
The Effects of Fuel Subsidies on Air Quality:

Evidence from the Iranian Subsidy Reform*

Khaled H. Kheiravar�

C.-Y. Cynthia Lin Lawell�

Abstract

Gasoline taxes have been touted by many economists as an efficient and relatively sim-
ple tool to address environmental concerns and other problems associated with gaso-
line consumption. Nevertheless, rather than removing subsidies and increasing gasoline
taxes, many countries still subsidize gasoline, which may have the opposite effect of
exacerbating air pollution. As a result of its large energy subsidies and artificially low
national energy prices, Iran is one of the most energy-intensive countries in the world.
Iran’s capital city, Tehran, is also amongst the most polluted cities in the world. The
Iranian government has recently taken a series of measures to reform and cut back
on its energy subsidies. In this paper, we evaluate the effects of the Iranian subsidy
reform on air quality using a regression discontinuity design. Our results provide evi-
dence across multiple different empirical specifications that the subsidy reform in Iran,
particularly subsidy reforms that both increased energy prices and restricted gasoline
consumption, led to improvements in air quality. In contrast, subsidy reforms that
increased fuel prices but did not also restrict gasoline consumption were less effective
in reducing air pollution.

JEL Codes: Q48, Q58, Q53, R40
Keywords: energy subsidies, fuel subsidies, air quality, Iran
This draft: October 2022

*This paper is dedicated to the memory of Dr. Khaled H. Kheiravar. We are indebted to Jim Bushnell,
Erich Muehlegger, and Dave Rapson for their mentorship, support, and encouragement throughout this
project. We thank Jennifer Alix-Garcia, James Archsmith, Jim Bushnell, Lew Fulton, Todd Gerarden,
Alan Meier, Erich Muehlegger, and Dave Rapson for helpful comments and discussions. We also benefited
from comments from conference participants at the Annual Interdisciplinary Ph.D. Workshop in Sustainable
Development (IPWSD) at Columbia University; and seminar participants at the Davis Energy Economics
Program and at the UC-Davis Sustainable Transportation Energy Pathways Program. We received funding
from a National Center for Sustainable Transportation Dissertation Grant. Lin Lawell is a Faculty Fellow
at the Cornell Atkinson Center Sustainability. All errors are our own.

�California Air Resources Board; khaled.kheiravar@arb.ca.gov.
�(Corresponding Author), Dyson School of Applied Economics and Management, Cornell University, 407

Warren Hall, Ithaca, NY 14853-4203; clinlawell@cornell.edu.

mailto:khaled.kheiravar@arb.ca.gov
mailto:clinlawell@cornell.edu


1 Introduction

Gasoline consumption is an important source of air pollution and a major environmental con-

cern in urban areas (Lin and Prince, 2009; Lin Lawell, 2017). Motor vehicles are the primary

source of carbon monoxide (CO), and an important source of volatile organic compounds

and nitrogen oxides (which include nitrogen dioxide (NO2)) responsible for the formation

of photochemical smog and ground-level ozone (O3). Vehicular emissions also contribute to

the ambient air concentrations of particulate matter (PM10) (U.S. Environmental Protection

Agency, 1994; Zhang et al., 2017; Beaudoin and Lin Lawell, 2022).

Gasoline taxes have been touted by many economists as an efficient and relatively simple

tool to address environmental concerns and other problems associated with gasoline con-

sumption. Nevertheless, rather than removing subsidies and increasing gasoline taxes, many

countries still subsidize gasoline (Lin Lawell, 2017). The global mean gasoline tax fell by 13.3

percent from 2003 to 2015, due in part to a shift in consumption towards countries that have

gasoline subsidies (Ross et al., 2017). Post-tax fossil fuel subsidies reached a staggering $5.3

trillion worldwide in 2015, representing 6.5% of global GDP (Coady et al., 2017). There is

pervasive mispricing of energy across developed and developing countries alike (Parry et al.,

2014). Oil-rich countries in the Middle East and North Africa have the highest gasoline

subsidies (Ross et al., 2017).

The prevalence of gasoline subsidies worldwide and the fall in the global mean gasoline

tax may exacerbate air pollution and other problems associated with gasoline consump-

tion. Nevertheless, the effects of gasoline subsidies on air quality, and the effects of gasoline

subsidies on different air pollutants, remain open empirical questions that heretofore have

not been fully addressed in the previous literature, particularly for oil-rich countries in the

Middle East and North Africa that have the highest gasoline subsidies.

The Iranian government has heavily subsidized petroleum products since the early 1980s.

As a result of these energy subsidies and artificially low national energy prices, Iran is one of

the most energy-intensive countries in the world. Iran’s capital city, Tehran, is also amongst

the most polluted cities in the world (Heger and Sarraf, 2018). The Iranian government has

recently taken a series of measures to reform and cut back on its energy subsidies. In this

paper, we evaluate the effects of the Iranian subsidy reform on air quality using a regression

discontinuity design.

Our results provide evidence across multiple different empirical specifications that the

subsidy reform in Iran, particularly subsidy reforms that both increased energy prices and

restricted gasoline consumption, led to improvements in air quality. In contrast, subsidy
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reforms that increased fuel prices but did not also restrict gasoline consumption were less

effective in reducing air pollution.

The balance of our paper proceeds as follows. Section 2 reviews the previous literature.

Section 3 provides background information about air pollution in Iran, energy subsidies

in Iran, and the Iranian subsidy reform. We describe our data in Section 4. We present

our conceptual framework and regression discontinuity design in Section 5. We present our

empirical results in Section 6. We discuss our results and conclude in Section 7.

2 Previous Literature

2.1 Fossil Fuel Subsidies

One strand of literature upon which we build is the literature on fossil fuel subsidies. Us-

ing detailed measurements of net gasoline taxes and subsidies, Ross et al. (2017) find that

33 countries subsidized gasoline for at least one 12-month period from 2003 to 2015, and

9 countries subsidized gasoline for the entire period. Countries that are economically de-

pendent on oil and gas exports tend to be the ones that subsidize gasoline, perhaps due to

political pressure to distribute resource revenues. Oil-rich countries in the Middle East and

North Africa have the highest net subsidies (Ross et al., 2017). Balke et al. (2015) identify

24 oil-producing countries with fuel subsidies, and find that their retail fuel prices are only

about 34 percent of the world price. Post-tax fossil fuel subsidies reached a staggering $5.3

trillion worldwide in 2015, representing 6.5% of global GDP (Coady et al., 2017).

Pricing energy below cost is inefficient as it leads to the overconsumption of fossil fuels and

causes deadweight loss. Davis (2014) estimates that, under certain assumptions about supply

and demand elasticities, the annual deadweight loss caused by fuel subsidies worldwide was

over $44 billion in 2012. In addition to deadweight loss, there are other distortions caused

by pricing energy below cost – including smuggling, black-market transactions, and other

socially wasteful activities; the environmental damages caused by fossil fuel overconsumption;

and the accident and congestion externalities from transportation fuel consumption – all of

which further increase the social costs of energy subsidies (Gürer and Ban, 2000; Lin and

Prince, 2009; Lin and Zeng, 2014; Lin Lawell, 2017; Ferraresi et al., 2018; Adetutu and

Weyman-Jones, 2019). In their analysis of more than 150 countries, Parry et al. (2014) find

that there is pervasive mispricing of energy across developed and developing countries alike,

and that implementing efficient energy prices instead would reduce fossil-fuel air pollution

deaths by 63 percent. Davis (2017) estimates that global fuel subsidies cause $7 billion in
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external costs annually from local air pollution.

Previous studies of the effects of energy subsidies have focused primarily on the effects

of energy subsidies and energy subsidy reform on energy consumption, energy production,

markets, GDP, and welfare. Hahn and Metcalfe (2021) examine the efficiency and equity

impacts of the California Alternate Rates for Energy (CARE), a large energy subsidy that

provides a price reduction for low-income consumers of natural gas and electricity, and

find that the natural gas subsidy appears to reduce welfare. Zhao et al. (2019) use an

economic optimization model to simulate the effects of phasing out producer subsidies in

U.S. federal and state regulation on optimal oil and gas production. Aldy (2013) argues that

the elimination of subsidies for U.S. fossil fuel production could provide meaningful deficit

reduction benefits without increasing energy prices, adversely impacting U.S. energy security,

or undermining job creation; and may lead to potentially lower global fuel prices by providing

the United States with increased leverage in negotiations over eliminating fossil fuel subsidies

in the developing world. Aune et al. (2017) examine the oil market impacts and welfare effects

of subsidy removal in OPEC and non-OECD countries. BuShehri and Wohlgenant (2002) use

a partial equilibrium model to measure the welfare implications of a reduction in electricity

subsidies in Kuwait. Gelan (2018) conducts a simulation experiment to study the effects of

removing energy subsidies on prices and GDP in Kuwait. Abdallah Mostafa (2021) analyzes

the impact of energy subsidy reform on economic growth in Egypt. Ghosh (2022) analyzes

the impact of India’s diesel subsidy reforms and pricing policy on growth and inflation. Fuje

(2019) uses a time regression discontinuity design to analyze the Ethiopian fossil fuel subsidy

reform program, and finds that the removal of fossil fuel subsidies results in higher grain

price dispersion which could in turn have heterogeneous welfare effects on different districts

in Ethiopia depending on the district’s relative share of income from grains. Hartley and

Medlock (2008) find that forcing a national oil company to subsidize domestic consumers

shifts oil production from the future toward the present, resulting in greater employment

in the initial time periods. Salehi-Isfahani (1996) analyzes government subsidies and the

demand for petroleum products in Iran. Ghoddusi et al. (2022) study the effect of fuel

subsidy reform on the behavior of gasoline consumers using three major fuel subsidy reform

events in Iran, and find a consistent decline in the gasoline price elasticity following each

subsidy reform event.

Previous analyses of the effects of energy subsidies on air pollution are primarily based on

models. For example, to quantify the effects of energy price subsidies on local air pollution,

the World Bank recommends first analyzing the effect of consumer price subsidies on levels
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and patterns of energy consumption using sector-specific own-price and cross-price elastic-

ities of energy demand, power sector models, sector models, country-specific computable

general equilibrium (CGE) models, and models for road transport sector or motor vehicle

fleets; and then estimating the impacts of energy consumption on emissions using fuel- and

sector-specific emission factors for fuels and sectors impacted by price subsidies (Enriquez

et al., 2018). Haqiqi and Manzoor (2012) analyze the effects of phasing out energy subsidies

on air polluion using a a multi-pollutant, multi-fuel and multi-sector computable general

equilibrium (CGE) model.

We build on the previous literature on fossil fuel subsidies by empirically examining their

effects on air pollution. The effects of fuel subsidies on air quality, and the effects of fuel

subsidies on different air pollutants, remain open empirical questions that heretofore have

not been fully addressed in the previous literature, particularly for oil-rich countries in the

Middle East and North Africa that have the highest gasoline subsidies.

2.2 Energy and Iran

In addition to the literature on fossil fuel subsidies, we also build upon the literature on

energy in Iran. Ghandi and Lin (2012) model the dynamically optimal oil production on

Iran’s offshore Soroosh and Nowrooz fields, which have been developed by Shell Exploration

through a buy-back service contract. Ghandi and Lin Lawell (2017) analyze the rate of

return and risk factors to international oil companies in Iran’s buy-back service contracts.

Ghoddusi et al. (2018) estimate the price elasticity of gasoline smuggling in Iran, and find

that the foreign-to-home gasoline price ratios have a significant effect on the elasticity of

demand. Farzanegan and Krieger (2018) study the short- and long-run responses of income

inequality to positive per capita oil and gas rent shocks in Iran, and find a positive and

statistically significant response of income inequality to oil rent booms within four years of the

shock. Aghaei and Lin Lawell (2022) examine the relationships among energy consumption,

economic growth, inequality, and poverty in Iran. Rezagholizadeh et al. (2022) examine the

factors that affect stock returns in the Tehran Stock Exchange, the largest stock exchange in

Iran, and find that oil price risk coefficients for the top five energy consuming industries are

higher than for the top ten industries by market cap. We build on the previous literature on

energy in Iran by examining the effects of Iran’s energy subsidies on air pollution.
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3 Background

3.1 Air Pollution in Iran

The air in Tehran, the capital of the Islamic Republic of Iran (IRI), is amongst the most

polluted in the world (Heger and Sarraf, 2018). There are more than 17 million vehicular trips

per day in Tehran (Hosseini and Shahbazi, 2016), and many of the vehicles have outdated

technology (Heger and Sarraf, 2018). Rapid population growth, industrial development,

urbanization, and increasing fuel consumption make reducing air pollution in Tehran difficult

(Heger and Sarraf, 2018).

