price in the specifications without year

4Transportation infrastructure relevant for ethanol plants is unlikely to change much over the time period
of our analysis, and has been treated as fixed in previous studies of ethanol plant location decisions. For
example, to measure the road network potential of the county for their multi-year analysis, Lambert et al.
(2008) use a time-invariant measure of the total county road network miles, including state highways and
the federal interstate system, as measured either on or prior to the first year of their analysis, normalized
by the total square miles of the county. Similarly, to measure the rail network potential of the county for
their multi-year analysis, Lambert et al. (2008) use a time-invariant measure of the total county class I and
II rail line miles, as measured either on or prior to the first year of their analysis, normalized by the total
square miles of the county. Thus, since they are unlikely to change much over time, these transportation
cost metrics are therefore absorbed by our county fixed effects.

5In cases where the transportation infrastructure is not time-invariant, then it is likely to be endogenous
at the county level. The modeling of transportation infrastructure investment decisions, which has been
studied elsewhere (Fatal et al., 2012), is beyond the scope of this paper.
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effects because there is no spatial variation in the ethanol price in our data; thus, ethanol

price is only included in specifications in which Yeart is specified as a time trend rather than

as year effects.6

The focus of our analysis of competition and agglomeration effects is on the net effects

of existing ethanol plants on ethanol plant entry decisions. Our coefficients of interest are

the coefficients on the number of existing plants Nkt, which measure the net effects of the

competition and agglomeration effects. Because we control for other factors that may affect

competition or agglomeration – such as corn intensity, transportation infrastructure, and

labor force – with our economic covariates Xkt, county fixed effects, and time trend or year

effects Yeart , our coefficients on the number of existing plants Nkt measure the net effects

of the competition and agglomeration effects – and, in particular, the net effects of existing

ethanol plants on ethanol plant entry decisions – conditional on these controls and covariates.

All else equal, a competition effect – whether from local competition in output mar-

kets, input markets, or both – would deter ethanol plants from entering in regions where there

are other ethanol plants already present. In contrast, all else equal, an agglomeration effect

would encourage potential ethanol plants to enter in regions where there are other ethanol

plants already present. The coefficients on the number of existing plants Nkt measure the

net effects of the competition and agglomeration effects.

4 Data

4.1 Time Frame and Focus Region

We focus on corn-ethanol plants in the Midwestern USA over the period 1996 to 2008.

While ethanol is produced throughout the United States using various feedstocks, 95% of

the ethanol produced in this time frame is produced from corn. Focusing on corn-ethanol

plants eliminates the need to consider feedstock choice in the model.7 The majority of corn

(and ethanol from corn) is produced in the Midwestern USA, so we focus on ethanol plant

entry in this region, specifically in the following ten states: Iowa, Illinois, Indiana, Kansas,

Minnesota, Missouri, Nebraska, Ohio, South Dakota, and Wisconsin.

6Our data set and analysis ends in 2008, prior to the U.S. engaging in significant ethanol exports (EIA,
2021b), and prior Brazil becoming the largest exporter of ethanol to the U.S. in 2011 (EIA, 2021a). Nev-
ertheless, ethanol import exposure, ethanol export exposure, and prices for sugarcane-based ethanol from
Brazil, which are unlikely to vary by county, are controlled for by the year effects in our specifications that
include year effects.

7For structural econometric models of feedstock choice, see Yi and Lin Lawell (2021b), who model ethanol
investment and feedstock choice in Europe; and Yi and Lin Lawell (2021a), who model ethanol investment
and feedstock choice in Canada.
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We focus on the time period 1996 to 2008, which corresponds to the latest ethanol

boom in the US. This time period is narrow enough to allow us to use one set of policy

variables, ensure similarity in plant technology, and reasonably assume time invariance in

transportation costs and infrastructure. Starting the analysis earlier would also be difficult

because plant startup and closure information is not readily available before this date.8

Figure 1 shows the number of ethanol plants at the beginning and end of our study period.

Though the start-up month for new plants is available, we use annual observations for

three reasons. First, the feedstock of focus, corn, has one growing season in the US. Second,

construction of an ethanol plant takes significantly longer than a month, but usually less

than a year, from the start of physical construction activities.9 Finally, much of the data on

other variables are publicly available at an annual level.

We eliminate completely non-agricultural counties within the ten states (e.g. northern

Minnesota), as well as those with missing data on agricultural production, resulting in a

sample with 855 unique counties. This results in potentially 11,115 county-year observations

over the thirteen-year time period. We add another dimension to account for the number of

potential entrants in each county-year.

4.2 Plant Variables

Our ethanol plant data set includes information about start-up date of new entrants, and

nameplate capacity and ownership type for new and existing plants. The original list of

operational plants was obtained online from the Renewable Fuels Association and Ethanol

Producer magazine, including historical lists from the Renewable Fuels Association; these

lists do not match perfectly. We were able to rectify inconsistencies between the two lists as

well as collect additional information on plant owners by searching through plant websites,

newspaper articles, and SEC filings.

