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Abstract

We estimate the short-term willingness-to-pay (WTP) to avoid air pollution by developing a
model to capture the trade-offs between avoidance behavior and its costs. In particular, we
use fine-scale travel survey data in Beijing to model the trade-offs between indoor and outdoor
travel modes for compulsory work trips during high polluted hours. Our model indicates that
the short-term WTP, which we estimate to be 0.00223 dollars per hour to avoid 1 µg/m3 of
ambient fine particles (PM2.5), forms the lower bound for the long-term WTP, which is around
19.53 dollars per year to avoid 1 µg/m3 PM2.5. Our estimation strategy uses a machine learning
IV method in a high dimensional econometrics setting. We find that a longer potential exposure
to air pollution prevents people from walking and cycling. People older than 55 years old, who
are more vulnerable to pollution and thus more likely to avoid pollution, have a 28% higher
WTP than the young. Likewise, richer people, who value their health more, are willing to avoid
a unit of pollution with 36% more cost. Finally, we find evidence that information affects the
behavioral adjustment: people start to reduce their exposure to the toxic air only after extensive
media coverage of air pollution.
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1 Introduction

Air pollution has adverse impacts on human health, particularly in developing countries. While

a growing literature in economics quantifies the causal effect of air pollution on health (Neidell,

2004; Currie and Walker, 2011; Schlenker and Walker, 2016; Deryugina et al., 2019; Cole et al.,

2020; Barwick et al., 2021), there has been little research to date focusing on how pollution distorts

behavior, which might cause the health effects to be underestimated. Air pollution may influence

behavior by affecting one’s mood, via physical or mental health channels (Chen et al., 2018; He

et al., 2019; Liu and Salvo, 2018; Salvo, 2020; Chu et al., 2021); or by causing those aware of the

harmful effects of air pollution to take action to avoid it (Barwick et al., 2021). On the one hand,

researchers can use the distortion in behavior to reveal people’s cognition about the pollution. On

the other hand, not taking these behaviors into account biases estimates related to the dirty air.

In this paper, we focus on air pollution avoidance behavior and develop a model to capture

the trade-offs between avoidance behavior and its costs. In the environment and health economics

literature, researchers mention the existence of avoidance behaviors, acknowledging that people may

strategically avoid air pollution by staying at home (Neidell, 2009; Bäck et al., 2013; Deryugina

et al., 2019; Deschenes et al., 2020; Barwick et al., 2020). The real air pollution exposure might

therefore be lower than what is in the data record, and thus empirical results may underestimate

the actual welfare loss due to air pollution. By focusing on avoidance behavior, we validate this

concern and then evaluate people’s cognition about the harmfulness of air pollution.

How people value air quality improvement, as measured by their willingness-to-pay (WTP), is an

important determinant of the optimal level of environmental regulation (Michael and Kelsey, 2015).

Nevertheless, well-identified estimates of this parameter are scarce for air quality in developing

countries. Therefore, an accurate estimation of the WTP for air quality is crucial for individuals’

well-being and for policy design.

The revealed preference approach, which explores the correlation between pollution levels and

house or filter prices, is currently a common method for estimating the price of clean air (Chay and

Greenstone, 2005; Bayer et al., 2009; Ito and Zhang, 2020). These estimates in the literature are

based on a specific market over long-term air pollution reduction, assuming that consumers could
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access complete and perfect information on future air pollution levels, and do not take into account

other avoidance strategies.

Meanwhile, a large literature has documented that congestion increases air pollution (Zhong

et al., 2017; Green et al., 2020; Lu et al., 2021), but there has been limited research investigating

the short-term reverse effect of air pollution on individual behavior. Our setting enables us to relax

some of the assumptions commonly imposed in the literature in order to estimate the WTP for

clean air. In our compulsory work trip scenario, most citizens have to choose between an indoor and

outdoor travel mode to work when the air pollution can be directly observed. Moreover, accurate

information is readily available on phone applications for those decision-makers, so we assume that

they bear air pollution levels in mind when they make their decisions.

We analyze how air pollution affects travel mode decisions in China with a large and detailed

hourly household-level data set on travel mode decisions collected in Beijing. We also collect data

on hourly air pollution, weather, wind speed, and wind directions inside and around Beijing. To

address the potential endogeneity of air pollution due to reverse causality and measurement error,

we use atmospheric chemistry and a machine learning instrumental variable (IV) method in a high

dimensional econometrics setting to select and construct strong instruments for air pollution from

a set of over 2,115 variables. Building on the previous literature on the least absolute shrinkage

and selection operator (LASSO) by Belloni et al. (2012), we show the estimator’s properties under

the weak instrument framework. Our proof not only works as the theoretical foundation for our

empirical analysis but also contributes to the crosscutting area of machine learning and economet-

rics empirically. We use economic intuition to further reduce the number of selected instruments

and deal with the potential bias of the estimator. Our final instrument is the southeast wind in

Tangshan, which blows from upwind industrial areas towards Beijing.