Tehran’s air pollution problem is further exacerbated by its topography and climate.

Tehran is at a high altitude and is surrounded by the Alborz Mountain Range, which traps

polluted air. Moreover, temperature inversion, a phenomenon particularly occurring during

the winter months, prevents air pollutants from being diluted (Heger and Sarraf, 2018).

In Tehran, motor vehicle emissions are major sources of CO, O3, NO2, and PM10 (Zer-

bonia and Soraya, 1978; Azarmi and Arhami, 2017; Heger and Sarraf, 2018). It has been

estimated that vehicles are responsible for 85 percent of Tehran’s emissions of nitrogen oxides

(which include NO2); over 90 percent of its hydrocarbon and carbon monoxide (CO) emis-

sions (Zerbonia and Soraya, 1978); 70 percent of its particulate matter emissions (Heger and

Sarraf, 2018); and approximately 80 percent of its emissions of nitrogen oxides (which include

NO2), PM10, and CO (Azarmi and Arhami, 2017). As for emissions of particulate matter,

vehicles are responsible for 70 percent of Tehran’s particulate matter emissions; power plants

and refineries are responsible for about 20 percent; industrial sources and gas terminals emit

8 percent; and households and commercial sources are responsible for the remaining 2 per-

cent (Heger and Sarraf, 2018). Since motor vehicle emissions are major sources of CO, O3,

NO2, and PM10 in Tehran (Zerbonia and Soraya, 1978; Azarmi and Arhami, 2017; Heger

and Sarraf, 2018), we analyze the effects of the Iranian subsidy reform on CO, O3, NO2, and

PM10.

Motor vehicle emissions are not a primary source of sulfur dioxide (SO2) in Tehran

(Massoudi, 1977) or elsewhere (Zhang et al., 2017). Instead, industrial sources, domestic and

commercial heating are responsible for nearly all the SO2 emissions in Tehran (Massoudi,

1977). Thus, since SO2 may be more related to industrial activity than to driving behavior

(Zhang et al., 2017), we include SO2 as a control variable in order to control for any changes

in industrial activity that may have been correlated with the energy subsidy reform events.
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3.2 Energy Subsidies in Iran

In Iran, domestic energy prices, including gasoline prices, are set administratively rather

than by the market. The Iranian government has heavily subsidized petroleum products,

utilities, as well as a few food products since the early 1980s. These subsidies were originally

introduced to manage the economic challenges during the war against Iraq. As seen in Figure

A-1 in Appendix A, Iran had the highest pre-tax energy subsidies (including subsidies on

petroleum, electricity, natural gas, and coal) as a percentage of GDP amongst 19 countries

in the Middle East and North Africa in 2011 (Sdralevich et al., 2014). Iran’s overall indirect

subsidies in 2007-2008 have been estimated to total $77.2 billion, about 27 percent of the

country’s GDP (World Bank, 2016). Prior to the recent subsidy reforms, an average Iranian

household of four received about $4,000 annually in various subsidies on oil and natural gas

alone (Guillaume et al., 2011). Over the last four decades, energy prices in Iran have changed

only a handful of times, each time after remaining constant for a long period (Kheiravar,

2019). As a result of these energy subsidies and artificially low national energy prices, Iran

is one of the most energy-intensive countries in the world.

Iran’s high fuel subsidies have made subsidized fuel in Iran very inexpensive, leading not

only to high energy consumption, but also to lucrative opportunities for smuggling fuel into

neighboring markets and other countries (Ghoddusi et al., 2018; Khajehpour, 2018). More-

over, although redistributing wealth and helping the poor are among the primary reasons for

Iran’s energy subsidies, energy subsidies do not lead to the intended wealth redistribution,

as the benefits go mainly to the wealthy (Kheiravar, 2019).

3.3 Iranian Subsidy Reform

The Iranian government has recently taken a series of measures to reform and cut back on

its energy subsidies. The first subsidy reform event took place on June 27, 2007. As part

of the first subsidy reform event, the government announced a price hike for gasoline and,

in order to control fuel smuggling activities (Khajehpour, 2018), also introduced a 60 liter

monthly gasoline consumption quota for each vehicle. The monthly gasoline consumption

quota was implemented via a fuel card that was issued for each vehicle owner. The 60 liter

monthly quota (with roll over) was for gasoline and premium gasoline only: each fuel card

owner could buy up to 60 liters of gasoline or premium gasoline per month at the subsidized

price. To buy gasoline exceeding the 60 liter quota, one had to pay a significantly higher

price; this price hike was another component of the first subsidy reform event. In particular,
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after the first subsidy reform event on June 27, 2007, a fuel card holder could buy up to 60

liters of gasoline at 1000 IRR (100 Iranian Toman1) per liter, and once the 60 liter quota

is reached they had to pay 4000 IRR (400 Toman) per liter (Kheiravar, 2019). The first

subsidy reform therefore implemented a two-tiered consumption system, with a low ration

at a lower price and less restricted availability of fuel at a higher price (Khajehpour, 2018).

The second subsidy reform event took place on December 18, 2010, when the Iranian

government implemented the first phase of the Iranian subsidy reform plan, announcing a

significant increase in energy prices as well as in the prices of subsidized agricultural products

by up to 20 times. Under this plan, the government removed an estimated US$50-US$60

billion dollars in subsidies on key staples such as petroleum products and utilities. The

government used the savings to provide universal direct monthly cash transfers to each

household (Khajehpour, 2013), direct assistance to enterprises adjusting to the new price

structure, and direct assistance to the government agencies to help pay for higher energy

bills.

The third subsidy reform event took place on April 24, 2014, when the Iranian govern-

ment implemented the second phase of the Iranian subsidy reform plan, decreasing subsidies

further and causing energy prices to experience another significant increase. Transportation

fuel prices were increased by a higher percentage than natural gas prices were.

The fourth subsidy reform event took place on May 27, 2015, when the Iranian govern-

ment further increased transportation fuel prices (but did not further increase natural gas

prices), and abandoned the gasoline consumption quota restriction and the fuel card program

altogether (Kheiravar, 2019).

Table 1 lists the four major Iranian subsidy reform events. Table A-1 in Appendix A

summarizes the energy and utility prices during the subsidy reform.

As seen in Figure A-2 in Appendix A, despite the Iranian subsidy reform, gasoline prices

in Iran continue to be among the lowest in the world in 2017. As seen in Figure A-3

in Appendix A, annual gasoline consumption in Iran ceased its long-term upward trend

following the first three subsidy reform events, when the gasoline consumption quota was

in place; but resumed its upward trend following the fourth subsidy reform event, when the

gasoline consumption quota was removed. In contrast, as seen in Figure A-4 in Appendix

A, annual diesel consumption in Iran continued its long-term upward trend following Events

1 and 2, but declined following Events 3 and 4.

1Each Iranian Toman is equivalent to 10 Iranian Rial (IRR).
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4 Data

For our air quality data, we use data from the Tehran Air Quality Control Company2 on

the daily average concentrations and hourly mean concentrations of five air pollutants (CO,

O3, NO2, PM10, and SO2) from 24 monitoring stations in Tehran over the period March 21,

2007 to March 19, 2017 (corresponding to the dates 1386/1/1 to 1395/29/12 in the Iranian

Calendar). Figure A-5 in Appendix A maps the 24 local air quality monitoring stations in

Tehran.

Since motor vehicle emissions are major sources of CO, O3, NO2, and PM10 in Tehran

(Zerbonia and Soraya, 1978; Azarmi and Arhami, 2017; Heger and Sarraf, 2018), we analyze

the effects of the Iranian subsidy reform on CO, O3, NO2, and PM10. From the hourly mean

air quality data, we create variables for the daily maximum pollution concentration for each

of these four air pollutants (CO, O3, NO2, and PM10). For each pollutant, each day, and each

monitoring station, the daily maximum pollution concentration is the maximum value of all

hourly values of that pollutant for that day and monitoring station. For each pollutant, there

is a separate observation of the daily maximum pollution level for that pollutant for each

day for each monitoring station. Table 2 presents summary statistics for the daily average

pollution concentration and the daily maximum pollution concentration for each of the four

air pollutants (CO, O3, NO2, and PM10); as well as the daily average pollution concentration

of SO2, which we use to control for any changes in industrial activity that may have been

correlated with the energy subsidy reform events.

Figure A-6 in Appendix A plots mean daily pollution levels for each of the four pollutants.

Mean daily pollution levels are constructed by averaging the hourly mean concentration over

all hours in a day and over all monitoring stations. The vertical lines indicate the dates of

each of the four subsidy reform events: June 27, 2007; December 18, 2010; April 24, 2014;

and May 27, 2015.

We use daily weather data from the National Oceanic and Atmospheric Administration

(NOAA) (2018) for two weather stations near Tehran: the Mehrabad Airport weather mon-

itoring station and the IKI Airport weather monitoring station. Table 3 presents summary

statistics for the weather data, averaged over both weather stations near Tehran.

Figures 1 and 2 plot residuals from a regression of log daily average pollution concentra-

tion levels and log daily maximum pollution concentrations levels, respectively, on weather

and seasonality covariates, year effects, and station fixed effects for each of the four air pol-

2http://air.tehran.ir/
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lutants (CO, O3, NO2, and PM10). The fitted lines are the predicted values of a regression

of these residuals on subsidy reform dummies and a ninth-order polynomial time trend. The

vertical lines indicate the dates of each of the four subsidy reform events. According to Fig-

ures 1 and 2, Events 1 and 2 seem to have led to a drop in daily average and daily maximum

pollution concentrations of all four air pollutants. Each of the four subsidy reform events

appear to have led to a decline in daily average and daily maximum pollution concentra-

tions of O3 and NO2. The effects of Events 3 and 4 on daily average and daily maximum

concentrations of CO and PM10 appear more mixed, however.

5 Methods

5.1 Conceptual Framework

We first begin with a conceptual framework that explains how a subsidy reform event may

affect air pollution, and why the effects of fuel subsidies and subsidy reform on air quality

are in part an empirical question.

There are several factors that affect how a fuel subsidy reform event may affect air

pollution. First, the effect of a subsidy reform event on air pollution depends on the effects

of the subsidy reform on fuel demand. How the subsidy reform event affects fuel demand

depends in part on the price elasticity of demand. In their study of the effects of the Iranian

subsidy reform on gasoline demand, Ghoddusi et al. (2022) find a consistent decline in the

gasoline price elasticity following each of the first three subsidy reform events. It is possible

that the gasoline subsidy elasticity may differ from the gasoline tax elasticity. In the previous

literature, Li et al. (2014) find that, owing to perceived persistence and salience of taxes,

consumers may respond more to taxes than to equal-sized changes in tax-inclusive gasoline

prices;3 it is possible that consumers may likewise respond differently to changes in subsidies

than they would to equal-sized changes in prices. Moreover, since the second subsidy reform

event coupled increases in energy prices with universal direct monthly cash transfers to each

household (Khajehpour, 2013; Kheiravar, 2019), the effects of the second and subsequent

subsidy reforms events may also depend in part on the income elasticity of fuel demand.

A second factor that affects how a subsidy reform event may affect air pollution is the

location where the eventual consumption and use (burning) of the fuel takes place after it has

been purchased. Iran’s high fuel subsidies have led to lucrative opportunities for smuggling

3Brown et al. (2020) find that firms similarly respond more to an increase in tax per unit of production
than they do to an equivalent price decrease.
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fuel into neighboring markets and other countries (Ghoddusi et al., 2018; Khajehpour, 2018);

the eventual use and combustion of the smuggled fuel would likely affect the local air quality

of the country into which the fuel was smuggled more than it would affect the air quality in

Iran. Similarly, subsidy reform events that include a monthly gasoline consumption quota

(i.e., the first three subsidy reform events) may also create a domestic black market for heavily

subsidized fuels, especially gasoline (Khajehpour, 2018), so that the eventual consumer of

the fuel may not necessarily be the fuel card owner who purchased the fuel, and the location

of the eventual fuel consumption may not necessarily be near where the original fuel card

owner lives or works. Whether changes in fuel demand as a result of subsidy reform translate

to changes in Iran’s air quality may therefore depend in part on the price elasticities of

smuggling versus domestic consumption. Ghoddusi et al. (2018) estimate the price elasticity

of gasoline smuggling in Iran, and find that the foreign-to-home gasoline price ratios have a

significant effect on the elasticity of demand. Likewise, whether the subsidy reform affects

local air quality in Tehran may depend on how the subsidy reform affects fuel consumption

and driving behavior in Tehran versus other parts of Iran. It is possible, for example, that the

subsidy reform may affect where households decide to live, work, and drive. The possibility

that transportation policies may affect the location and spatial distribution of driving has

been previously examined in the context of driving regulations (Wolff, 2014; Gibson and

Carnovale, 2015).