The sample begins with 22 operational plants at the start of 1996, and ends with 149

operational plants with a total capacity of almost 10 billion gallons per year in 2008. Figure

1 maps the number of operational ethanol plants by county in the first and last years of our

8Including the entrants during 2009 and 2010 would require accounting for plant closure due to the
market crash and implosion of Verasun, a large producer. Many plants stopped production in late 2008 or
early 2009 following Verasun’s bankruptcy declaration on October 31, 2008. Operations were normal the
rest of the year, and many of the shuttered plants have since restarted under new ownership. Prior to 2008,
there was only one permanent closure (exit) in the sample; other closures were temporary closures owing to
accidents or buyouts, and the plants returned to normal operations. The exit phenomenon is a subject of
our ongoing work in Yi, Lin Lawell, and Thome (2021) and is outside the scope of this model.

9There was a production bottleneck in 2007, when plants took 18-24 months to build (Koplow, 2007).
We do not consider announcements of new plants, as other studies did, because many announced projects
were never completed as investors fell through before construction began.
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data set, respectively.

The entry variable Iikt is an indicator of whether potential entrant i enters by building

a new ethanol plant in county k in year t. As the maximum number of ethanol plants in any

county in our data set during the time period of our data set is three, we allow for up to 3

potential ethanol plant entrants per county-year. The entry variable Iikt is equal to 1 if the

plant enters in a given calendar year.10 Once a potential entrant i enters, it is no longer a

potential entrant and therefore exits the sample.

The number of existing plants Nkt in the county measures the number of operational

plants in that county on January 1 of year t, and is therefore observable to any potential

entrant making a decision in year t. In an alternate specification, we define Nkt as a con-

tinuous variable of capacity of existing plants.11 We also define a spatial lag of the existing

plant variable as the number of existing plants in the contiguous counties bordering a given

county. In other words, the spatial lag of existing plants variable is the number of existing

plants in all adjacent counties that share a border with a given county.

4.3 Policy Variables

We include state-level policy variables. The first state-level policy variable we use is an

indicator of whether the state banned MTBE at any point in a given year. All the Midwestern

states in our sample implemented MTBE bans by 2005, before the nationwide ban took effect

in 2006.

The second state-level policy variable represents the state producer tax credits.12

Defining this variable is complicated because each state places different contingencies on

receiving these funds. For example, some states support only large-capacity plants, others

only small or community-owned plants. Thus, even in states with tax credits, not all entering

or incumbent plants qualify. In addition, some of the credits are available for a specified

number or years, while others expire on a date unrelated to time of plant entry. Because

of these differences, we represent these policies with a binary variable indicating if producer

tax credit benefits were offered to plants that entered in that year, and test the robustness

to that specification.13

10Entry is the date of the first grind of corn, which is the first step in corn-ethanol production.
11Capacity is a good proxy for production because plants operate continuously at or near nameplate,

except during regular maintenance (Kwiatkowski et al., 2006). As seen in Table A-1 in the Appendix,
the approximate industrial rate of operation (or production-to-capacity ratio) over the years 1998-2010 was
88.8%.

12The American Coalition for Ethanol (2007) provides a detailed description and review of the policies.
Cotti and Skidmore (2010) study state-level impacts of these policies.

13We hope in future work to quantify the stringency and extent of various state tax credit policies in
order to further examine and control for the effects of government policies on ethanol plant entry decisions.
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For federal-level policy variables, we specify two variables to capture the effects of

the Renewable Fuel Standards (RFS).14 The RFS was created under the Energy Policy Act

of 2005 with the goal of accelerating the use of fuels derived from renewable sources (EPA,

2021). This initial RFS (RFS1) mandated that a minimum of 4 billion gallons of ethanol

be blended into gasoline in 2006, rising to 7.5 billion gallons by 2012. Two years later,

the Energy Independence and Security Act of 2007 greatly expanded the biofuel mandate

volumes, creating the RFS2. The RFS2 requires steadily increasing volumes of biofuel to be

blended into the nation’s fuel supply, reaching 37 billion gallons a year by 2022. We model

RFS1 with an indicator for the years 2005 and 2006 and RFS2 as an indicator for the years

2007 and onwards. In other words, RFS1 is a dummy variable that equals 1 for the years

2005-2006 and 0 for all other years; and RFS2 is a dummy variable that equals 1 for the

years 2007 and onwards, and 0 for all other years.

4.4 Other Data

Corn and soy prices are available annually from the National Agricultural Statistics Service

of the USDA (NASS) at the state level. Corn and soy production and acreage are available

annually by county from NASS. Because counties are different areas, we construct a county

corn intensity variable, defined as the corn acreage divided by the total area of the county,

to capture area-independent acreage using county acreage from the US Census.15 We also

construct a spatial lag of the corn intensity variable, which we define as the corn intensity

in the contiguous counties bordering the given county; as well as a county-level soy intensity

variable. Because corn price data are not publicly available at a county level, the local

competition in the corn feedstock market is captured both by the county-level corn intensity

variable and by the covariate Nkt measuring the number of existing plants in the county.