According to our results, the short-term WTP is 0.00223 dollars per hour to avoid 1 µg/m3

of ambient fine particles (PM2.5). The long-term WTP is over 19.53 dollars per hour to avoid 1

µg/m3 of PM2.5. We find that a longer potential exposure to air pollution prevents people from

walking and cycling. People older than 55 years old, who are more vulnerable to pollution and thus

more likely to avoid pollution, have a 28% higher WTP than the young. Likewise, richer people,
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who value their health more, are willing to avoid a unit of pollution with 36% more cost.

We also find evidence that information affects the behavioral adjustment. We find that the

WTP for air quality is significant and positive in the year 2014, after China launched its air quality

monitoring and disclosure program. In contrast, we find no significant WTP in 2010, when people

were still by and large unaware of the air pollution hazards in China. Our results suggest that

people started to reduce their exposure to the toxic air only after extensive media coverage of air

pollution.

We make three main contributions to the literature. First and foremost, we add to the growing

literature on measuring the WTP for clean air by using a novel approach based on short-term

avoidance behavior. The traditional revealed preference method, which is employed for example in

the seminal air filter paper by Ito and Zhang (2020), is based on the relationship between long-term

air pollution exposure reduction and its price. In contrast, our method, which exploits the trade-off

between expensive indoor travel modes and less expensive outdoor travel modes, focuses on the

pattern between air pollution fluctuation and immediate defensive behavioral reactions. We relax

the three common assumptions made in the previous WTP literature: representative consumer,

rational expectations, and exclusive avoidance. These assumptions are further discussed in Section

7.

Second, we extend the literature on the effects of pollution information (Barwick et al., 2020).

During 2013-2014, China launched a nationwide, real-time air quality monitoring and disclosure

program. The conventional understanding or perception of air pollution and its harmfulness can

change significantly and quickly with information and media coverage. The dissemination of in-

formation is conducive to public welfare. In particular, air pollution in China had been perceived

as harmless fog by the public in 2010, but, owing to the 2013-2014 air quality monitoring and

disclosure program, was considered toxic smog in 2014. Once they were aware of air pollution and

its harmfulness, people began to take protective measures on smoggy days (Barwick et al., 2020).

Finally, our econometric analysis contributes to the overlap between machine learning and

econometrics theoretically and empirically. Belloni et al. (2012) develop results for the use of LASSO

and post-LASSO methods to form first-stage predictions and estimate optimal instruments in linear
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instrumental variables (IV) models with many instruments when the first stage is approximately

sparse – that is, when there exists a relatively small set of important instruments whose identities

are unknown that well-approximate the conditional expectation of the endogenous variables given

the instruments (Bunea et al., 2007). We extend the high dimensional setting of Belloni et al.

(2012) by relaxing the sparse IV assumption to a weak IV assumption. From an empirical point

of view, we show that economic intuition can effectively assist the theoretical framework with the

potential biasedness.

The balance of this paper proceeds as follows. Section 2 sets up the theoretical foundation for

our empirical analysis. Section 3 provides the background of the avoidance behavior under the

travel scenario in China. Section 4 describes the data. Section 5 presents the empirical strategies

and Section 6 presents the results. We carry out our welfare analyses and discuss the relaxed

assumptions in Section 7. Finally, Section 8 concludes.

2 Background

2.1 Pollution Information and Avoidance Behavior

Air pollution has negative effects on health, productivity, and quality of life. Air pollution is a severe

environmental and health issue in China, where the daily average concentration of fine particulate

matter (PM2.5) is over 60 µg/m3, or about six times that in the World Health Organization

guideline (Barwick et al., 2020). Fine particulate matter (PM2.5)
1 is particularly deadly, with an

18% increase in lung cancer per 5 µg/m3, as it can penetrate deeper into the lungs (Raaschou-

Nielsen et al., 2013). As a result, people may take actions to avoid polluted air, including wearing

face masks, purchasing air purifiers, reducing their outdoor activities, or staying at home; as a

consequence, the real air pollution exposure is lower than that of the data record. Avoidance

behaviors also widely exist in travel decisions. Recent studies show that when an air quality alert

is issued, the amount of cycling could shrink remarkably (Tribby et al., 2013; Saberian et al., 2017;

1Fine particulate matter (PM2.5) consist of tiny droplets in the air that are two and one half microns or less
in width. Rather than having a single chemical composition, PM2.5 is a mixture of various compounds including
nitrates, sulfates, ammonium, and carbon (Kundu and Stone, 2014). In addition to natural sources, PM2.5 is created
from atmospheric conversion of power plant and auto emissions.
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Zhao et al., 2018).

People’s views towards air pollution in China were different before the year 2013, however. In

2013, China launched a nationwide, real-time air quality monitoring and disclosure program, the

first of its kind in history. Until very shortly prior to the reform, there was a lack of awareness in air

pollution exposure, and Chinese people believed that the air pollution was merely “fog” (Barwick

et al., 2020). Based on this idea, we compare the effects of daily air pollution on outdoor travel

mode shares in 2010, prior to the reform, to that in 2014, after the reform.