A third factor that affects how a subsidy reform event may affect air pollution is how

the subsidy reform event affects transportation decisions more generally. Since the fuel card

program that was implemented in the first subsidy reform event and that remained in place

during the first three subsidy reform events was a monthly gasoline consumption quota for

each vehicle, it is possible that the first three subsidy reform events may increase a house-

hold’s incentives to purchase a second vehicle. The subsidy reform events may likewise affect

individuals’ incentives to take another mode of transportation, such as public transit or a

taxi. The possibility that households may respond to transportation policies by purchasing

a second vehicle and/or taking alternative modes of transportation has been previously ex-

amined in the context of driving restrictions (Davis, 2008; Gallego et al., 2013a; Zhang et al.,

2017). Whether or not households decide to purchase a second vehicle or take alternative

modes of transportation may affect how the subsidy reform affects fuel demand and how the

subsidy reform affects the location of fuel consumption and use (combustion).

A fourth factor that affects how a subsidy reform event may affect air pollution is the

timing of when the eventual consumption and use (burning) of the fuel takes place after it
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has been purchased. Since each of the four subsidy reform events involve fuel price increases,

then if households anticipate the fuel price increases, it is possible that some households may

purchase more fuel in advance of the next subsidy reform event. Coglianese et al. (2017) find

evidence that forward-looking gasoline buyers in the United States take future tax changes

into account when deciding how much gasoline to buy, thereby shifting gasoline purchases

in anticipation of gasoline tax changes; it is possible that Iranian consumers may similarly

shift gasoline purchases in advance of each subsidy reform event. Similarly, since the fuel

card program that was implemented in the first subsidy reform event and that remained

in place during the first three subsidy reform events was a monthly gasoline consumption

quota for each vehicle, it is possible that the monthly quota may incentivize households

to completely exhaust their quota by the end of the month, purchasing more than they

otherwise would have at the end of the month so that they could purchase less at the

beginning of the next month. Likewise, for households who have already exhausted their

quota for a particular month before the end of that month, the monthly quota may incentivize

households to purchase less fuel towards the end of that month since they have already

exhausted their quota for that month, and to instead wait until the beginning of the next

month to purchase more fuel. If these distortions in the timing of fuel purchases are merely

changes in purchasing, storage, and stockpiling behavior and do not result in changes in the

timing or location of driving, fuel consumption, and fuel combustion, however, then these

fuel purchase timing distortions that result from anticipating or adjusting to the subsidy

reform may not necessarily affect how the subsidy reform affects air pollution. It is possible,

for example, that driving, commuting, and fuel consumption and use (combustion) decisions

may be less elastic than fuel purchasing decisions are. As explained in more detail below, to

examine the robustness of our results to any possible anticipation of or adjustment to each

subsidy reform event, and to allow for possible differences in the short run and longer run

responses, we run our regression discontinuity analysis using windows ranging from 8 to 30

weeks before and after each respective event.

A fifth factor that affects how a subsidy reform event may affect air pollution is how

changes in fuel consumption and use (burning) affect air quality, which in turn depends on

the sources and atmospheric chemistry of different air pollutants (Zhang et al., 2017). In

Tehran, motor vehicle emissions are major sources of CO, O3, NO2, and PM10 (Zerbonia and

Soraya, 1978; Azarmi and Arhami, 2017; Heger and Sarraf, 2018), but not a primary source

of SO2 (Massoudi, 1977; Zhang et al., 2017). The possible effects of changes in gasoline

consumption and driving on ozone (O3) are complicated (Zhang et al., 2017). A secondary
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pollutant, ozone (O3) is not emitted directly but is formed in ambient air in the presence

of sunlight by chemical reactions involving nitrogen oxides (NOx), which consist of nitrogen

oxide (NO) and nitrogen dioxide (NO2); and volatile organic compounds (VOCs) (Lin, 2000;

Lin et al., 2000, 2001; Lin, 2010). The rate of ozone production shows a nonlinear and

non-monotonic dependence on precursor concentrations. Higher emissions of NOx do not

always result in higher levels of ozone pollution; in some cases, higher NOx emissions may

actually decrease ozone, a phenomenon known as NOx titration (Lin, 2010). Owing to the

non-monotonic relationship between emissions and ozone production, a subsidy reform event

that decreases driving may not necessarily decrease ozone (O3) (Zhang et al., 2017).

A sixth factor that affects how a subsidy reform event may affect air pollution is how

changes in consumption of different fuels affect air pollution. Vehicles fueled by gasoline

have different effects on air pollution than do vehicles fueled by diesel, and these effects

vary by air pollutant. In the absence of particle traps, diesel CO emissions are similar to

those from gasoline. Nevertheless, ’modern’ diesel vehicles with particle traps have lower CO

emissions and lower hydrocarbon emissions than gasoline vehicles (Jacobson et al., 2004).

Diesel vehicles with or without a particle trap and without a NOx control device emit 4 to 30

times more NOx than do gasoline vehicles (Jacobson et al., 2004). In addition, diesel vehicles

have higher particulate matter emission rates than gasoline vehicles (Onursal and Gautam,

1997; Zhang et al., 2017). Diesel vehicles with or without a particle trap and without a

NOx control device also emit a higher ratio of NO2 to NO than do gasoline vehicles, and as

a consequence, may increase O3 particularly under certain circumstances (Jacobson et al.,

2004; Zhang et al., 2017).

A seventh factor that affects how a subsidy reform event may affect air pollution is how the

subsidy reform may effect energy consumption and emissions in non-transportation sectors.

Energy subsidy reforms may include reforms not only to subsidies for transportation fuels

but also to subsidies for residential and/or industrial sector energy as well, and the resulting

changes in emissions in these other sectors may also impact air pollution. For example, since

the third subsidy reform event increased transportation fuel prices by a higher percentage

than it increased natural gas prices, and since the fourth subsidy increased transportation

fuel prices but did not further increase natural gas prices, the effects of the third and fourth

subsidy reform events may depend in part on natural gas consumption and its resulting

emissions.

Thus, since there are many factors that affect how a subsidy reform event may affect

air pollution, the effects of fuel subsidies and subsidy reform on air quality are in part an
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empirical question.

5.2 Regression Discontinuity Design

To analyze the impact of the energy subsidy reform on air quality, we use a regression

discontinuity design. A regression discontinuity design can be used when observations can

be ordered according to a forcing (or running) variable and the treatment is assigned above a

given threshold.4 In our case, the forcing variable is time and the threshold is the date a phase

of the Iranian subsidy reform plan was implemented (Percoco, 2014). Previous studies that

have used a regression discontinuity design with time as the forcing variable include Davis

(2008), Davis and Kahn (2010), Auffhammer and Kellogg (2011), Chen and Whalley (2012),

Bento et al. (2014), Burger et al. (2014), Grainger and Costello (2014), Anderson (2014),

Salvo and Wang (2017), Zhang et al. (2017), Fuje (2019), and Si et al. (2022). Hausman

and Rapson (2018) provide an excellent review of these studies and a guide for practitioners.

In a regression discontinuity design, there is no value of the forcing variable at which we

observe both treatment and control observations; instead, we extrapolate across covariate

values, at least in a neighborhood of the discontinuity (Angrist and Pischke, 2009; Imbens

and Lemieux, 2008).

Local polynomial methods are preferable to high-order global polynomial methods in

regression discontinuity design because they avoid several of the methodological problems

created by the use of global polynomials, such as erratic behavior near boundary points,

counterintuitive weighting, overfitting, and general lack of robustness (Gelman and Imbens,

2019; Cattaneo and Titiunik, 2022). The order of the polynomial should always be low, to

avoid overfitting and erratic behavior near the cutoff point. The default recommendation is

local linear regression (Cattaneo and Titiunik, 2022).5

We use the local polynomial regression discontinuity robust bias-corrected confidence in-

tervals and inference procedures developed in Calonico et al. (2014), Calonico et al. (2018),

and Calonico et al. (2019). The confidence intervals are constructed using a bias-corrected

regression discontinuity estimator together with a novel standard error estimator proposed

4Cattaneo and Titiunik (2022) provide a recent curated review of the methodological literature on the
analysis and interpretation of regression discontinuity designs.

5Pei et al. (2021) provides a data-driven choice of the order of the local polynomial in regression disconti-
nuity designs, based on minimizing the asymptotic mean squared error (MSE) of the regression discontinuity
point estimator. Since we run multiple regression discontinuity regressions for the different pollutants and
subsidy reform events, we opt to use the default recommendation of a local linear regression rather than
use a data-driven approach to choose a potentially different local polynomial order for each of our many
regression discontinuity regressions.
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in Calonico et al. (2014). In particular, the confidence intervals are constructed using an

alternative asymptotic theory for bias-corrected local polynomial estimators in the context of

regression discontinuity designs, which leads to a different asymptotic variance in general and

thus justifies a new standard error estimator. Bandwidth choices that minimize asymptotic

mean squared error (MSE) are derived following Imbens and Kalyanaraman (2012). Calonico

et al. (2014) find that the resulting data-driven confidence intervals performed very well in

simulations, suggesting in particular that they provide a robust (to the choice of bandwidths)

alternative when compared to the conventional confidence intervals routinely employed in

empirical work. Hyytinen et al. (2018) similarly find that bias-corrected regression disconti-

nuity design estimates that apply robust inference are in line with the experimental estimate

from an experiment that takes place exactly at the cutoff.

In particular, we run the local linear regression discontinuity regressions with robust con-

fidence intervals proposed in Calonico et al. (2014) of residuals from a regression of log daily

average pollution concentration levels on weather and seasonality covariates, station fixed

effects, and year effects for each of the four air pollutants (CO, O3, NO2, and PM10). We

similarly run the local linear regression discontinuity regressions with robust confidence in-

tervals proposed in Calonico et al. (2014) of residuals from a regression of log daily maximum

pollution concentration levels on weather and seasonality covariates and station fixed effects

for each of the four air pollutants (CO, O3, NO2, and PM10). The weather covariates are a

fourth-order polynomial in log daily average temperature and log daily max sustained wind

speed. The seasonality covariates include dummies for each month of the year and dummies

for each day of the week.

Formally, for each of the four air pollutants j, our first-stage regression is given by:

yijt = x′
tγ + τt + αi + ϵijt, (1)

where the dependent variable yijt is either the log daily average or the log daily maximum

pollution concentration of pollutant j measured at station i on day t; xt is a vector of weather

and seasonality covariates; τt are year effects; and αi is a station fixed effect. The four air

pollutants j are CO, O3, NO2, and PM10. The vector of weather and seasonality covariates

xt includes indicator variables for month of the year and day of the week; and fourth-order

polynomials in log daily average temperature and log daily maximum sustained wind speed.

In the second stage, for each of the four subsidy reform events in Table 1 and for each of

the four air pollutants (CO, O3, NO2,and PM10), we take the residuals ϵ̂ijt from the first-stage

regression in equation (1) and run local linear regression discontinuity regressions of these
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residuals ϵ̂ijt to analyze the effects of that subsidy reform event event on that air pollutant,

using the method for local linear regression discontinuity regressions with robust confidence

intervals proposed in Calonico et al. (2014).

Our regression discontinuity design addresses the potential bias caused by time-varying

omitted variables. Within a narrow time window, the unobserved factors influencing air

quality are likely to be similar so that observations when the subsidy reform was not in

effect provide a comparison group for observations when the subsidy reform was in effect.

The station fixed effects αi control for time-invariant station heterogeneity. The indicator

variables for month of the year control for monthly variation in driving patterns and other

factors that affect air quality. Similarly, the indicator variables for day of the week con-

trol for intra-week variation in driving patterns and other factors that affect air quality.6

Our regression discontinuity design includes covariates that enter in an additively separable,

linear-in-parameters way; Calonico et al. (2019) shows that the resulting covariate-adjusted

regression discontinuity estimator remains consistent for the standard regression discontinu-

ity treatment effect and can achieve substantial efficiency gains relative to the unadjusted

regression discontinuity estimator.