To represent the potential market for distillers’ grains (DDGS), a co-product of corn-

ethanol production that is used for animal feed, we construct a district-level cow density

variable using the number of cows per district-acre, where the number of cows is the count

of ‘all cattle’, available from NASS, and districts are defined by the USDA.16 The potential

DDGS market also includes hogs, but data is not available at the district level for all states.

Nevertheless, because cattle use DDGS more efficiently than hogs, they represent the larger

14We do not include other federal-level policy variables such as the tax credit or the small producer
subsidy in the analysis because they do not vary enough in the time period to identify the effects, and are
furthermore absorbed by the year effects in the specifications that include year effects. We hope in future
work to quantify the stringency and extent of various state tax credit policies and combine the various state
tax credit policies with the federal ethanol tax credit in order to further examine and control for the effects
of government policies on ethanol plant entry decisions.

15As a robustness test, we also run specifications defining corn intensity as production over area.
16A district is made of up to 120 counties and there are usually 6-8 districts per state.
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market for co-products (NASS, 2007).17

The ethanol price is the free on board price in Omaha, and is published by the

Nebraska Energy Office. We use state-level total gasoline rack prices from the Energy Infor-

mation Administration (EIA, 2009). We do not include an E85 price in this analysis because

the price series began much more recently than our time frame, and it lacks spatial variation.

Natural gas (city gate) price and electricity price to industry are available annually from the

EIA, also at state level (EIA, 2009).18 We use the average urban CPI to deflate all the

prices. The final variable, an indicator for metropolitan areas, is the US Census definition

of counties in metropolitan statistical areas.

Because we do not have local variation in ethanol, gasoline, natural gas, or electricity

prices, local competition in the ethanol and gasoline output markets and in the gasoline,

natural gas and electricity input markets are captured by the covariates Nkt measuring the

number of existing plants in the county. All else equal, a competition effect – whether from

local competition in output markets, input markets, or both – would deter ethanol plants

from entering in regions where there are other ethanol plants already present. In contrast,

all else equal, an agglomeration effect would encourage potential ethanol plants to enter in

regions where there are other ethanol plants already present. The coefficients on the number

of existing plants Nkt measures the net effects of the competition and agglomeration effects.

Data on biodiesel are from the National Biodiesel Board and Biodiesel Magazine.

We construct a dummy variable existing biodiesel for whether there is existing biodiesel

production capacity in county k at the start of year t. In an alternate specification, we

define existing biodiesel as a continuous variable, the existing biodiesel production capacity

in county k at the start of year t.

The summary statistics for the explanatory variables used in our empirical analysis

are presented in Table 1.

5 Results

The results of our discrete response panel models of the probability of ethanol plant entry

are presented in Table 2. The results of the fixed effects logit model (1) are in Specifications

A and B of Table 2, which specify Yeart as year effects and a time trend, respectively.

In both specifications of the fixed effects logit model (1), the coefficient on existing

17Foreign markets represent an important demand for US DDGS production, particularly in more recent
years. After the 1996-2008 time period of our data set; DDGS exports have exploded from 5 million tons in
2009 to more than 11 million tons in more than 97 countries in 2018-2019 (U.S. Grains Council, 2021).

18We use city gate natural gas price instead of price to industry because the complete series is available;
these two price series trend together within a given state.
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plants is large, negative, and significant, indicating that the number of existing plants has a

negative effect on the probability of entry in a given county. The coefficient on the spatial

lag of existing plants, the number of existing plants in the contiguous counties bordering

a given county, is positive but insignificant, indicating that the net negative competitive

effect among plants may dissipate with distance, and that there may be a potential positive

agglomeration effect regionally. The significant negative sign on existing plants that is only

present within a county confirms the existence of localized competition, and is consistent

with the local competition posited by Lambert et al. (2008) and Sarmiento, Wilson and

Dahl (2012). The negative county effect indicates that plants may be competing for corn as

an input; we would expect this effect to decline or even disappear at the region level following

the results of McNew and Griffith (2005) that most corn in sourced within 50 miles of the

plant, well within the average size of a county.

One reason why we see so few significant variables in this regression is that the fixed

effects logit relies upon within-county variation for identification, which means that we can

only use data from counties that had at least one entrant during the time period of our data

set. The fixed effects logit therefore will not detect an effect on the probability of entry of

variables such as corn intensity that vary more spatially than they do across time. Thus,

although ethanol plants are located in regions with high corn availability, suggesting that

high corn availability should be a driver of entry, the fixed effects logit model does not detect

the effect of corn availability because variation in corn availability over time is not large.

The magnitude, and sometimes sign, of some of the other coefficients depends on the

specification of Yeart in the regression model. Specifying Yeart as a time trend controls

for changes in technologies and preferences over time, while the specifying Yeart as year

effects also captures events, policies, market conditions at the national level. The coefficients

on natural gas price, corn price, and soy price change sign and magnitude across the two

specifications of Yeart , though none are significantly different from zero. These variables

are all correlated and trend upwards over time, which may make their effects difficult to

distinguish from the time trend.