To investigate the existence of avoidance behavior and an informational effect, we examine the

relationship between the daily outdoor mode share and air pollution in Figure 1.2 The negative

correlation between air pollution and outdoor travel in the year 2014 is evidence for the existence

of avoidance behavior in 2014. In contrast, the positive correlation in the year 2010 suggests that

in 2010 the WTP, which depends on information, was based on the expected cost of fog rather

than the actual damage from smog. In 2010, people might not have been willing to pay anything

for clean air, despite the adverse effects of air pollution on their health. With the dissemination

of knowledge about air pollution during China’s 2013-2014 air quality monitoring and disclosure

program, the WTP in 2014 better reflects the true social welfare loss from air pollution.

2.2 Outdoor and Indoor Air Pollution

To support our identification strategy, we explore the variation between outdoor and indoor air

pollution. Many environmental scientists have developed models to discuss this difference (Chen

and Zhao, 2011).

The prevailing method to compare outdoor and indoor air pollution is the indoor/outdoor (I/O)

ratio. This ratio directly represents the relationship between indoor and outdoor air pollution

concentrations. The I/O ratios in the literature are often for developed countries where indoor

smoking and cooking are among the main pollution sources. As a consequence, the literature

tends to show that the average level of indoor air pollution is higher than that of outdoor air

pollution, which may appear to contradict common sense and our hypothesis that people avoid

2Travel data are from the Beijing Household Travel Survey (BHTS). The full data description is in Section 4.
We summarize 6 modes {Walking, Car, Subway,Bus, Taxi,Bicycle}, and we define the outdoor travel mode as
{Walking,Bicycle}.
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the air pollution by participating in indoor instead of outdoor activities. In contrast, in Beijing

as well as in many developing countries, the main sources of air pollution are outdoors, including

dirty firms and heavy traffic congestion. Moreover, smoking is forbidden on China’s indoor public

transportation, and cooking is almost impossible in transportation facilities.

The indoor/outdoor ratio is related to the infiltration factor, which represents the equilibrium

fraction of ambient particles that penetrate indoors. While there are many sophisticated engi-

neering models that estimate the infiltration factor, the intuition of these estimates stems from

the regression of indoor concentration on outdoor concentration. The infiltration factors measured

by different researchers vary in a relatively large range of 0.3 − 0.82 for PM2.5. In our empirical

analysis, we use the mean value of the infiltration factors in the literature, 0.56, as our indoor/out-

door ratio to distinguish the indoor/outdoor travel mode pollution exposure, because it is in the

ballpark of most of the literature. We assume that individuals are aware of the difference between

outdoor and indoor air pollution. The outdoor air pollution can be visually observed, and accurate

information are readily available on mobile phone applications.3

3 Theoretical Foundations

In this section, we discuss the theoretical foundations that motivate our empirical analysis.

3.1 Utility Maximization

We develop a model to capture the daily trade-offs between avoidance behavior and its costs. In

particular, we model the trade-offs between indoor and outdoor travel modes for compulsory work

trips during high polluted hours.

Formally, on any given work day, an individual chooses their travel mode m for compulsory

work trips from the choice set M , as well as health expenditures e and the consumption level x,

to maximize their utility subject to a budget constraint that captures the idea that an individual

who spends less time traveling and saves time for work can get extra salary to pay for the either

travel costs, health expenditures, or consumption. The individual’s daily work travel mode choice

3In our future work, we will conduct a short survey to investigate people’s expectations about the indoor and
outdoor air pollution difference.
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optimization problem is given by:

max
m∈M,e>0,x>0,tl,ta

f(h(pm; e), L) + x+ εm

s.t. γ0 · (x+ e+ cm) ≤ γ1W,

W = W̃ − (tl + tm − ta)
+

L = 24−W − tm

tl >= tl∗

(1)

The optimal schedule decided yesterday is

max
m∈M,e>0,x>0,t∗l ,t

∗
a

f(h(0; e), L) + x+ εm

s.t. γ0 · (x+ e+ cm) ≤ γ1W,

W = W̃ − (t∗l + tm − t∗a)
+

L = 24−W − tm

(2)

where h(·) is health or well-being as a function of pollution exposure pm and health expenditures e;

x is the consumption good; εm is the unobserved random variable of taste, which we assume follows

the type-I extreme value distribution for the simplicity of the welfare analysis and estimation; cm

and tm are the travel cost and travel time, respectively, of travel mode m; γ1 is a constant value of

working; γ0 is a constant value of money which can be normalized as 1 if we adjust the standard

error in the utility; t∗a is the optimal arriving time; t∗l is the optimal leaving time; W is the work

hours and L is the Leisure hours. Pollution exposure pm depends on the outdoor air pollution level