Following Gallego et al. (2013b) and Zhang et al. (2017), in order to control for any

changes in industrial activity that may have been correlated with the energy subsidy reform

events, we run specifications that include sulfur dioxide (SO2) as a control variable in the first-

stage regression. In Tehran, motor vehicle emissions are major sources of CO, O3, NO2, and

PM10 (Zerbonia and Soraya, 1978; Azarmi and Arhami, 2017; Heger and Sarraf, 2018), but

not a primary source of sulfur dioxide (SO2) (Massoudi, 1977; Zhang et al., 2017). Instead,

industrial sources, domestic and commercial heating are responsible for nearly all the SO2

emissions in Tehran (Massoudi, 1977). Thus, since SO2 may be more related to industrial

activity than to driving behavior (Zhang et al., 2017), we run additional specifications that

include sulfur dioxide (SO2) as a control variable in the first-stage regression in order to

control for any changes in industrial activity that may have been correlated with the energy

subsidy reform events.

In particular, for each of the four air pollutants j, our first-stage regression that controls

for SO2 is given by:

yijt = βso2it + x′
tγ + τt + αi + ϵijt, (2)

where the dependent variable yijt is either the log daily average or the log daily maximum

6For the year effects τt, we define each year to be from July 1st to June 30th so that Event 2, which is
the subsidy reform event with the largest changes in prices, occurs roughly in the middle of the year.
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pollution concentration of pollutant j measured at station i on day t; so2it is log daily

average SO2; xt is a vector of weather and seasonality covariates; τt are year effects; and αi is

a station fixed effect. The vector of weather and seasonality covariates xt includes indicator

variables for month of the year and day of the week; and fourth-order polynomials in log

daily average temperature and log daily maximum sustained wind speed.

In the second stage, for each of the four subsidy reform events in Table 1, we take the

residuals ϵ̂ijt from the first-stage regression that controls for SO2 in equation (2), and run

local linear regression discontinuity regressions of these residuals ϵ̂ijt for each of the four air

pollutants (CO, O3, NO2, and PM10) to analyze the effects of that subsidy reform event event

on that air pollutant, using the method for local linear regression discontinuity regressions

with robust confidence intervals proposed in Calonico et al. (2014).

To examine the robustness of our results to any possible anticipation of or adjustment to

each subsidy reform event, and to allow for possible differences in the short run and longer

run responses, we run the second-stage local linear regression discontinuity regressions with

robust confidence intervals using windows ranging from 8 to 30 weeks before and after each

respective event.7

6 Results

6.1 Local Linear Regression Discontinuity Results

The results of the local linear regression discontinuity regressions with robust confidence

intervals of the residuals ϵ̂ijt from the first-stage regression in equation (1) for windows

ranging from 8 to 30 weeks before and after each respective event for each of the four air

pollutants (CO, O3, NO2, and PM10) are presented in Tables A-2.a-A-2.d in Appendix A.

In order to control for any changes in industrial activity that may have been correlated

with the energy subsidy reform events, we run additional specifications that include sul-

fur dioxide (SO2) as a control variable in the first-stage regression. In Tehran, industrial

sources, domestic and commercial heating are responsible for nearly all the SO2 emissions

(Massoudi, 1977). The results of the local linear regression discontinuity regressions with

robust confidence intervals of the residuals ϵ̂ijt from the first-stage regression that controls

for SO2 in equation (2) for each of the four air pollutants (CO, O3, NO2, and PM10) for

7We also run a set of regressions allowing for adjustment over time, adapting a model developed by
Gallego et al. (2013b). As these adjustment models do not pass the placebo tests, however, this evidence is
weak at best and we therefore do not present these results.
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windows ranging from 8 to 30 weeks before and after each respective event are presented in

Tables 4.a-4.d.

We also run a set of local linear regression discontinuity regressions with robust confidence

intervals in which we bootstrap the standard errors over both stages of the estimation, where

the first stage is the first-stage regression in equation (1) of log daily average pollution

concentration levels on weather and seasonality covariates, station fixed effects, and year

effects from which we derive residuals ϵ̂ijt; and the second stage is the local linear regression

of residuals ϵ̂ijt. In particular, monitoring stations are randomly drawn from the data set

with replacement to generate multiple independent panels each with the sample number

of stations in the original data set. We then run both stages on each of the new panels.

The standard errors are then formed by taking the standard deviation of the bias-corrected

local-polynomial regression discontinuity estimates from each of the panels. Only CO and

O3 had enough observations to run this bootstrap, and only for windows ranging from 10 to

30 weeks before and after each respective event. The results are presented in Tables 5.a-5.d.

We also run a set of local linear regression discontinuity regressions with robust confidence

intervals in which we bootstrap the standard errors over both stages of the estimation, where

the first stage is the first-stage regression that controls for SO2 in equation (2). Only CO had

enough observations to run this bootstrap, and only for the window from 30 weeks before to

30 weeks after each respective event. The results are presented in Table 6.

Across the different specifications in Tables 4.a-6 and Appendix A Tables A-2.a-A-2.d,

we find the following robust results. Event 1 had a robust significant negative effect on daily

maximum O3, causing daily maximum O3 to decrease by 60.43 to 89.35 percentage points.

As seen in the summary statistics for daily maximum O3 in Table 2, the standard deviation

of the daily maximum O3 concentration is over 50 percent of its mean; and the maximum

value of the daily maximum O3 concentration is 191.33 times its minimum value, nearly 4

times its mean, and over 2.7 times the U.S. federal national ambient air quality standard

(NAAQS) for O3 of 70 parts per billion (ppb) for the fourth-highest daily maximum 8-hour

O3 concentration (U.S. Environmental Protection Agency (EPA), 2020b). Thus, decreases

in daily maximum O3 concentrations of 60.43 to 89.35 percentage points as a result of

the first subsidy reform event are reasonable, since the high values of daily maximum O3

concentrations were extremely high. In addition to its robust significant negative effect

on daily maximum O3, Event 1 also had a significant negative effect on daily average O3

that was somewhat robust as well, causing daily average O3 to decrease by 39.42 to 52.65

percentage points. The smaller effect on daily average O3 concentrations seems reasonable,
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and consistent with Event 1 reducing the extremely high daily maximum O3 concentrations.

Event 1 also had a robust significant negative effect on daily maximum PM10, causing

daily maximum PM10 to decrease by 55.50 to 78.77 percentage points. As seen in the

summary statistics for daily maximum PM10 in Table 2, the standard deviation of the daily

maximum PM10 concentration is nearly 60 percent of its mean; and the maximum value of

the daily maximum PM10 concentration is nearly 25 times its mean, and over 14 times the

U.S. federal national ambient air quality standard (NAAQS) for PM10 of 150 µg/m3 (U.S.

Environmental Protection Agency (EPA), 2020a). Thus, decreases in daily maximum PM10

concentrations of 55.50 to 78.77 percentage points as a result of the first subsidy reform event

are reasonable, since the high values of daily maximum PM10 concentrations were extremely

high. Event 1 also had a significant negative effect on daily average PM10 that was fairly

robust as well, causing daily average PM10 to decrease by 43.96 to 57.14 percentage points.

The somewhat smaller effect on daily average PM10 concentrations seems reasonable, and

consistent with Event 1 reducing the extremely high daily maximum PM10 concentrations.

Event 2 had a fairly robust significant negative effect on CO, causing daily maximum

CO to decrease by 22.58 to 42.70 percentage points, and daily average CO to decrease by

19.90 to 42.01 percentage points. Event 2 had a fairly robust significant negative effect on

O3, causing daily maximum O3 to decrease by 32.07 to 52.44 percentage points, and daily

average O3 to decrease by 27.76 to 50.50 percentage points. Event 2 had a fairly robust

significant negative effect on daily maximum NO2, causing daily maximum NO2 to decrease

by 10.79 to 24.88 percentage points.

Event 3 did not appear to have any significant effect on any pollutant that was robust

across multiple specifications.

Event 4 had a robust significant negative effect on O3, causing daily maximum O3 to

decrease by 22.26 to 37.14 percentage points, and daily average O3 to decrease by 19.05 to

33.81 percentage points. Event 4 also had a robust significant positive effect on daily average

PM10, causing daily average PM10 to increase by 14.88 to 55.23 percentage points.

6.2 Model Validity

An underlying assumption for regression discontinuity designs is that the forcing variable,

which in our case is time, should be balanced around the cutoff, which in the case of our

regression discontinuity model of the effect of a particular subsidy reform event is the date of

implementation of that subsidy reform event (Imbens and Lemieux, 2008; Lee and Lemieux,

2010; Beach and Jones, 2017). For each of the four subsidy reform events, to examine the
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distribution of the forcing variable (time) at the threshold (the date of that subsidy reform

event), we plot the number of observations per week against the week away from the date of

that subsidy reform event for each pollutant. The results for each pollutant for each of the

four subsidy reform events are in Figures A-7-A-10 in Appendix A. As these graphs show, for

each of the four subsidy reform events, the distribution is continuous around the threshold, so

the forcing variable is balanced around the cutoff. This continuity of the distribution around

the threshold is evidence against any manipulation of whether air quality measurements were

taken before or after each of the four subsidy reform events.

Another underlying assumption for regression discontinuity designs is that there are no

discontinuous changes in the control variables at the time of the various subsidy reform

events. To examine if there were any discontinuous changes in the control variables at

the time of the various subsidy reform events, Tables A-3 and A-4 in Appendix A present

results of regression discontinuity analyses of our daily weather variables: log daily average

temperature and log daily maximum sustained wind speed, respectively. Results confirm

that there are no discontinuous changes in any of the weather variables at the time of any

of the subsidy reform events.

6.3 Placebo Tests

To examine the robustness of our results, we run placebo tests for each of our regression

discontinuity regression models using placebo subsidy reform dates instead of the actual

subsidy reform dates as the treatment in Appendix B. If we do not find significant treatment

effects where there has been no treatment, then this means that our results are robust to

our tests. As presented in more detail in Appendix B, results of the placebo tests show that

none of the placebo treatment effects are significant and negative for any of the pollutants,

and that the few placebo treatment effects that are statistically significant at a 5% level are

positive, not negative. Thus, since we do not find any significant negative treatment effects

where there has been no treatment, and since we find very few significant treatment effects

where there has been no treatment, this means that our results are robust to our tests.

7 Discussion and Conclusion

Our results provide evidence across multiple different empirical specifications that the sub-

sidy reform in Iran, particularly subsidy reforms that both increased energy prices and

restricted gasoline consumption, led to improvements in air quality. In particular, the first
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subsidy reform event, which increased gasoline prices and implemented a gasoline consump-

tion quota, led to a dramatic decline in concentrations of O3 and PM10. The second subsidy

reform event, which further increased energy prices and decreased energy subsidies, led to

declines in concentrations of CO, O3, and NO2. In contrast, the third subsidy reform event

(which increased transportation fuel prices by a larger percentage than it increased nat-

ural gas prices) and the fourth subsidy reform event (which increased transportation fuel

prices but not natural gas prices, and which removed the gasoline consumption quota) were

less effective in reducing air pollution. The third subsidy reform event, which increased

transportation fuel prices by a larger percentage than it increased natural gas prices, did

not appear to have any significant effect on any pollutant that was robust across multiple

specifications. The fourth subsidy reform event, which increased transportation fuel prices

but not natural gas prices, and which removed the gasoline consumption quota, had mixed

results: while it led to declines in O3 concentrations, it also led to increases in daily average

PM10.

The possible effects of changes in gasoline consumption and driving on ozone (O3) are

more complicated (Zhang et al., 2017). Higher emissions of NOx do not always result in

higher levels of ozone pollution; in some cases, higher NOx emissions may actually decrease

ozone (Lin, 2010). Nevertheless, we find evidence that subsidy reform can decrease O3, as

Events 1, 2, and 4 each led to declines in O3 concentrations.

Vehicles fueled by gasoline have different effects on air pollution than do vehicles fueled

by diesel, and these effects vary by air pollutant. In the absence of particle traps, diesel CO

emissions are similar to those from gasoline (Jacobson et al., 2004; Onursal and Gautam,

1997; Zhang et al., 2017). As seen in Figure A-3 in Appendix A, gasoline consumption

ceased its long-term upward trend following the first three subsidy reform events, when

the gasoline consumption quota was in place; but resumed its upward trend following the

fourth subsidy reform event, when the gasoline consumption quota was removed. In contrast,

as seen in Figure A-4 in Appendix A, diesel consumption continued its long-term upward

trend following Events 1 and 2, but declined following Events 3 and 4. In conjunction with

our results that the first two subsidy reform events led to improvements in air quality and

declines in concentrations of O3, PM10, CO, and NO2, these trends in gasoline and diesel

consumption possibly suggest that attenuating the upward trend in gasoline consumption

may matter more for reducing air pollution in Tehran than does attenuating the upward

trend in diesel consumption.