The coefficient on Tax Credit is positive but insignificant in the regression with year

effects (Specification A of Table 2), and is larger and becomes significant in the regression

with a time trend (Specification B). Cotti and Skidmore (2010) similarly find positive impacts

of state ethanol tax credits on state ethanol capacity. We find no significant impact of RFS1,

RFS2, or the MTBE Ban.

The only other significant coefficient is that on gasoline price, which also has a large,

positive effect on the probability of entry, indicating that potential entrants may view ethanol

as a gasoline substitute. We explore this result further below.
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The results of the linear probability fixed effects model (2) in Table 2 are interesting

for two reasons. First, the results in Specifications C and D of Table 2 serve as a comparison

to the logit fixed effects model in (1). Like the fixed effects logit model, the linear probability

fixed effects models in Specifications C and D are estimated only for the counties k that have

an entrant at some point in the period. The signs and significance levels of the linear prob-

ability fixed effects model parameter estimates in Specifications C and D are qualitatively

similar to the fixed effects logit parameter estimates in Specifications A and B.

A second reason the linear probability fixed effects model is informative is that we can

include the full data sample and account for within and cross-sectional variation. As seen in

Specifications E and F of Table 2, we find more significant variables for the linear probability

fixed effects model when we use the full dataset and not just the counties that have entrants.

While existing plants still have a negative and significant effect on entry, we see that the

effect of spatial lag of existing plants is positive and significant. These results suggest that

the net negative competitive effect among plants not only dissipates with distance, but also

becomes net positive, indicating possible agglomeration benefits in the ethanol industry.

We run several specification tests of the discrete response models in equations (1)

and (2). Their results are presented in Table 3. First, we use a Hausman test to choose

between random effects and fixed effects. The Hausman χ2 statistics from the test on the

restricted and full random effects models are all very large, with corresponding p-values

less than 0.001, indicating that county unobservables are likely to be correlated with the

regressors, and therefore that fixed effects is the appropriate specification.19

We test for potential endogeneity of corn intensity using a Durbin-Wu-Hausman

test. In the first-stage regression, the instruments for corn intensity are the time lags of

corn intensity and corn price. The estimated coefficient on the first-stage residuals in the

second stage regression is insignificant, indicating that we cannot reject the exogeneity of

corn intensity in any specification.20

We do not anticipate endogeneity problems with the other variables such as corn

price because they are observed on a more aggregate level, and thus would not be expected

to respond to the addition of one ethanol plant at the county level. For example, McNew

and Griffith (2005) find that while ethanol plants increase the basis for corn price, this effect

is limited to around 50 miles from the plant, while the price variables in this analysis are

19The restricted random effects model includes the same regressors as the fixed effects model, while the
full model includes the time-invariant regressors, allowing accounting for potential efficiency gain from their
inclusion (Wooldridge, 2010).

20As a robustness check, we estimate the models with a time lagged corn intensity variable instead
of contemporaneous corn intensity. There is no significant difference in the other estimates (results not
reported).
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measured at the state level. Moreover, time-invariant spatially correlated unobservables are

absorbed by the county fixed effects. An additional argument for using contemporaneous

prices rather than futures prices in our model is that while futures prices exist, they are at

a national level, and therefore will be absorbed by the year effects.

In Table 4, we estimate the fixed effects logit model (1) with alternate specifications of

the corn and soy variables (corn price, soy price, corn intensity, soy intensity). We construct

ratios of corn to soy price and corn to soy intensity and include them in the regressions in

place of, and as well as, the previously specified variables. The hypothesis is that perhaps

the relative prices and production intensities may capture more variation in entry probability

than the levels. Nevertheless, the results are not qualitatively different from the results in

Table 2, and our coefficients of interest on the number of existing plants Nkt are moreover

robust.

In Table 5, we explore the large positive effect of gasoline price further by estimating

the fixed effects logit model (1) with alternate specifications of the ethanol price and gasoline

price variables. We construct a ratio of the ethanol to gasoline price and include in the

regression in place of, and as well as, the individual price variables. One advantage of

this alternate specification is that we can control for the ethanol price regardless of the

specification of Yeart . While ethanol price is measured at the national level, the ethanol-

gasoline price ratio is at the state level.

Our coefficients of interest on the number of existing plants Nkt are robust to our

alternate specifications of the ethanol price and gasoline price variables. The alternate

specification of gasoline price and ethanol price does not have any qualitative effects on

other coefficient estimates, except for the coefficients on RFS1 and RFS2. The estimates of

the RFS impacts are larger, and significant, when ethanol to gasoline price ratio is included in

the regression. Additionally, we detect a positive impact of ethanol price in the specifications

with continuous Yeart . In these specifications, the coefficient on ethanol to gasoline price is

small and insignificant. In the specifications with year effects instead of a continuous Yeart ,

the effect of ethanol to gasoline price on the probability of entry is large, negative, and

significant, which supports the view of ethanol and gasoline as substitutes. Babcock (2013)

discusses the relative cost of gasoline and ethanol in a policy context, and finds market

scenarios in which ethanol can be viewed as an energy substitute for gasoline, and others in

which ethanol is viewed as an additive.