Po, the indoor pollution level Pi, and whether the travel mode m is indoors or outdoors, and is

given by:

pm = PiT + (Po − Pi)1[m = outdoor]tm. (3)

We assume that, conditional on health expenditures e, the health function is a decreasing and

concave function of pollution exposure pm, which captures the possibly nonlinear and convex costs

of pollution exposure: h′(·; e) ≡ ∂h(·;e)
∂pm

< 0 and h′′(·; e) ≡ ∂2h(·;e)
∂p2m

≤ 0.
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We can approximate the optimization problem with:

max
m∈M

h′(P̄ T ; ē)(Po − Pi)1[m = outdoor]tm − γ1tm − γ2cm + εm, (4)

where P̄ is the average air pollution exposure over the year, and ē is the average health expenditure

over the year. The proof of the approximation is in the appendix.

Under the assumption that indoor pollution Pi is a fixed proportion α ∈ (0, 1) of outdoor

pollution Po, i.e., Pi = αPo, the approximate optimization problem reduces to:

max
m∈M

h′(P̄ T ; ē)(1− α)Po1[m = outdoor]tm − γ1tm − γ2cm + εm, (5)

where α is the indoor/outdoor (I/O) ratio.

Equation (5) is the foundation of our empirical analysis. It reflects the trade-off between outdoor

pollution exposure and indoor travel cost.

Given the utility function u(·), the marginal cost of pollution exposure, MCp, which is the

negative of the marginal value of air pollution exposure, and which captures the monetized health

costs of pollution exposure (which can include, for example, health expenditures, costs of medical

treatment, disutility of poor health, etc.), is given by:

MCp = −
∂u
∂pm
∂u
∂cm

= −h′(·); ē
γ2

. (6)

The marginal value of time, V OT , is given by:

V OT =
∂u
∂tm
∂u
∂cm

=
γ1
γ2

. (7)

Let β be the coefficient on Po1[m = outdoor] in the utility function in Equation (5):

β = h′(·; ē)(1− α)tm. (8)

Since h′(·; ē) < 0, β < 0.
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Then the marginal cost of pollution exposure, MCp can be approximated by:

MCp = −h′(·); ē
γ2

= − β

(1− α)γ2t̄o
, (9)

where t̄o is the average outdoor trip time.

3.2 Welfare Analysis

After deriving the parameters in the utility function, there are two alternatives to measure the

welfare change due to an air pollution event. One is the pure willingness-to-pay (WTP), the other

is the Hicksian compensating variation (CV). They both measure the money value of the event but

in slightly different ways.

The pure willingness-to-pay (WTP) is more common in the economics literature on air pollution

because of its simplicity. It answers the following question: how much would an individual be willing

to pay to experience a change in an exogenous pollution variation holding all else constant? In

the literature, “holding all else constant” includes holding the choice of the individual constant.

In other words, the pure WTP assumes that the individual remains at the old optimal alternative

when the exogenous variable changes, and therefore does not account for any behavioral adjustment

(Bockstael and McConnell, 2007). The pure WTP thus implicitly assumes that the individual does

not change their travel mode when the air pollution changes. As a consequence, an individual who

drove when air pollution is severe is assumed to still drive even when the air quality improves.

Similarly, an individual who walked when the air is clean is assumed to still walk even when air

pollution increases.

Suppose we want to measure the welfare change due to a reduction in pollution level from a

dirty pollution level P 0 to an improved level P 1. The associated reduction in pollution exposure

from travel mode choice m when the pollution level reduces from a dirty pollution level P 0 to an

improved level P 1 is given by:

p1m − p0m = α(P 1
o − P 0

o )T + (1− α)(P 1
o − P 0

o )1[m = outdoor]tm. (10)
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In our model, the pure WTP per day for an air quality improvement from a dirty pollution

level P 0 to an improved level P 1, which is equal to the reduction in monetized health costs from

a reduction in pollution level from a dirty pollution level P 0 to an improved level P 1, holding all

else constant (including the travel mode choice), is given by:

WTP =
h(p1m; ē)− h(p0m; ē)

∂u
∂cm

≈ h′(·; ē)(p1m − p0m)
∂u
∂cm

=
h′(·; ē)
γ2

(p1m − p0m)

= −MCp · (p1m − p0m)

=
h′(·; ē)
γ2

(p1m − p0m)

=
β

(1− α)γ2t̄o
(p1m − p0m)

=
β

(1− α)γ2t̄o

(
α(P 1

o − P 0
o )T + (1− α)(P 1

o − P 0
o )1[m = outdoor]tm

)
=

β

(1− α)γ2t̄o

(
α(P 1

o − P 0
o )T + (1− α)(P 1

o − P 0
o )t̄o

)
=

β

(1− α)γ2t̄o
((1− α)t̄o + αT ) (P 1

o − P 0
o )

=

(
β

(1− α)γ2t̄o
(1− α)t̄o +

β

(1− α)γ2t̄o
αT

)
(P 1

o − P 0
o )

=

(
β

γ2
+

βαT

(1− α)γ2t̄o

)
(P 1

o − P 0
o ),

(11)

where t̄o is the average outdoor trip time.