There are several possible explanations for why the first subsidy reform event (which
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increased gasoline prices and implemented a gasoline consumption quota) and the second

subsidy reform (which increased energy prices and decreased energy subsidies) both led to

improvements in air quality; while the third subsidy reform event (which increased trans-

portation fuel prices by a larger percentage than it increased natural gas prices) and the

fourth subsidy reform event (which increased transportation fuel prices but not natural gas

prices, and which removed the gasoline consumption quota) were less effective in reducing

air pollution.

One possible reason why the later subsidy reform events may have been less effective in

reducing air pollution is that consumers may have become less willing or able to continue to

further reduce fuel consumption over the long term and for each subsequent subsidy reform

event. Ghoddusi et al. (2022) find that consumers were becoming less responsive to increases

in fuel prices at each subsequent subsidy reform event. If consumers were becoming less

willing or able to continue to further reduce fuel consumption for each subsequent subsidy

reform event, then this would mean that energy consumption, and hence air pollution, would

not decline as much in the later subsidy reform events.

A second possible reason why the later subsidy reform events may have been less effective

in reducing air pollution is that, if domestic fuel consumption is less elastic than fuel smug-

gling is at higher fuel prices, then it is possible that the later subsidy reform events, which

further increased fuel prices, may potentially have reduced fuel smuggling to other countries

more than it did domestic fuel consumption. As a consequence, domestic fuel consumption,

and hence local air pollution, would not decline as much in the later subsidy reform events.

Third, Event 4 may have been less effective in reducing air pollution because it removed

the gasoline consumption quota that was implemented by the first subsidy reform event and

that had remained in place during the first three subsidy reform events. As seen in Figure A-

3 in Appendix A, gasoline consumption ceased its long-term upward trend following the first

three subsidy reform events, when the gasoline consumption quota was in place; but resumed

its upward trend following the fourth subsidy reform event, when the gasoline consumption

quota was removed. Since gasoline consumption resumed its upward trend following the

removal of the gasoline consumption quota during Event 4, air pollution may have increased

as a result of Event 4 as well. For example, increases in gasoline consumption may have

contributed to the increases in PM10 that occurred following Event 4.

A fourth possible reason why the later subsidy reform events may have been less effective

in reducing air pollution is that Event 3 did not increase natural gas prices by as much as

it did transportation fuel prices, and Event 4 did not include increase natural gas prices at
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all. Smaller increases in natural gas prices would result in smaller decreases in natural gas

consumption in the industrial and residential sectors. Our use of SO2 as a control variable

enables us to control for any changes in industrial activity that may have been correlated

with the energy subsidy reform events, and therefore at least partially controls for the former,

but may not fully control for the latter. Smaller decreases in natural gas consumption in the

residential sector as a result of Events 3 and 4 may therefore potentially explain at least in

part why these subsidy reform events were less effective in reducing air pollution.

Our results therefore provide evidence across multiple different empirical specifications

that the subsidy reform in Iran, particularly subsidy reforms that both increased energy

prices and restricted gasoline consumption, led to improvements in air quality. In contrast,

subsidy reforms that increased transportation fuel prices but did not also restrict gasoline

consumption were less effective in reducing air pollution. One possible reason why a quantity

instrument (the gasoline consumption quota) may have been needed in addition to a price

instrument (the increases in energy prices) is that the magnitude of the price instrument was

insufficient: although each of the subsidy reform events increased fuel prices, fossil fuels were

still heavily subsidized. As seen in Figure A-2 in Appendix A, despite the Iranian subsidy

reform, gasoline prices in Iran continue to be among the lowest in the world in 2017. In

addition, in order to reduce air pollution, it may be important to increase energy prices not

only for transportation fuels but also for natural gas as well.

As there are many channels through which the fuel subsidy reform events may affect air

quality, an advantage of our empirical approach is that it does not make any assumptions

about the particular channel(s) or mechanism(s) through which each subsidy reform event

may affect air quality, but instead allows for any of a number of these many channels and

estimates their net effect on each subsidy reform event. In future work, we hope to obtain

sufficiently detailed data, including sufficiently detailed data on gasoline, diesel, and natural

gas consumption; fuel smuggling; driving behavior; traffic flows; vehicle ownership; storage

and stockpiling behavior; fuel card use behavior; and transportation mode choices to enable

us to better understand and tease out the mechanisms that led the later subsidy reform

events to be less effective than the earlier subsidy reform events in reducing air pollution.

In addition, in future work we hope to analyze the health impacts of the changes in air

quality resulting from the subsidy reform. Furthermore, the Iranian government recently

announced in November 2018 that it would reintroduce the fuel cards that it had previously

abandoned in the fourth subsidy reform event in 2015 (Khajehpour, 2018); in future work we

hope to also analyze the effects of the recent reintroduction of the fuel cards, and to obtain
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the detailed data needed to do so.

Gasoline taxes have been touted by many economists as an efficient and relatively simple

tool to address environmental concerns and other problems associated with gasoline con-

sumption. Nevertheless, rather than removing subsidies and increasing gasoline taxes, many

countries still subsidize gasoline, which may have the opposite effect of exacerbating air

pollution and other problems associated with gasoline consumption. Our research provides

suggestive evidence that energy subsidy reform can have the beneficial effect of reducing air

pollution, particularly when the reduction in subsidies is coupled with measures to promote

energy conservation, and when subsidies on all forms of energy are removed.
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Table 1: Description of the Four Subsidy Reform Events

Subsidy Reform Event Date Description

Event 1 June 27, 2007 25% price hike for gasoline and similar price increases for other
transportation fuels. This price hike was accompanied by a 60
liter/vehicle monthly quota on gasoline consumption.

Event 2 December 18, 2010 First phase of the Iranian subsidy reform plan implemented, involv-
ing significantly higher energy prices (up to 20 times higher) and a
decrease in energy subsidies.

Event 3 April 24, 2014 Second phase of the Iranian subsidy reform plan began, involving
even higher energy prices. Transportation fuel prices were increased
by a higher percentage than natural gas prices were.

Event 4 May 27, 2015 Government further increased transportation fuel prices (but not
natural gas prices), and abandoned the quota on gasoline consump-
tion.
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Table 2: Summary Statistics for Daily Air Pollution in Tehran, 2007-2017

Mean Std. Dev. Min. Max. N

Daily average pollution concentration of:
CO (ppm) 2.948 0.896 0.8 9 3606
O3 (ppb) 22.998 11.393 1 100 3600
NO2 (ppb) 50.952 18.708 17.5 184 3606
PM10 (µg/m3) 84.321 36.516 8 696.5 3606
SO2 (ppb) 24.179 17.874 1 179.667 3600

Daily maximum pollution concentration of:
CO (ppm) 5.683 1.962 1.2 17.067 3606
O3 (ppb) 48.452 25.416 1 191.333 3600
NO2 (ppb) 77.768 31.293 24 314.75 3606
PM10 (µg/m3) 144.36 85.671 14.4 2136.923 3606

Notes: Daily average pollution concentrations are averaged over all stations in Tehran.
Daily maximum pollution concentrations are averaged over all stations in Tehran.
Data source: Tehran Air Quality Control Company (http://air.tehran.ir/).

Table 3: Summary Statistics for Daily Weather in Tehran, 2007-2017

Mean Std. Dev. N
Daily average temperature (◦F) 64.593 18.308 3651
Maximum sustained wind speed (knots) 15.436 5.924 3651
Data source: National Oceanic and Atmospheric Administration (NOAA) (2018)
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Figure 1: Air Pollution Levels in Tehran, Ninth-Order Polynomial Time Trend, 2007-2017
(Using daily average pollution levels)

Carbon monoxide (CO) Ozone (O3)

Nitrogen dioxide (NO2) Particulate matter (PM10)

Notes: Figure plots residuals from a regression of log daily average pollution concentration levels on
weather and seasonality covariates, year effects, and station fixed effects for each of the four air pollutants.
The fitted lines are the predicted values of a regression of these residuals on subsidy reform dummies and
a ninth-order polynomial time trend. The vertical lines indicate the dates of each of the four subsidy
reform events: June 27, 2007; December 18, 2010; April 24, 2014; and May 27, 2015.
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Figure 2: Air Pollution Levels in Tehran, Ninth-Order Polynomial Time Trend, 2007-2017
(Using daily maximum pollution levels)

Carbon monoxide (CO) Ozone (O3)

Nitrogen dioxide (NO2) Particulate matter (PM10)

Notes: Figure plots residuals from a regression of log daily maximum pollution concentration levels on
weather and seasonality covariates, year effects, and station fixed effects for each of the four air pollutants.
The fitted lines are the predicted values of a regression of these residuals on subsidy reform dummies and
a ninth-order polynomial time trend. The vertical lines indicate the dates of each of the four subsidy
reform events: June 27, 2007; December 18, 2010; April 24, 2014; and May 27, 2015.
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Table 4.a: Effects of Subsidy Reform Event 1 on Pollution Levels in Tehran
(with SO2 as control)

Dependent variable is predicted residuals from regression of log daily avg pollution for:
CO O3 NO2 PM10

8 weeks before and after event -0.0441 -0.3989 -0.2495 -0.5606*
(0.2626) (0.1969) (0.1216) (0.2097)

10 weeks before and after event -0.0538 -0.4253 -0.2217 -0.5379
(0.2148) (0.1976) (0.1164) (0.2245)

20 weeks before and after event -0.0046 -0.3589 -0.1027 -0.5281*
(0.1713) (0.1590) (0.0893) (0.1852)

30 weeks before and after event -0.0450 -0.3121 -0.0614 -0.5714*
(0.1751) (0.1661) (0.0829) (0.2049)

Dependent variable is predicted residuals from regression of log daily max pollution for:
CO O3 NO2 PM10

8 weeks before and after event -0.2208 -0.6731* -0.1910 -0.7015*
(0.3146) (0.1982) (0.1891) (0.2119)

10 weeks before and after event -0.2551 -0.6931* -0.1762 -0.6831*
(0.2358) (0.2411) (0.1674) (0.2205)

20 weeks before and after event -0.1396 -0.6810* -0.0129 -0.6182*
(0.1737) (0.1969) (0.0911) (0.1992)

30 weeks before and after event -0.1360 -0.6577* -0.0321 -0.6594*
(0.1657) (0.2015) (0.0976) (0.1987)

Notes: Each of the cells in this table reports estimates from separate local linear regres-
sion discontinuity regressions that each analyze the effect of the first subsidy reform event.
Each of the 4 columns presents results for a different pollutant. For each of the 4 pol-
lutants, we run separate local linear regression discontinuity regressions using 4 different
windows around the first subsidy reform event of the residual from a first-stage regression
of either the log daily average concentration or the log daily maximum concentration of
that pollutant on log daily average SO2, weather and seasonality covariates, year effects,
and station fixed effects. Significance code: * indicates significant at a 5% level after
applying the Bonferroni correction to adjust for multiple hypothesis testing.
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Table 4.b: Effects of Subsidy Reform Event 2 on Pollution Levels in Tehran
(with SO2 as control)

Dependent variable is predicted residuals from regression of log daily avg pollution for:
CO O3 NO2 PM10

8 weeks before and after event -0.2207 -0.5050* -0.0850 0.2613*
(0.1476) (0.1667) (0.1061) (0.0720)

10 weeks before and after event -0.1679 -0.2921 -0.0785 0.1482
(0.1212) (0.1243) (0.1019) (0.0625)

20 weeks before and after event -0.2071* -0.3330* -0.1041 0.0222
(0.0644) (0.0920) (0.0676) (0.0529)

30 weeks before and after event -0.1990* -0.3888* -0.2137* 0.0368
(0.0629) (0.0784) (0.0414) (0.0440)

Dependent variable is predicted residuals from regression of log daily max pollution for:
CO O3 NO2 PM10

8 weeks before and after event -0.3006 -0.5244* -0.1414 0.3379*
(0.1640) (0.1517) (0.0924) (0.0986)

10 weeks before and after event -0.2130 -0.2770 -0.1339 0.0811
(0.1357) (0.1254) (0.0904) (0.0900)

20 weeks before and after event -0.1674 -0.4287* -0.1536 0.0665
(0.0810) (0.1015) (0.0649) (0.0741)

30 weeks before and after event -0.2258* -0.4610* -0.2094* 0.1209
(0.0682) (0.0800) (0.0387) (0.0653)

Notes: Each of the cells in this table reports estimates from separate local linear regres-
sion discontinuity regressions that each analyze the effect of the second subsidy reform
event. Each of the 4 columns presents results for a different pollutant. For each of the
4 pollutants, we run separate local linear regression discontinuity regressions using 4 dif-
ferent windows around the second subsidy reform event of the residual from a first-stage
regression of either the log daily average concentration or the log daily maximum con-
centration of that pollutant on log daily average SO2, weather and seasonality covariates,
year effects, and station fixed effects. Significance code: * indicates significant at a 5%
level after applying the Bonferroni correction to adjust for multiple hypothesis testing.