In Specifications T and U of Table 6, we estimate the fixed effects logit model (1) with

an alternate specification for Tax Credit : we model the effect of the expected lifetime value

of the tax credit instead of an indicator for the existence of the policy. In Specifications V

and W of Table 6, we estimate the fixed effects logit model (1) with an alternate specification
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for existing plants : we model capacity instead of count of other plants. In all cases, there

are no qualitative differences in the results.

To allow for the potential for differing impacts of competitors based on the plant

ownership type of the existing plants, we group the existing plants into the following own-

ership types based on size and diversification: singlets, ethanol-focused firms, and conglom-

erates. Singlets are plants that have no sister plant with the same owner. These include,

but are not limited to, traditional farmer-owned plants that have some involvement of lo-

cal owner-corn-producers. Ethanol-focused plants are owned by companies such as Verasun

that mainly produce ethanol and perhaps deal in co-products, but do not have businesses in

other commodities. Conglomerate plants are plants owned by companies that have significant

non-ethanol operations in addition to their ethanol plants. An example of a conglomerate

owner is Archer-Daniels-Midland Company (ADM), which has significant holdings in other

types of commodity processing. The number of existing plants in each county and region by

ownership type are presented in Table 7.

Different types of operators may produce different externalities (either positive and

negative) towards potential entrants due to different linkages to related markets and/or the

community. Table 8 presents the results for 3 groupings of existing plants by ownership,

as well as the results for Specification A from Table 2 for comparison. Specification X

disaggregates the number of existing plants by singlets versus non-singlets. Specification

Y disaggregates the number of existing plants by conglomerates versus non-conglomerates.

Specification Z disaggregates the number of existing plants by singlets, ethanol-focused firms,

and conglomerates. All specifications in Table 8 include the same policy variables Gkt and

economic variables Xkt as Specification A.

According to the results in Table 8, existing plants in the county have a negative and

significant impact on entry, just as they do in Specification A, regardless of ownership. In

contrast, the spatial lag of existing plants, the number of existing plants in the contiguous

counties bordering a given county, has either an insignificant or positive effect on entry. In

particular, nearby conglomerates, non-singlets, and large ethanol producing firms have a

significant negative effect on entry, while those a bit farther away in neighboring counties

have a significant positive effect. For the singlet plants, the effect of existing singlet plants

is significant and negative at the county level and insignificant at the regional level. The

negative county effect from all types of plants indicates they may be competing for corn as an

input; we would expect this effect to decline or even disappear at the region level following

the results of McNew and Griffith (2005) that most corn in sourced within 50 miles of the

plant, well within the average size of a county.

Our result that some types of plants in neighboring counties have a positive effect
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indicates the potential for agglomeration externalities from conglomerates and large ethanol

producing firms in neighboring counties. Larger or conglomerate plants may have linkages

to other markets and well-developed infrastructure for shipping ethanol or a well-trained

workforce that may be useful to plants entering in a neighboring county. Singlet plants may

not provide this sort of benefit because they are generally smaller (have fewer employees,

etc.), and also, many (though not all) were developed as a local value-added source, so they

may not have developed other linkages.

When controlling for the ownership type of the existing ethanol plants, the estimates

of the coefficients on the policy variables Gkt and economic variables Xkt are very close to

the estimates from the Table 2 (results not reported).

6 Conclusions

In this paper we examine whether the presence of existing ethanol plants affects ethanol

plant entry decisions at the county level using discrete response panel models. We focus on

corn-ethanol plants in the Midwestern USA, where the majority of corn in the US is grown,

during the second US ethanol boom.

Our results indicate that the presence of existing ethanol plants has an important

effect on ethanol plant entry decisions at the county level. We find that existing plants have

a negative effect on the probability of entry in a given county. The net negative competition

effect among plants dissipates with distance. This net negative effect of existing plants in

a county may be due to localized competition. Results also show that the ownership type

of the existing plant matters: nearby conglomerates and large ethanol producing firms have

a negative effect on entry while those a bit farther away (in the same region, but not the

same county) have a positive effect. This result is consistent with previous estimates that

the competition for feedstock is local (McNew and Griffith, 2005).

We also find that existing conglomerates and large ethanol producing firms in neigh-

boring counties have a positive effect on ethanol plant entry, while existing singlet plants

in neighboring counties do not. Larger or conglomerate plants may have linkages to other

markets and well-developed infrastructure for shipping ethanol or a well-trained workforce

that may be useful to plants entering in a neighboring county. Singlet plants may not provide

this sort of benefit because they are generally smaller (have fewer employees, etc.), and also,

many (though not all) were developed as a local value-added source, so they may not have

developed other linkages.

In the previous literature, Sarmiento, Wilson and Dahl (2012) find that the negative

competition effect decays with distance. Their empirical specification does not allow for
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the possibility of a positive agglomeration effect. Our result is a refinement of the previous

literature because not only do we find a net-negative local externality from competition, but

in some cases we also detect a positive externality when the existing neighboring plant is

outside the source area for feedstock.

Our results therefore provide evidence for both local competition among ethanol

plants within counties, as well as possible agglomeration benefits from existing conglomerates

and large ethanol producing firms in neighboring counties.