The pure WTP per hour for an air quality improvement from a dirty pollution level P 0 to an

improved level P 1, which is equal to the reduction in monetized health costs from a reduction in

pollution level from a dirty pollution level P 0 to an improved level P 1, holding all else constant

(including the travel mode choice), is then given by:

WTP per hour =
1

24
·WTP =

1

24
·
((

β

γ2
+

βαT

(1− α)γ2t̄o

)
(P 1

o − P 0
o )

)
, (12)

where t̄o is the average outdoor trip time.
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The concavity of the health function h(·; ē) with respect to pollution exposure pm, which cap-

tures the possibly nonlinear and convex costs of pollution exposure, means that by the common

linear approximation h′(P 0T ; ē)(P 1−P 0)T in the literature always yields a lower bound of the true

pure willingness-to-pay.

The compensating variation (CV) is defined in money terms as the change in exogenous income

necessary to restore an individual to the utility level that she experienced before the change in

air pollution. Following the convention of Just et al. (1982, 2004) that the CV associated with a

change that is improving should itself be positive, this means that in the case of an improvement

in air quality, the CV is the maximum amount the individual would pay rather than forego the

air quality improvement (Bockstael and McConnell, 2007). When individuals face a choice among

discrete alternatives, the CV allows the individual to freely adjust her choice following the change in

the exogenous variable (McFadden, 1999), which in our case is air quality. Thus, the CV implicitly

assumes that the consumer re-optimizes and chooses the optimal travel mode when the air quality

changes. Using the expression for CV derived in Bockstael and McConnell (2007), the compensating

variation (CV) for a change from a dirty pollution level P 0 to a clean level P 1 is the difference in

the value of the daily optimization program from the optimal travel mode choice under the clean

level P 1, and the value of the daily optimization program from the optimal travel model choice

under the dirty pollution level P 0, and is given by:

CV =
1

γ2
·(
max
m∈M

h′(P 1T )(1− α)P 1
o 1[m = outdoor]tm − γ1tm − γ2cm + εm

−max
m∈M

h′(P 0T )(1− α)P 0
o 1[m = outdoor]tm − γ1tm − γ2cm + εm

) (13)

In our random utility model, since owing to the random component εm, the ultimate choice

of the individual is unknown to the researcher, so the expected value of CV must be computed.

Using the expression for expected CV derived in Bockstael and McConnell (2007), the expected

compensating variation (CV) for a change from a dirty pollution level P 0 to a clean level P 1 is
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given by:

E[CV ] =
1

γ2
·(
ln

(∑
m∈M

exp
(
h′(P 1T )(1− α)P 1

o 1[m = outdoor]tm − γ1tm − γ2cm
))

− ln

(∑
m∈M

exp
(
h′(P 0T )(1− α)P 0

o 1[m = outdoor]tm − γ1tm − γ2cm
)))

,

(14)

which simplifies to:

E[CV ] =
1

γ2
·(
ln

(∑
m∈M

exp
(
βP 1

o 1[m = outdoor]− γ1tm − γ2cm
))

− ln

(∑
m∈M

exp
(
βP 0

o 1[m = outdoor]− γ1tm − γ2cm
)))

.

(15)

The expected compensating variation (CV) per hour for a change from a dirty pollution level

P 0 to a clean level P 1 is then given by:

E[CV ] per hour =
1

24
· E[CV ]

=
1

24
· 1

γ2
·(

ln

(∑
m∈M

exp
(
βP 1

o 1[m = outdoor]− γ1tm − γ2cm
))

− ln

(∑
m∈M

exp
(
βP 0

o 1[m = outdoor]− γ1tm − γ2cm
)))

.

(16)

A central precept of Hicksian welfare theory is the equivalence between the WTP and the CV

(Zhao and Kling, 2004). It is imprecise to argue that WTP and CV are equivalent, however. If there

is no avoidance behavior, then the CV is identical to the pure WTP. In the presence of possible

avoidance behavior, however, the CV is no longer equivalent to the pure WTP, since it allows the

individual to re-optimize and adjust her choice following the change in air quality, and therefore
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accounts for any avoidance behavior.4

If we define avoidance behavior as any change in travel mode choice when the individual re-

optimizes and adjusts her choice following the change in air quality, then the cost of the avoidance

behavior is the cost (in terms of monetized travel time and travel cost) of the change in travel mode

choice as a result of the change in air quality. This avoidance cost can be positive, negative, or zero.