35



Table 4.c: Effects of Subsidy Reform Event 3 on Pollution Levels in Tehran
(with SO2 as control)

Dependent variable is predicted residuals from regression of log daily avg pollution for:
CO O3 NO2 PM10

8 weeks before and after event 0.0918 0.1329 0.1860 -0.0941
(0.1588) (0.1002) (0.2429) (0.2386)

10 weeks before and after event 0.0185 0.1189 0.1850 -0.1112
(0.1207) (0.0975) (0.2092) (0.2335)

20 weeks before and after event -0.0153 0.0607 0.1829 0.0242
(0.1031) (0.0987) (0.1634) (0.1669)

30 weeks before and after event 0.0137 -0.0190 0.1430 0.1803
(0.0849) (0.0678) (0.1396) (0.1123)

Dependent variable is predicted residuals from regression of log daily max pollution for:
CO O3 NO2 PM10

8 weeks before and after event 0.0248 0.1190 0.2518 -0.0242
(0.1878) (0.0913) (0.2205) (0.1843)

10 weeks before and after event 0.0598 0.1045 0.2266 0.0247
(0.1307) (0.0914) (0.1869) (0.1699)

20 weeks before and after event 0.0417 0.0523 0.1419 0.0934
(0.1151) (0.0920) (0.1290) (0.1315)

30 weeks before and after event 0.0605 -0.0724 0.2052 0.1274
(0.1016) (0.0634) (0.1470) (0.1008)

Notes: Each of the cells in this table reports estimates from separate local linear regression
discontinuity regressions that each analyze the effect of the third subsidy reform event.
Each of the 4 columns presents results for a different pollutant. For each of the 4 pol-
lutants, we run separate local linear regression discontinuity regressions using 4 different
windows around the third subsidy reform event of the residual from a first-stage regression
of either the log daily average concentration or the log daily maximum concentration of
that pollutant on log daily average SO2, weather and seasonality covariates, year effects,
and station fixed effects. Significance code: * indicates significant at a 5% level after
applying the Bonferroni correction to adjust for multiple hypothesis testing.
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Table 4.d: Effects of Subsidy Reform Event 4 on Pollution Levels in Tehran
(with SO2 as control)

Dependent variable is predicted residuals from regression of log daily avg pollution for:
CO O3 NO2 PM10

8 weeks before and after event 0.0361 -0.1912 -0.1513 0.5497*
(0.0780) (0.1260) (0.1518) (0.1344)

10 weeks before and after event -0.0427 -0.2043 -0.1695 0.5523*
(0.0602) (0.0875) (0.1459) (0.1371)

20 weeks before and after event -0.0517 -0.2525* -0.1061 0.3552*
(0.0487) (0.0798) (0.0821) (0.0985)

30 weeks before and after event -0.0791 -0.2617* -0.1160 0.1488*
(0.0425) (0.0666) (0.0646) (0.0586)

Dependent variable is predicted residuals from regression of log daily max pollution for:
CO O3 NO2 PM10

8 weeks before and after event 0.1346 -0.2226* -0.1694 0.3801
(0.1140) (0.0878) (0.1226) (0.1724)

10 weeks before and after event 0.0799 -0.1774 -0.1292 0.2156
(0.0952) (0.1292) (0.1341) (0.0993)

20 weeks before and after event -0.0260 -0.3423* -0.1116 0.1255
(0.0736) (0.0755) (0.0764) (0.0956)

30 weeks before and after event -0.0895 -0.3714* -0.1204 0.2195*
(0.0547) (0.0684) (0.0597) (0.0815)

Notes: Each of the cells in this table reports estimates from separate local linear regres-
sion discontinuity regressions that each analyze the effect of the fourth subsidy reform
event. Each of the 4 columns presents results for a different pollutant. For each of the
4 pollutants, we run separate local linear regression discontinuity regressions using 4 dif-
ferent windows around the fourth subsidy reform event of the residual from a first-stage
regression of either the log daily average concentration or the log daily maximum con-
centration of that pollutant on log daily average SO2, weather and seasonality covariates,
year effects, and station fixed effects. Significance code: * indicates significant at a 5%
level after applying the Bonferroni correction to adjust for multiple hypothesis testing.
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Table 5.a: Effects of Subsidy Reform Event 1 on Pollution Levels in Tehran
(bootstrap)

Dependent variable is predicted residuals from regression of:
log daily avg pollution for: log daily max pollution for:

CO O3 CO O3

10 weeks before and after event 0.0906 -0.4516 -0.0233 -0.7891
(0.1168) (0.2792) (0.2564) (0.3711)

20 weeks before and after event 0.0125 -0.5018* -0.1521 -0.9236
(0.5996) (0.0931) (0.1917) (0.4596)

30 weeks before and after event 0.0140 -0.5265* -0.1508 -0.8935*
(0.1179) (0.1010) (0.1865) (0.1028)

Notes: Each of the cells in this table reports estimates from separate local linear regression discontinuity
regressions that each analyze the effect of the first subsidy reform event. Each of the 4 columns presents
results for the residualized values of a different dependent variable. For each of the 4 dependent variables,
we run separate local linear regression discontinuity regressions using 3 different windows around the first
subsidy reform event of the residual from a first-stage regression of that dependent variable on weather
and seasonality covariates, year effects, and station fixed effects. Standard errors are bootstrapped over
both stages of the estimation, and are in parentheses. Significance code: * indicates significant at a 5%
level after applying the Bonferroni correction to adjust for multiple hypothesis testing.

Table 5.b: Effects of Subsidy Reform Event 2 on Pollution Levels in Tehran
(bootstrap)

Dependent variable is predicted residuals from regression of:
log daily avg pollution for: log daily max pollution for:

CO O3 CO O3

10 weeks before and after event -0.0540 -0.1297 -0.1012 -0.0158
(0.0691) (0.1049) (0.1021) (0.1401)

20 weeks before and after event -0.0766 -0.2776* -0.1698 -0.1463
(0.0851) (0.1196) (0.1405) (0.0951)

30 weeks before and after event -0.2700* -0.2693 -0.1732 -0.3207*
(0.1196) (0.1338) (0.1926) (0.0926)

Notes: Each of the cells in this table reports estimates from separate local linear regression discontinuity
regressions that each analyze the effect of the second subsidy reform event. Each of the 4 columns
presents results for the residualized values of a different dependent variable. For each of the 4 dependent
variables, we run separate local linear regression discontinuity regressions using 3 different windows
around the second subsidy reform event of the residual from a first-stage regression of that dependent
variable on weather and seasonality covariates, year effects, and station fixed effects. Standard errors are
bootstrapped over both stages of the estimation, and are in parentheses. Significance code: * indicates
significant at a 5% level after applying the Bonferroni correction to adjust for multiple hypothesis testing.
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Table 5.c: Effects of Subsidy Reform Event 3 on Pollution Levels in Tehran
(bootstrap)

Dependent variable is predicted residuals from regression of:
log daily avg pollution for: log daily max pollution for:

CO O3 CO O3

10 weeks before and after event 0.1071 -0.0666 -0.0100 0.1806
(0.1273) (0.2687) (0.2151) (0.0835)

20 weeks before and after event 0.1081 -0.0341 0.1251 0.1926
(0.0603) (0.1936) (0.1415) (0.1752)

30 weeks before and after event 0.1490* 0.0284 0.1395 0.0701
(0.0502) (0.1469) (0.1140) (0.1235)

Notes: Each of the cells in this table reports estimates from separate local linear regression discontinuity
regressions that each analyze the effect of the third subsidy reform event. Each of the 4 columns presents
results for the residualized values of a different dependent variable. For each of the 4 dependent variables,
we run separate local linear regression discontinuity regressions using 3 different windows around the third
subsidy reform event of the residual from a first-stage regression of that dependent variable on weather
and seasonality covariates, year effects, and station fixed effects. Standard errors are bootstrapped over
both stages of the estimation, and are in parentheses. Significance code: * indicates significant at a 5%
level after applying the Bonferroni correction to adjust for multiple hypothesis testing.

Table 5.d: Effects of Subsidy Reform Event 4 on Pollution Levels in Tehran
(bootstrap)

Dependent variable is predicted residuals from regression of:
log daily avg pollution for: log daily max pollution for:

CO O3 CO O3

10 weeks before and after event 0.0436 -0.3381* -0.0092 -0.3262*
(0.0289) (0.0703) (0.0728) (0.1048)

20 weeks before and after event 0.0351 -0.0315 -0.0334 -0.2756*
(0.0651) (0.1255) (0.0662) (0.0725)

30 weeks before and after event -0.0199 -0.1067 -0.0410 -0.2999*
(0.0824) (0.1040) (0.0942) (0.0816)

Notes: Each of the cells in this table reports estimates from separate local linear regression discontinuity
regressions that each analyze the effect of the fourth subsidy reform event. Each of the 4 columns
presents results for the residualized values of a different dependent variable. For each of the 4 dependent
variables, we run separate local linear regression discontinuity regressions using 3 different windows
around the fourth subsidy reform event of the residual from a first-stage regression of that dependent
variable on weather and seasonality covariates, year effects, and station fixed effects. Standard errors are
bootstrapped over both stages of the estimation, and are in parentheses. Significance code: * indicates
significant at a 5% level after applying the Bonferroni correction to adjust for multiple hypothesis testing.
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Table 6: Effects of Removing Subsidies on Pollution Levels in Tehran
(bootstrap with SO2 as control)

Dependent variable is predicted residuals from regression of:
log daily avg CO log daily max CO

30 weeks before and after Event 1 0.0320 -0.1455
(0.0884) (0.2416)

30 weeks before and after Event 2 -0.4201* -0.4270*
(0.1787) (0.1864)

30 weeks before and after Event 3 0.1942 0.4186
(0.8389) (0.2134)

30 weeks before and after Event 4 0.0313 -0.0431
(0.0730) (0.0918)

Notes: Each of the cells in this table reports estimates from separate local linear regression
discontinuity regressions. Each of the 2 columns presents results for the residualized values
of a different dependent variable. For each of the 2 dependent variables and each of the
4 subsidy reform events, we run separate local linear regression discontinuity regressions
using a window of 30 weeks before and after that subsidy reform event of the residual
from a first-stage regression of that dependent variable on log daily average SO2, weather
and seasonality covariates, year effects, and station fixed effects. Standard errors are
bootstrapped over both stages of the estimation, and are in parentheses. Significance
code: * indicates significant at a 5% level after applying the Bonferroni correction to
adjust for multiple hypothesis testing.
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Appendix A. Supplementary Tables and Figures

Figure A-1: Energy Subsidies in Middle East and North Africa, 2011

Notes: Figure plots pre-tax energy subsidies (including subsidies on petroleum, electricity,
natural gas, and coal) in 2011 as a percentage of GDP for countries in the Middle East
and North Africa. Data source: Sdralevich et al. (2014).
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Table A-1: Energy and Utility Prices in Iran During the Subsidy Reform

Unit Event 1 Event 2 Event 3 Event 4
Subsidized fuel/utility: for price 6/27/2007 12/18/2010 4/24/2014 5/27/2015

Gasoline 10 IRR per ℓ 100 (400) 400 (700) 700 (1000) 1000
Premium gas 10 IRR per ℓ 150 500 (800) 800 (1100) 1200
Diesel fuel 10 IRR per ℓ 16.5 150 (350) 250 (500) 300
Kerosene 10 IRR per ℓ 16.5 100 150 150
Mazut (Fuel oil) 10 IRR per ℓ 9.5 200 250 300
Aviation fuel 10 IRR per ℓ 100 400 500 600
LPG (Liquefied Petroleum Gas) 10 IRR per kg 5.7 180 210 230
LNG (Liquefied Natural Gas) 10 IRR per kg 40 540 650
CNG (Compressed natural gas) 10 IRR per m3 40 300 450
Natural gas (residential) Winter 10 IRR per m3 13.2 70 20% increase
Natural gas (residential) Summer 10 IRR per m3 13.2 120 20% increase
Electricity (residential) 10 IRR per kWh 12.9 45-75 24% increase
Water (residential) 10 IRR per m3 127 262.3 20% increase