The support and expansion of the ethanol industry has been an objective of several

policies at the state and federal level in the US. Our results, which suggest that the location,

timing, and type of ethanol plant entry may matter, have important implications for the

design of such policies.
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Figure 1: Number of operational ethanol plants by county in the Midwestern USA
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Table 1: Summary statistics

Counties with
at least one
new ethanol

plant
(1996-2008)

Full Sample Spatial Resolution of Data

Mean Std. Dev. Mean Std. Dev.

Ethanol Plant Entry [dependent variable: indicator] 0.034 0.182 0.004 0.066
Existing Plants [count] 0.202 0.417 0.040 0.203 county
Spatial Lag of Existing Plants [count] 0.632 1.069 0.395 0.819 contiguous bordering counties
Existing Biodiesel [indicator] 0.015 0.126 0.010 0.105 county
MTBE Ban [indicator] 0.582 0.493 0.487 0.500 state
Tax Credit [indicator] 0.370 0.483 0.346 0.476 state
RFS1 [indicator] 0.167 0.373 0.163 0.369 national
RFS2 [indicator] 0.146 0.354 0.150 0.357 national
Ethanol Price [$/gallon] 1.781 0.416 1.778 0.418 national
Gasoline Price [$/gallon] 1.349 0.553 1.341 0.562 state
Natural Gas Price [$/1000 ft3] 6.527 1.852 6.516 1.917 state
Electricity Price [cents/KwH] 5.107 0.495 5.232 0.536 state
Corn Price [$/bushel] 2.785 0.675 2.828 0.673 state
Soy Price [$/bushel] 7.106 1.690 7.160 1.693 state
Corn Intensity [acres planted/total acreage] 0.299 0.130 0.200 0.144 county
Spatial Lag of Corn Intensity [acres planted/total acreage] 0.279 0.123 0.200 0.129 contiguous bordering counties
Soy Intensity [acres planted/total acreage] 0.245 0.127 0.183 0.131 county
Cow Density [head/acre] 0.103 0.055 0.085 0.051 district (USDA definition)

Number of Observations 3,687 28,769
Number of Counties 120 855
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Table 2: Results from fixed effects models of ethanol plant entry

Dependent variable is probability of ethanol plant entry
Fixed Effects Logit Models Linear Probability Fixed Effects Models

FE Logit sample Full sample
A B C D E F

Existing Plants -13.79*** -13.35*** -0.180*** -0.172*** -0.077*** -0.076***
(1.722) (1.585) (0.011) (0.011) (0.004) (0.004)

Spatial Lag of Existing Plants 0.57 0.44 0.004 0.008 0.002* 0.003**
(0.417) (0.378) (0.006) (0.006) (0.001) (0.001)

Existing Biodiesel -0.51 -0.10 -0.037 -0.020 -0.004 -0.003
(1.729) (1.450) (0.032) (0.032) (0.005) (0.005)

MTBE Ban -0.97 -0.98 0.003 -0.006 -0.003 -0.003
(0.927) (0.808) (0.013) (0.012) (0.002) (0.002)

Tax Credit 0.19 1.22* 0.006 0.015 -0.001 0.000
(0.707) (0.585) (0.008) (0.008) (0.001) (0.001)

RFS1 0.72 -0.002 -0.002
(1.433) (0.020) (0.003)

RFS2 0.50 0.058 -0.000
(3.067) (0.041) (0.005)

Gasoline Price 29.42* 5.40 1.120*** 0.118* 0.105*** 0.013*
(12.462) (3.230) (0.246) (0.048) (0.031) (0.006)

Ethanol Price -0.54 -0.019 -0.004
(2.379) (0.033) (0.004)

Natural Gas Price 0.94 -0.44 0.009 -0.009 0.002 -0.001
(1.002) (0.373) (0.009) (0.005) (0.001) (0.001)

Electricity Price 0.39 0.24 0.004 -0.003 0.003* 0.002
(0.667) (0.558) (0.010) (0.010) (0.001) (0.001)

Corn Price -3.16 0.02 0.027 -0.022 0.009 -0.001
(3.244) (1.503) (0.050) (0.021) (0.006) (0.003)

Soy price -2.70 0.13 -0.015 0.007 -0.002 0.000
(1.417) (0.380) (0.025) (0.006) (0.003) (0.001)

Corn Intensity -6.27 -11.73 0.152 0.204 0.033 0.035
(16.945) (16.029) (0.245) (0.245) (0.032) (0.032)

Spatial Lag of Corn Intensity -5.54 -11.48 -0.265 -0.634 0.023 -0.016
(22.536) (18.690) (0.348) (0.332) (0.047) (0.045)

Soy Intensity -15.91 -17.07 -0.171 -0.128 -0.034 -0.026
(11.944) (10.947) (0.174) (0.170) (0.024) (0.024)

Cow Density 7.61 10.78 -0.175 -0.057 0.294*** 0.302***
(26.297) (25.524) (0.409) (0.404) (0.077) (0.077)

Year (trend) 0.75** 0.002 0.001
(0.250) (0.003) (0.000)