The avoidance cost is positive if the change in air quality results in a change to a travel mode that

has a higher cost in terms of the sum of monetized travel time and travel cost. The avoidance cost

is negative if the change in air quality results in a change to a travel mode that has a lower cost in

terms of the sum of monetized travel time and travel cost. In our model, the expected avoidance

cost E[CA] of an air quality improvement from a dirty pollution level P 0 to an improved level P 1

4As shown by Zhao and Kling (2004), the Hicksian equivalence between WTP and CV also breaks down in a
dynamic setting.
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is given by:

E[CA] =
1

γ2
·((
ln

(∑
m∈M

exp
(
βP 1

o 1[m = outdoor]− γ1tm − γ2cm
))

− E[βP 1
o 1[m = outdoor]|P 1

o ]

)

−

(
ln

(∑
m∈M

exp
(
βP 0

o 1[m = outdoor]− γ1tm − γ2cm
))

− E[βP 0
o 1[m = outdoor]|P 0

o ]

))

=
1

γ2
·((
ln

(∑
m∈M

exp
(
βP 1

o 1[m = outdoor]− γ1tm − γ2cm
))

− βP 1
oE[1[m = outdoor]|P 1

o ]

)

−

(
ln

(∑
m∈M

exp
(
βP 0

o 1[m = outdoor]− γ1tm − γ2cm
))

− βP 0
oE[1[m = outdoor]|P 0

o ]

))

=
1

γ2
·(
ln

(∑
m∈M

exp
(
βP 1

o 1[m = outdoor]− γ1tm − γ2cm
))

− ln

(∑
m∈M

exp
(
βP 0

o 1[m = outdoor]− γ1tm − γ2cm
))

−β
(
P 1
o Pr(m = outdoor|P 1

o )− P 0
o Pr(m = outdoor|P 0

o )
))

=E[CV ]− 1

γ2
· β
(
P 1
o Pr(m = outdoor|P 1

o )− P 0
o Pr(m = outdoor|P 0

o )
)

=E[CV ]− β

γ2
·
(
P 1
o Pr(m = outdoor|P 1

o )− P 0
o Pr(m = outdoor|P 0

o )
)
,

(17)

where E[1[m = outdoor]|Po] = Pr(m = outdoor|Po) is the outdoor mode choice probability when

outdoor pollution level is Po, and is given by:

Pr(m = outdoor|Po) =
exp (βPo1[m = outdoor]− γ1tm − γ2cm)∑

m̃∈M exp (βPo1[m̃ = outdoor]− γ1tm̃ − γ2cm̃)
(18)

Thus, E[CV ] can be written as the following function of expected avoidance cost E[CA] and
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WTP :

E[CV ] =E[CA] +
β

γ2
·
(
P 1
o Pr(m = outdoor|P 1

o )− P 0
o Pr(m = outdoor|P 0

o )
)

=E[CA] +WTP · (1− α)t̄o
((1− α)t̄o + αT ) (P 1

o − P 0
o )

·
(
P 1
o Pr(m = outdoor|P 1

o )− P 0
o Pr(m = outdoor|P 0

o )
)

=E[CA] +WTP · (1− α)t̄o
((1− α)t̄o + αT )

· P
1
o Pr(m = outdoor|P 1

o )− P 0
o Pr(m = outdoor|P 0

o )

(P 1
o − P 0

o )

=E[CA] +WTP · (1− α)t̄o
((1− α)t̄o + αT )︸ ︷︷ ︸

∈[0,1]

·

P 1
o Pr(m = outdoor|P 1

o )− P 0
o Pr(m = outdoor|P 0

o )︸ ︷︷ ︸
≤0

P 1
o − P 0

o︸ ︷︷ ︸
≤0︸ ︷︷ ︸

∈[0,1]
(19)

where we assume that the likelihood of an outdoor mode choice increases when the air quality

improves from a dirty pollution level P 0 to a cleaner level P 1 (i.e., Pr(m=outdoor|P 0
o )

Pr(m=outdoor|P 1
o )

≤ 1) so that:

P 1
o Pr(m = outdoor|P 1

o )− P 0
o Pr(m = outdoor|P 0

o )

P 1
o − P 0

o

=
Pr(m = outdoor|P 1

o )
(
P 1
o − P 0

o
Pr(m=outdoor|P 0

o )
Pr(m=outdoor|P 1

o )

)
P 1
o − P 0

o

≤
Pr(m = outdoor|P 1

o )
(
P 1
o − P 0

o

)
P 1
o − P 0

o

=Pr(m = outdoor|P 1
o ) ∈ [0, 1].

(20)

The difference between E[CV ] and WTP is given by:

E[CV ]−WTP =E[CA] +WTP ·
(

(1− α)t̄o
((1− α)t̄o + αT )

· P
1
o Pr(m = outdoor|P 1

o )− P 0
o Pr(m = outdoor|P 0

o )

(P 1
o − P 0

o )
− 1

)

=E[CA] +WTP ·


(1− α)t̄o

((1− α)t̄o + αT )︸ ︷︷ ︸
∈[0,1]

·

P 1
o Pr(m = outdoor|P 1

o )− P 0
o Pr(m = outdoor|P 0

o )︸ ︷︷ ︸
≤0

P 1
o − P 0

o︸ ︷︷ ︸
≤0︸ ︷︷ ︸

∈[0,1]

−1


︸ ︷︷ ︸

≤0

(21)

Thus, E[CV ] can be less than, equal to, or greater than WTP . Whether E[CV ] is less than,

equal to, or greater than WTP is therefore an empirical question.
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3.3 Econometrics

Our empirical analysis uses a high dimensional instrumental variable model. While Belloni et al.