Notes: Table reports the energy and utility prices implemented at each subsidy reform event. Prices are in 10 Iranian Rial
(IRR). Values inside parentheses are prices for volumes exceeding the 60 liter (ℓ) quota. Source: Kheiravar (2019).
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Figure A-2: Global Gasoline Prices, 2017-2018

Notes: Figure plots global gasoline prices (in U.S. dollars per gallon) in 2017 and 2018.
Data source: ?.
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Figure A-3: Annual Gasoline Consumption in Iran, 1978-2017

Data source: National Iranian Oil Refining and Distribution Company (niordc.ir)

Figure A-4: Annual Diesel Consumption in Iran, 1978-2017

Data source: National Iranian Oil Refining and Distribution Company (niordc.ir)
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Figure A-5: Local Air Quality Monitoring Stations in Tehran

Note: Map shows the 24 local air quality monitoring stations in Tehran.
Data source: Tehran Air Quality Control Company (http://air.tehran.ir/).
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Figure A-6: Mean Daily Air Pollution Levels in Tehran, 2007-2017

Carbon monoxide (CO) Ozone (O3)

Nitrogen dioxide (NO2) Particulate matter (PM10)

Notes: Figure plots mean daily pollution levels for each of the four pollutants for the time
period 1997 to 2009. Mean daily pollution levels are constructed by averaging the hourly mean
concentration over all hours in a day and over all monitoring stations. The vertical lines indicate
the dates of each of the four subsidy reform events: June 27, 2007; December 18, 2010; April
24, 2014; and May 27, 2015.
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Table A-2.a: Effects of Subsidy Reform Event 1 on Pollution Levels in Tehran

Dependent variable is predicted residuals from regression of log daily avg pollution for:
CO O3 NO2 PM10

8 weeks before and after event -0.0400 -0.4243 -0.2661* -0.5540*
(0.2738) (0.1864) (0.0903) (0.2119)

10 weeks before and after event -0.0102 -0.4790* -0.2210 -0.5456
(0.2252) (0.1627) (0.0894) (0.2259)

20 weeks before and after event -0.0504 -0.3942* 0.0213 -0.2359
(0.1515) (0.1473) (0.0832) (0.1196)

30 weeks before and after event -0.0564 -0.3517 -0.0149 -0.4396*
(0.1576) (0.1434) (0.0869) (0.1560)

Dependent variable is predicted residuals from regression of log daily max pollution for:
CO O3 NO2 PM10

8 weeks before and after event -0.2804 -0.7085* -0.2355 -0.7877*
(0.2038) (0.2075) (0.1666) (0.2225)

10 weeks before and after event -0.2299 -0.7851* -0.2060 -0.7365*
(0.1839) (0.2129) (0.1626) (0.2245)

20 weeks before and after event -0.1555 -0.6346* 0.0054 -0.5550*
(0.1356) (0.1608) (0.1030) (0.1705)

30 weeks before and after event -0.1695 -0.6043* -0.0389 -0.6388*
(0.1352) (0.1588) (0.1066) (0.1957)

Notes: Each of the cells in this table reports estimates from separate local linear regres-
sion discontinuity regressions that each analyze the effect of the first subsidy reform event.
Each of the 4 columns presents results for a different pollutant. For each of the 4 pol-
lutants, we run separate local linear regression discontinuity regressions using 4 different
windows around the first subsidy reform event of the residual from a first-stage regression
of either the log daily average concentration or the log daily maximum concentration of
that pollutant on weather and seasonality covariates, year effects, and station fixed ef-
fects. Significance code: * indicates significant at a 5% level after applying the Bonferroni
correction to adjust for multiple hypothesis testing.

A-7



Table A-2.b: Effects of Subsidy Reform Event 2 on Pollution Levels in Tehran

Dependent variable is predicted residuals from regression of log daily avg pollution for:
CO O3 NO2 PM10

8 weeks before and after event -0.1424 -0.3042 -0.1714 0.1004
(0.1135) (0.1446) (0.1094) (0.1835)

10 weeks before and after event -0.1457 -0.0793 -0.1681 -0.0477
(0.1146) (0.1180) (0.1089) (0.1237)

20 weeks before and after event -0.0420 -0.1486 -0.0893 0.0777
(0.0817) (0.0806) (0.0589) (0.1053)

30 weeks before and after event -0.0973 -0.1584 -0.0494 0.1912
(0.0548) (0.0728) (0.0568) (0.0911)

Dependent variable is predicted residuals from regression of log daily max pollution for:
CO O3 NO2 PM10

8 weeks before and after event -0.1710 -0.2160 -0.2403* 0.1065
(0.1264) (0.1393) (0.0885) (0.1802)

10 weeks before and after event -0.1804 -0.0819 -0.2488* -0.0115
(0.1313) (0.1280) (0.0893) (0.1398)

20 weeks before and after event -0.0322 -0.1649 -0.1503* 0.0842
(0.0854) (0.0914) (0.0525) (0.1157)

30 weeks before and after event -0.1290 -0.1589 -0.1079 0.1841
(0.0560) (0.0835) (0.0507) (0.0925)

Notes: Each of the cells in this table reports estimates from separate local linear regres-
sion discontinuity regressions that each analyze the effect of the second subsidy reform
event. Each of the 4 columns presents results for a different pollutant. For each of the
4 pollutants, we run separate local linear regression discontinuity regressions using 4 dif-
ferent windows around the second subsidy reform event of the residual from a first-stage
regression of either the log daily average concentration or the log daily maximum concen-
tration of that pollutant on weather and seasonality covariates, year effects, and station
fixed effects. Significance code: * indicates significant at a 5% level after applying the
Bonferroni correction to adjust for multiple hypothesis testing.
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Table A-2.c: Effects of Subsidy Reform Event 3 on Pollution Levels in Tehran

Dependent variable is predicted residuals from regression of log daily avg pollution for:
CO O3 NO2 PM10

8 weeks before and after event 0.0785 0.1393 0.1070 -0.2400
(0.1195) (0.1148) (0.1266) (0.1381)

10 weeks before and after event 0.1574 0.1261 0.1169 -0.2487
(0.0850) (0.1097) (0.1053) (0.1353)

20 weeks before and after event 0.0951 0.0882 0.1078 -0.0498
(0.0600) (0.0841) (0.0989) (0.0798)

30 weeks before and after event 0.0690 0.1058 0.0509 -0.0684
(0.0504) (0.0677) (0.0802) (0.0731)

Dependent variable is predicted residuals from regression of log daily max pollution for:
CO O3 NO2 PM10

8 weeks before and after event 0.0384 0.2325 0.2229 -0.2303
(0.1446) (0.1083) (0.1314) (0.1411)

10 weeks before and after event 0.1767 0.2333 0.1957 -0.1272
(0.0963) (0.1084) (0.1175) (0.1150)

20 weeks before and after event 0.1136 0.1553 0.1915 -0.0599
(0.0683) (0.0817) (0.1048) (0.0856)

30 weeks before and after event 0.0974 0.1782 0.1108 -0.0722
(0.0585) (0.0739) (0.0799) (0.0772)

Notes: Each of the cells in this table reports estimates from separate local linear regression
discontinuity regressions that each analyze the effect of the third subsidy reform event.
Each of the 4 columns presents results for a different pollutant. For each of the 4 pol-
lutants, we run separate local linear regression discontinuity regressions using 4 different
windows around the third subsidy reform event of the residual from a first-stage regression
of either the log daily average concentration or the log daily maximum concentration of
that pollutant on weather and seasonality covariates, year effects, and station fixed ef-
fects. Significance code: * indicates significant at a 5% level after applying the Bonferroni
correction to adjust for multiple hypothesis testing.
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Table A-2.d: Effects of Subsidy Reform Event 4 on Pollution Levels in Tehran

Dependent variable is predicted residuals from regression of log daily avg pollution for:
CO O3 NO2 PM10

8 weeks before and after event 0.1133 -0.2013 0.0353 0.4661*
(0.0830) (0.1080) (0.1591) (0.1222)

10 weeks before and after event 0.0011 -0.1854 -0.0958 0.4871*
(0.0606) (0.0779) (0.1373) (0.1218)

20 weeks before and after event -0.0170 -0.2232* -0.1249 0.3949*
(0.0502) (0.0718) (0.0742) (0.0922)

30 weeks before and after event -0.0605 -0.1905* -0.1464 0.0846
(0.0398) (0.0551) (0.0622) (0.0461)

Dependent variable is predicted residuals from regression of log daily max pollution for:
CO O3 NO2 PM10

8 weeks before and after event 0.1572 -0.1297 -0.0449 0.3390
(0.1048) (0.0901) (0.1351) (0.1526)

10 weeks before and after event 0.0660 -0.1291 -0.0741 0.0625
(0.0830) (0.1113) (0.1293) (0.0805)

20 weeks before and after event 0.0130 -0.2921* -0.1402 0.0966
(0.0696) (0.0600) (0.0632) (0.0823)

30 weeks before and after event -0.0782 -0.2254* -0.1589* 0.1164
(0.0481) (0.0497) (0.0560) (0.0728)

Notes: Each of the cells in this table reports estimates from separate local linear regres-
sion discontinuity regressions that each analyze the effect of the fourth subsidy reform
event. Each of the 4 columns presents results for a different pollutant. For each of the
4 pollutants, we run separate local linear regression discontinuity regressions using 4 dif-
ferent windows around the fourth subsidy reform event of the residual from a first-stage
regression of either the log daily average concentration or the log daily maximum concen-
tration of that pollutant on weather and seasonality covariates, year effects, and station
fixed effects. Significance code: * indicates significant at a 5% level after applying the
Bonferroni correction to adjust for multiple hypothesis testing.
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Figure A-7: Number of Observations per Week for Each Pollutant Around Event 1

Note: To examine the distribution of the forcing variable (time) at the threshold (the implemen-

tation of the first event of the subsidy reform on June 27, 2007), this figure plots the number of

observations per week against the week away from June 27, 2007 for each pollutant.
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Figure A-8: Number of Observations per Week for Each Pollutant Around Event 2

Note: To examine the distribution of the forcing variable (time) at the threshold (the imple-

mentation of the second event of the subsidy reform on December 18, 2010), this figure plots

the number of observations per week against the week away from December 18, 2010 for each

pollutant.

A-12



Figure A-9: Number of Observations per Week for Each Pollutant Around Event 3

Note: To examine the distribution of the forcing variable (time) at the threshold (the implemen-

tation of the third event of the subsidy reform on April 24, 2014), this figure plots the number

of observations per week against the week away from April 24, 2014 for each pollutant.
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Figure A-10: Number of Observations per Week for Each Pollutant Around Event 4

Note: To examine the distribution of the forcing variable (time) at the threshold (the implemen-

tation of the fourth event of the subsidy reform on May 27, 2015), this figure plots the number

of observations per week against the week away from May 27, 2015 for each pollutant.
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Table A-3: Effects of Removing Subsidies on Daily Mean Temperature in Tehran

Dependent variable is log daily average temperature

N th order time trend: 10th order 9th order 8th order 7th order 6th order

Event 1: June 27, 2007 0.0077 0.0077 -0.0017 -0.0017 -0.0034
(0.0742) (0.0742) (0.0738) (0.0738) (0.0734)

Event 2: December 18, 2010 -0.0666 -0.0666 -0.0692 -0.0692 -0.0712
(0.0762) (0.0762) (0.0762) (0.0762) (0.0756)

Event 3: April 24, 2014 -0.0303 -0.0303 -0.0321 -0.0321 -0.0353
(0.0789) (0.0789) (0.0789) (0.0789) (0.0774)

Event 4: May 27, 2015 -0.0092 -0.0092 -0.0016 -0.0016 -0.0056
(0.0851) (0.0851) (0.0848) (0.0848) (0.0826)

Notes: Table reports estimates from a regression discontinuity model with a N th-order time trend. All
models include day of the week, month of the year, and year dummies. The unit of observation is a
station-day. The reported coefficients correspond to indicator variables that equal to one for every day
during the time periods of the respective subsidy reform phase. Standard errors, in parentheses, are
robust to heteroskedasticity. Significance code: * indicates significant at a 5% level.