Constant NO NO YES YES YES YES
County Fixed Effects YES YES YES YES YES YES
Year Effects YES NO YES NO YES NO

Number of Observations 3,687 3,687 3,687 3,687 28,769 28,769
Number of Counties 120 120 120 120 855 855
Pseudo-R2 or R2 0.524 0.505 0.109 0.0989 0.0223 0.0213
Notes: Standard errors in parentheses. Significance codes: *** p<0.001, ** p<0.01, * p<0.05
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Table 3: Specification tests for fixed effects logit models of ethanol plant entry

Fixed Effects Logit Models Linear Probability Fixed Effects Models
FE Logit sample Full sample

A B C D E F

Hausman test of random effects vs. fixed effects (H0: random effects preferred)
p-value (Pr > Chi2) 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000***

Durbin-Wu-Hausman test of endogeneity of corn intensity (H0: corn intensity not endogenous)
p-value (Pr > F ) 0.687 0.883 0.589 0.882 0.933 0.768

County Fixed Effects YES YES YES YES YES YES
Year Effects YES NO YES NO YES NO

Number of Observations 3,687 3,687 3,687 3,687 28,769 28,769
Number of Counties 120 120 120 120 855 855

Significance codes: *** p<0.001, ** p<0.01, * p<0.05
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Table 4: Robustness of fixed effects logit model to specification of corn and soy intensity and price

Dependent variable is probability of ethanol plant entry
G H I J K L M N

Existing Plants -13.98*** -13.31*** -13.70*** -13.21*** -13.81*** -13.17*** -13.45*** -13.26***
(1.798) (1.581) (1.701) (1.565) (1.749) (1.561) (1.643) (1.560)

Spatial Lag of Existing Plants 0.55 0.43 0.60 0.48 0.56 0.47 0.43 0.48
(0.427) (0.379) (0.417) (0.370) (0.427) (0.370) (0.418) (0.370)

MTBE Ban -1.02 -0.95 -1.00 -0.96 -1.06 -0.92 -0.96 -1.03
(0.930) (0.806) (0.927) (0.808) (0.927) (0.808) (0.924) (0.784)

Tax Credit 0.19 1.20* 0.06 1.06 0.10 1.03 0.45 1.12*
(0.720) (0.586) (0.688) (0.567) (0.704) (0.568) (0.644) (0.548)

RFS1 0.84 0.58 0.72 0.38
(1.417) (1.428) (1.409) (1.208)

RFS2 0.72 0.19 0.46 -0.20
(3.003) (3.092) (3.022) (2.619)

Corn Price -9.10 0.33 -2.88 0.31 -8.01 0.53 -3.18 0.63
(5.201) (0.727) (3.276) (1.506) (5.064) (0.726) (3.279) (0.667)

Soy Price -2.56 0.10
(1.411) (0.380)

Ratio of Corn to Soy Price 43.94 -3.59 37.71 -3.23
(32.010) (7.048) (30.863) (7.032)

Corn Intensity -4.16 -11.94 7.80 3.18 9.46 2.82 6.02 4.33
(16.761) (16.005) (14.556) (13.489) (14.741) (13.492) (13.375) (12.874)

Spatial Lag of Corn Intensity -9.50 -12.15 -6.36 -12.14 -9.66 -12.73 -4.43 -12.68
(22.878) (18.733) (22.630) (18.671) (22.946) (18.714) (22.396) (18.468)

Soy Intensity -16.06 -17.06
(11.867) (10.922)

Ratio of Corn to Soy Intensity 0.01 0.02 0.00 0.02
(0.097) (0.090) (0.098) (0.089)

Energy Prices and Cow Density YES YES YES YES YES YES YES YES
Time Specification Year Effect Trend Year Effect Trend Year Effect Trend Year Effect Trend
County Fixed Effects YES YES YES YES YES YES YES YES

Number of Observations 3,687 3,687 3,687 3,687 3,687 3,687 3,736 3,736
Number of Counties 120 120 120 120 120 120 121 121
Pseudo-R2 0.522 0.505 0.522 0.502 0.520 0.502 0.519 0.503
Notes: Standard errors in parentheses. Significance codes: *** p<0.001, ** p<0.01, * p<0.05
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Table 5: Robustness of fixed effects logit model to the specification of ethanol and gasoline prices

Dependent variable is probability of ethanol plant entry
O P Q R S

Existing Plants -13.70*** -13.08*** -13.53*** -13.48*** -13.47***
(1.717) (1.508) (1.705) (1.612) (1.620)

Spatial Lag of Existing Plants 0.57 0.57 0.55 0.42 0.45
(0.439) (0.358) (0.443) (0.383) (0.381)

MTBE Ban -0.94 -1.45 -0.84 -0.95 -0.94
(0.957) (0.840) (0.976) (0.804) (0.812)

Tax Credit -0.02 1.60** 0.00 1.18* 1.27*
(0.719) (0.614) (0.722) (0.589) (0.599)

RFS1 2.41* 1.11 2.18*
(1.026) (1.089) (1.039)

RFS2 4.03** 1.37 4.39**
(1.562) (1.818) (1.645)