(2012) propose an estimator to identify the instruments under a high dimensional setting, their

underlying data generation process (DGP) is different from ours. Fortunately, we can still use the

least absolute shrinkage and selection operator (LASSO) to identify our DGP.

In particular, Belloni et al. (2012) develop results for the use of LASSO and post-LASSO

methods to form first-stage predictions and estimate optimal instruments in linear instrumental

variables (IV) models with many instruments when the first stage is approximately sparse – that

is, when there exists a relatively small set of important instruments whose identities are unknown

that well-approximate the conditional expectation of the endogenous variables given the instruments

(Bunea et al., 2007). We extend the high dimensional setting of Belloni et al. (2012) by relaxing

the sparse IV assumption to a weak IV assumption. From an empirical point of view, we show that

the economic intuition can effectively assist the theoretical framework to obtain higher estimation

efficiency.

The motivation for our DGP is from the weak IV scenario by Bound et al. (1995):

xi = β1zi,1 + · · ·+ βszi,s +
1

√
np

γ1ti,1 + · · ·+ 1
√
np

γpti,p + εi, i = 1, . . . , n, (22)

where zi and ti are two vectors of potential instruments. εi is the error term. s, p, and n are not

fixed. s < n and p > n in this case. Following the usual definition, only zi is the set of strong

instruments and we cannot get consistent results if we include all IVs zi and ti in a 2SLS regression.

Moreover, a classical OLS regression for the equation (22) is not well defined since the number of

variables on the right hand side is larger than the number of observations. Therefore, we require

novel estimation procedure to deal with the endogenous issue in our setup.

Denote our model as θ = (β1, . . . , βs,
1√
npγ1, . . . ,

1√
npγp)

′, x = (x1, . . . , xn)
′, ε = (ε1, . . . , εn)

′.

x = Aθ + ϵ, where Aij
iid∼ N(0, 1) and 1

n ||ε||1 = 1
n

∑n
i=1 |εi| < v.5 The following theorem validates

the LASSO when
√
p log(s+ p) << n.

5|| · ||1 represents the l1 norm: ||ε||1 =
∑n

i=1 |εi|.
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Theorem Let θ̂ solve min ||θ||1 s.t. 1
n ||Aθ − x||22 ≤ v2.6

Then, E||θ̂ − θ||2 ≤
√
8π

[(√
s||β||2 +

√
p ¯|γ|√
n

) √
log(s+p)

n + v

]
.

See the proof in the appendix.

Our model is under a common weak IV scenario. The literature assumes the IVs to be sparse,

meaning that most of the potential IVs are independent from the endogenous variable. However,

our setting relaxes the independence to weak correlations. The price of the relaxation is that

the required number of observations should satisfy
√
p log(s+ p) << n while under original spar-

sity s log(s + p) << n. In other words, when p > s2 log(s + p), researchers should obtain more

observations under a weak IV case than the literature suggests.

4 Data and Reduced-form Evidence

Our data set includes three parts: individual travel mode choice, hourly air pollution, and instru-

mental variables. The travel data are from two rounds of the Beijing Household Travel Survey in

2010 and 2014. The air pollution data are from the U.S Embassy in Beijing. The potential instru-

ments are weather conditions in China from the National Oceanic and Atmospheric Administration

(NOAA).

4.1 Beijing Household Travel Survey

Our travel mode data set is from the Beijing Household Travel Survey (BHTS), a confidential

data set on travel surveys conducted in 2010 and 2014 by the Beijing Municipal Commission of

Transport (BTRC). This detailed cross-sectional data set with a million observations includes the

characteristics of individual household members, including their occupations, ages, and education;

and the characteristics of each trip taken during a designated 24-hour period, including which of

six travel modes, the distance, the time, and the districts.

BTRC randomly selected 642 out of 1,191 Traffic Analysis Zones (TAZs) in year 2010, and

667 out of 2,050 TAZs in year 2014, from the entire city. TAZs are geocoded areas defined by

6|| · ||1 represents the l1 norm: ||θ||1 =
∑s+p

j=1 |θj |. || · ||2 represents the l2 norm (or Euclidean norm): ||x||2 =(∑n
i=1 x

2
i

) 1
2 . The minimization problem is a special case of LASSO. The equivalence comes from the duality of the

optimization problem.
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the BTRC for traffic analysis. Each of the administrative districts in Beijing has 16 to 238 TAZs,

based on the size of the area and the population of the district. TAZs are smaller in districts with

higher population densities. The average TAZ is about 1.5 square kilometers. In the inner eight

districts, on which the sampling focuses, TAZs range from 0.21 to 16 square kilometers. Each TAZ

are randomly selected for in-person interviews to collect data on trips taken during a designated

24-hour period. The survey covered 116,142 individuals from 46,900 households in year 2010 and

101,827 individuals from 40,004 household in year 2014. We have 253,648 trips for year 2010 and

205,148 trips for year 2014 in total. We utilize the work-commute travel since for these compulsory

trips, staying at home is not an option. When people stay at home, we do not acquire their travel

information and the observed preference cannot reflect the benefit of exposure to the air pollution

from reducing the cost.