Table A-4: Effects of Removing Subsidies on Daily Maximum Wind Speed in Tehran

Dependent variable is log daily maximum sustained wind speed

N th order time trend: 10th order 9th order 8th order 7th order 6th order

Event 1: June 27, 2007 -0.1304 -0.1304 -0.1052 -0.1052 -0.1180
(0.1986) (0.1986) (0.1976) (0.1976) (0.1964)

Event 2: December 18, 2010 -0.0225 -0.0225 -0.0157 -0.0157 -0.0310
(0.2040) (0.2040) (0.2040) (0.2040) (0.2023)

Event 3: April 24, 2014 0.0201 0.0201 0.0250 0.0250 0.0008
(0.2112) (0.2112) (0.2112) (0.2112) (0.2072)

Event 4: May 27, 2015 0.1011 0.1011 0.0808 0.0808 0.0500
(0.2277) (0.2277) (0.2271) (0.2271) (0.2210)

Notes: Table reports estimates from a regression discontinuity model with a N th-order time trend. All
models include day of the week, month of the year, and year dummies. The unit of observation is a
station-day. The reported coefficients correspond to indicator variables that equal to one for every day
during the time periods of the respective subsidy reform phase. Standard errors, in parentheses, are
robust to heteroskedasticity. Significance code: * indicates significant at a 5% level.
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Appendix B. Placebo Tests

To examine the robustness of our results, we run placebo tests for each of our regression
discontinuity regression models using placebo subsidy reform dates instead of the actual
subsidy reform dates as the treatment. If we do not find significant treatment effects where
there has been no treatment, then this means that our results are robust to our tests.

Since the implementation of the first event of the subsidy reform on June 27, 2007 took
place on the fourth Wednesday of the month, we choose as our placebo date for the first
subsidy reform event a fourth Wednesday prior to the first event of the subsidy reform:
Wednesday, March 28, 2007. For the placebo test of the first event of the subsidy reform,
we use data from before the first subsidy reform event only (i.e., before June 27, 2007).

Since the implementation of the second event of the subsidy reform on December 18,
2010 took place on the third Saturday of the month, we choose as our placebo dates for
the second subsidy reform event a third Saturdays of the month, and, following Imbens and
Lemieux (2008), one that was roughly in the middle of the relevant sample period between
the first and second subsidy events: Saturday, June 21, 2008. For the placebo test of the
second event of the subsidy reform, we use data from after the first subsidy reform event but
before the second subsidy reform event only (i.e., after June 27, 2007 but before December
18, 2010).

Since the implementation of the third event of the subsidy reform on April 24, 2014 took
place on the fourth Thursday of the month, we choose as our placebo date for the third
subsidy reform event a fourth Thursday, and, following Imbens and Lemieux (2008), one
that was roughly in the middle of the relevant sample period between the second and third
subsidy events: Thursday, June 27, 2013. For the placebo test of the third event of the
subsidy reform, we use data from after the second subsidy reform event but before the third
subsidy reform event only (i.e., after December 18, 2010 but before April 24, 2014).

Since the implementation of the fourth event of the subsidy reform on May 27, 2015
took place on the fourth Wednesday of the month, we choose as our placebo date for the
fourth subsidy reform event a fourth Wednesday of the month, and, following Imbens and
Lemieux (2008), one that was roughly in the middle of the relevant sample period between
the third and fourth subsidy events: Wednesday, November 19, 2014. For the placebo test
of the fourth event of the subsidy reform, we use data from after the third subsidy reform
event but before the fourth subsidy reform event only (i.e., after April 24, 2014 but before
May 27, 2015).

We run placebo tests of the local linear regression discontinuity regressions with robust
confidence intervals for windows ranging from 8 to 30 weeks before and after each respec-
tive placebo subsidy reform event date in Tables B-1.a-B-1.d. Results of the placebo tests
show that none of the placebo treatment effects are significant and negative for any of the
pollutants, and that the few placebo treatment effects that are statistically significant at
a 5% level are positive, not negative. Thus, since we do not find any significant negative
treatment effects where there has been no treatment, and since we find very few significant
treatment effects where there has been no treatment, this means that our results are robust
to our tests.
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Table B-1.a: Effects of Placebo Subsidy Reform Event 1 on Pollution Levels in Tehran

Dependent variable is predicted residuals from regression of log daily avg pollution for:
CO O3 NO2 PM10

8 weeks before and after event 0.0391 0.1906 -0.0549 -0.0434
(0.1972) (0.2187) (0.3087) (0.3401)

10 weeks before and after event -0.0498 0.2756 -0.1187 -0.0851
(0.1742) (0.2213) (0.2786) (0.3014)

20 weeks before and after event -0.2343 0.3323 -0.2428 -0.2437
(0.1536) (0.1856) (0.2511) (0.2736)

30 weeks before and after event -0.2349 0.3626 -0.2947
(0.1539) (0.1761) (0.2475) (0.2671)

Dependent variable is predicted residuals from regression of log daily max pollution for:
CO O3 NO2 PM10

8 weeks before and after event 0.2506 0.0166 0.0479 -0.1141
(0.2212) (0.4022) (0.3294) (0.3239)

10 weeks before and after event 0.0833 0.2110 -0.0200 -0.1627
(0.1959) (0.3384) (0.3001) (0.2919)

20 weeks before and after event -0.3343 0.4222 -0.1355 -0.4169
(0.1495) (0.2836) (0.2767) (0.2592)

30 weeks before and after event -0.2758 0.4499 -0.1561 -0.3781
(0.1484) (0.2630) (0.2767) (0.2528)

Notes: Table presents results of placebo tests using a placebo subsidy reform date (March
28, 2007) instead of the actual subsidy reform date for the first subsidy reform event. Each
of the cells in this table reports estimates from separate local linear regression discontinuity
regressions. Each of the 4 columns presents results for a different pollutant. For each of
the 4 pollutants, we run separate local linear regression discontinuity regressions using 4
different windows around the placebo subsidy reform date for the first subsidy reform event
of the residual from a first-stage regression of either the log daily average concentration
or the log daily maximum concentration of that pollutant on weather and seasonality
covariates, year effects, and station fixed effects. Significance code: * indicates significant
at a 5% level after applying the Bonferroni correction to adjust for multiple hypothesis
testing.
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Table B-1.b: Effects of Placebo Subsidy Reform Event 2 on Pollution Levels in Tehran

Dependent variable is predicted residuals from regression of log daily avg pollution for:
CO O3 NO2 PM10

8 weeks before and after event -0.3626 0.0655 0.0593 0.3397
(0.1763) (0.1672) (0.1285) (0.1721)

10 weeks before and after event -0.3727 0.0547 0.0468 0.2120
(0.1656) (0.2102) (0.1297) (0.1308)

20 weeks before and after event 0.0128 0.0269 0.0975 -0.0527
(0.1024) (0.1270) (0.0992) (0.0853)

30 weeks before and after event 0.0493 0.0271 0.1026 -0.0309
(0.0919) (0.1071) (0.0991) (0.0768)

Dependent variable is predicted residuals from regression of log daily max pollution for:
CO O3 NO2 PM10

8 weeks before and after event -0.2260 0.0228 0.1192 0.1823
(0.2032) (0.2630) (0.2068) (0.1867)

10 weeks before and after event -0.2226 0.0153 0.0771 -0.0158
(0.1719) (0.2807) (0.1823) (0.1274)

20 weeks before and after event 0.0213 0.0493 0.1075 -0.0277
(0.1089) (0.1546) (0.1181) (0.1025)

30 weeks before and after event 0.0338 0.0463 0.0714 0.0202
(0.0860) (0.1311) (0.1112) (0.0859)

Notes: Table presents results of placebo tests using a placebo subsidy reform date (June
21, 2008) instead of the actual subsidy reform date for the second subsidy reform event.
Each of the cells in this table reports estimates from separate local linear regression dis-
continuity regressions. Each of the 4 columns presents results for a different pollutant. For
each of the 4 pollutants, we run separate local linear regression discontinuity regressions
using 4 different windows around the placebo subsidy reform date for the second subsidy
reform event of the residual from a first-stage regression of either the log daily average
concentration or the log daily maximum concentration of that pollutant on weather and
seasonality covariates, year effects, and station fixed effects. Significance code: * indicates
significant at a 5% level after applying the Bonferroni correction to adjust for multiple
hypothesis testing.

B-3



Table B-1.c: Effects of Placebo Subsidy Reform Event 3 on Pollution Levels in Tehran

Dependent variable is predicted residuals from regression of log daily avg pollution for:
CO O3 NO2 PM10

8 weeks before and after event 0.2663* 0.1274 0.2175 0.4197*
(0.0843) (0.0973) (0.0920) (0.0747)

10 weeks before and after event 0.2933* 0.1258 0.2294 0.4145*
(0.0813) (0.0973) (0.0944) (0.0732)

20 weeks before and after event 0.0338 0.1231 0.1378 0.4462*
(0.0365) (0.0990) (0.0836) (0.0676)

30 weeks before and after event 0.0726 0.0863 0.0632 0.4560*
(0.0406) (0.0828) (0.0728) (0.0685)

Dependent variable is predicted residuals from regression of log daily max pollution for:
CO O3 NO2 PM10

8 weeks before and after event 0.2742* 0.1089 0.2857* 0.3769*
(0.0840) (0.1006) (0.0942) (0.0812)

10 weeks before and after event 0.2795* 0.1061 0.3000* 0.3730*
(0.0831) (0.1006) (0.0994) (0.0810)

20 weeks before and after event 0.3075* 0.1055 0.0394 0.3709*
(0.0594) (0.1017) (0.0681) (0.0761)

30 weeks before and after event 0.1301* 0.0590 0.1446 0.4033*
(0.0457) (0.0863) (0.0783) (0.0810)

Notes: Table presents results of placebo tests using a placebo subsidy reform date (Jan-
uary 31, 2013) instead of the actual subsidy reform date for the third subsidy reform event.
Each of the cells in this table reports estimates from separate local linear regression dis-
continuity regressions. Each of the 4 columns presents results for a different pollutant. For
each of the 4 pollutants, we run separate local linear regression discontinuity regressions
using 4 different windows around the placebo subsidy reform date for the third subsidy
reform event of the residual from a first-stage regression of either the log daily average
concentration or the log daily maximum concentration of that pollutant on weather and
seasonality covariates, year effects, and station fixed effects. Significance code: * indicates
significant at a 5% level after applying the Bonferroni correction to adjust for multiple
hypothesis testing.
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Table B-1.d: Effects of Placebo Subsidy Reform Event 4 on Pollution Levels in Tehran

Dependent variable is predicted residuals from regression of log daily avg pollution for:
CO O3 NO2 PM10

8 weeks before and after event 0.2829 0.2351 0.1102 -0.1749
(0.1210) (0.1247) (0.2588) (0.1600)

10 weeks before and after event 0.3336* 0.2086 0.2327 -0.2276
(0.0942) (0.1105) (0.1975) (0.1482)

20 weeks before and after event 0.3601* 0.1736 0.1484 -0.1417
(0.0904) (0.0859) (0.1458) (0.1078)

30 weeks before and after event 0.3131* 0.0781 0.0239 0.2366*
(0.0717) (0.0595) (0.1015) (0.0632)

Dependent variable is predicted residuals from regression of log daily max pollution for:
CO O3 NO2 PM10

8 weeks before and after event 0.3843 0.1287 0.2225 -0.0096
(0.1622) (0.1647) (0.2771) (0.1688)

10 weeks before and after event 0.4097* 0.1285 0.3253 0.1006
(0.1276) (0.1549) (0.2193) (0.2077)

20 weeks before and after event 0.4656* 0.2211 0.1961 0.2591*
(0.1105) (0.1009) (0.1616) (0.0995)

30 weeks before and after event 0.4484* 0.1236 -0.0096 0.2759*
(0.0947) (0.0677) (0.0986) (0.0719)

Notes: Table presents results of placebo tests using a placebo subsidy reform date (July
16, 2014) instead of the actual subsidy reform date for the fourth subsidy reform event.
Each of the cells in this table reports estimates from separate local linear regression dis-
continuity regressions. Each of the 4 columns presents results for a different pollutant. For
each of the 4 pollutants, we run separate local linear regression discontinuity regressions
using 4 different windows around the placebo subsidy reform date for the fourth subsidy
reform event of the residual from a first-stage regression of either the log daily average
concentration or the log daily maximum concentration of that pollutant on weather and
seasonality covariates, year effects, and station fixed effects. Significance code: * indicates
significant at a 5% level after applying the Bonferroni correction to adjust for multiple
hypothesis testing.
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