Gasoline Price -23.71 4.82**
(25.361) (1.612)

Ethanol Price 3.29**
(1.274)

Ratio of Ethanol to Gasoline Price -47.42** 0.11 -73.36* 0.72 -1.74
(15.537) (1.874) (32.735) (1.993) (2.170)

Crop Prices, Crop Intensity, and Cow Density YES YES YES YES YES
Time Specification Year Effect Trend Year Effect Trend Trend
County Fixed Effects YES YES YES YES YES

Number of Observations 3,687 3,687 3,687 3,687 3,687
Number of Counties 120 120 120 120 120
Pseudo-R2 0.530 0.494 0.531 0.505 0.502

Notes: Standard errors in parentheses. Significance codes: *** p<0.001, ** p<0.01, * p<0.05
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Table 6: Robustness of fixed effects logit model to the specification of tax credit and existing plant

Dependent variable is probability of ethanol plant entry
Tax Credit Specification Existing Plant Specification

T U V W

Existing Plants -13.72*** -13.61***
(1.716) (1.617)

Existing Ethanol Capacity [gal per acre] -4.53*** -4.63***
(0.528) (0.533)

Spatial Lag of Existing Plants 0.61 0.52 0.52 0.42
(0.417) (0.382) (0.340) (0.333)

Existing Biodiesel -0.49 -0.16
(1.704) (1.454)

Existing Biodiesel Capacity [gal per acre] 0.01 0.01
(0.037) (0.035)

MTBE Ban -0.89 -1.08 -0.41 -0.75
(0.926) (0.821) (0.837) (0.710)

Tax Credit (indicator) 1.04 1.45*
(0.615) (0.564)

Lifetime Tax Credit Benefit ($100,000) 0.04 0.10*
(0.047) (0.040)

RFS1 0.85 0.16
(1.438) (1.265)

RFS2 0.54 0.11
(3.078) (2.880)

Economic Variables YES YES YES YES
Time Specification Year Effect Trend Year Effect Trend
County Fixed Effects YES YES YES YES

Number of Observations 3,687 3,687 3,687 3,687
Number of Counties 120 120 120 120
Pseudo-R2 0.525 0.507 0.480 0.464

Notes: Standard errors in parentheses. Significance codes: *** p<0.001, ** p<0.01, * p<0.05
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Table 7: Summary statistics for the number of existing plants by ownership type

Plant Owner Type Number of Existing Plants
Mean Std. Dev. Max

Existing Plants
All Existing Plants 0.040 0.203 2
Singlets 0.016 0.125 1
Ethanol-Focused Firms 0.011 0.104 1
Conglomerates 0.012 0.109 1
Non-Singlets 0.023 0.150 2

Spatial Lag of Existing Plants
All Existing Plants 0.395 0.819 8
Singlets 0.144 0.420 5
Ethanol-Focused Firms 0.102 0.383 6
Conglomerates 0.125 0.384 3
Non-Singlets 0.227 0.571 6
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Table 8: Results from fixed effects logit model with number of existing plants by ownership
type

Dependent variable is probability of ethanol plant entry
A X Y Z

Existing Plants
All -13.79***

(1.72)
Singlets -16.05*** -13.62***

(2.71) (1.96)
Ethanol-Focused Firm -10.53***

(2.01)
Conglomerates -14.53*** -1.96*

(2.01) (0.86)
Non-Conglomerates -12.25***

(1.65)
Non-Singlets -11.25***

(1.69)

Spatial Lag of Existing Plants
All 0.57

(0.42)
Singlets 0.62 -0.00

(0.62) (0.52)
Ethanol-Focused Firm 1.00

(1.03)
Conglomerates 9.54*** 0.64

(1.59) (0.92)
Non-Conglomerates 12.77***

(1.76)
Non-Singlets 9.38***

(1.53)

Policy Variables Gkt from Specification A YES YES YES YES
Economic Variables Xkt from Specification A YES YES YES YES
Year Effects YES YES YES YES
County Fixed Effects YES YES YES YES

Number of Observations 3,687 3,669 3,669 3,669
Number of Counties 120 119 119 119
Pseudo-R2 0.524 0.514 0.519 0.491
Notes: Standard errors in parentheses. Significance codes: *** p<0.001, ** p<0.01, * p<0.05
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Appendix

Table A-1: Ethanol plant capacity, production, and operation rate

Year Capacity Production Rate of operation
(106 gallon) (106 gallon) (%)

1998 1,701.7 1,400 82.27
1999 1,748.7 1,470 84.06
2000 1,921.9 1,630 84.81
2001 2,347.3 1,770 75.41
2002 2,706.8 2,130 78.69
2003 3,100.8 2,810 90.62
2004 3,643.7 3,410 93.59
2005 4,336.4 3,905 90.05
2006 5,493.4 4,855 88.38
2007 7,888.4 6,485 82.21
2008 10,569.4 9,235 87.37
2009 11,877.4 10,600 89.25
2010 13,507.9 13,230 97.94

Average 5,449.5 4,841 88.83
Note: The rate of operation is calculated as production divided by capacity.
Source: Renewable Fuels Association.
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