Table 1 and Table 2 provide summary statistics for the travel and personal information for the

two years of data. The tables report respondent and trip characteristics of all work commuting

trips in these two years. In Table 1, the individual income increases from from 73,141.48 RMB in

year 2010 to 101,939.57 RMB in year 2014, a 40% increase. China has the world’s fastest-growing

major economy, with growth rates averaging 10%. The difference in income between year 2010

and 2014 satisfies the growth rate number, implying the random selection of the household survey.

The increase in the number of cars owned by each individual also reflects the wealth increment in

Beijing. The gender, age, and schooling are quite similar in these two years.

Table 2 presents the trip information. First, the travel time is lower in year 2014. The expansion

of the transportation system can explain these numbers. Beijing’s rapid subway expansion from

2008 to 2014 led to an increase in aggregate welfare with modest congestion reduction. Additionally,

more people used a car in 2014, compared to other modes. No number contradicts our intuition

given that Beijing has become richer over the two years. In Figure 2, we check the variation of the

mode shares for the two years. There are 13 travel modes in the data and we aggregate them into

6 modes: {Walking, Car, Subway,Bus, Taxi,Bicycle}.
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4.2 Air Pollution and Weather Controls

For air pollution, we use hourly data on PM2.5 from the U.S. Embassy in Beijing. There are 35

observation stations from Chinese government for year 2014, but for year 2010 we only have one

U.S. Embassy station (indicated in green in Figure 3). To check the different travel patterns for

year 2010 and year 2014, with respect to air pollution variation under the same scale, we use the

U.S. Embassy station data. The U.S. Embassy is located near the East Third Ring Road in Beijing.

Figure 4 presents a data correlation diagram for the 8 monitoring stations near or inside of the

third ring roads in Beijing. The Pearson correlation coefficients for the PM2.5 data detected by

these stations are above 0.94 and significant at the level of 0.01. Therefore, we believe that the

data from the U.S. Embassy monitoring station is representative of the air conditions in Beijing.

Our data for our weather controls, including precipitation, temperature, wind speed and wind

direction in Beijing, are from the National Oceanic and Atmospheric Administration (NOAA). We

include the weather conditions to reduce the potential bias in the estimation. In Figure 1, we

check the correlation between the air pollution and the outdoor travel share, to provide descriptive

evidence for our further analysis. The negative correlation between air pollution and outdoor travel

in the year 2014 is evidence for the existence of avoidance behavior in 2014. In contrast, the positive

correlation in the year 2010 suggests that in 2010 the WTP, which depends on information, was

based on the expected cost of fog rather than the actual damage from smog. In 2010, people might

not have been willing to pay anything for clean air, despite the adverse effects of air pollution on

their health. This suggests that awareness and behavior changed after the media coverage about

air pollution. To investigate the potential reason of the phenomenon in year 2010, in Figure 5, we

divide the temperature over high and low using 20 Celsius degree as a threshold. In 2010, outdoor

travel declines with air pollution when temperatures are high, but increases with air pollution when

temperatures are low.

4.3 Instruments

Air pollution is endogenous to travel decisions for two main reasons. First, air pollution is

endogenous because of omitted variable bias. For example, an unobserved variable subsumed by
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the error term is the number of days a person is staying in the home, which is influenced by air

pollution. The second reason that air pollution is endogeneous is due to reverse causality. For

example, travel modes affect traffic congestion, which in turn affects air pollution levels. We can

partially resolve these issues of unobserved variables and simultaneity by including day-of-the-week

and hour-of-the-day fixed effects. A third concern is measurement error, which biases the estimation

downward.

We therefore instrument for air pollution to address its endogeneity. The instruments should

be uncorrelated with the errors, including unobserved economic activities. Instruments should

additionally be factors that contribute to (instead of merely be correlated with) PM2.5 in Beijing.

A common source of instruments are wind speeds and wind directions, for winds that blow from

locations other than Beijing with high pollution. We control for wind directions and wind speeds

in Beijing,7 since wind in Beijing may directly affect travel decisions in Beijing, but we assume

that wind at and from other locations would not affect travel mode decisions except through their

effect on air pollution. Figure 6 shows the pollution heat and wind direction in China for a random

day in year 2021. The wind directions connect the pollution areas and reflect that air pollution

transmission depends highly on the air pollution.

Researchers also commonly use factory production near Beijing as instruments for the air pol-

lution in Beijing. As economic activity in Beijing and factory production near Beijing are likely

correlated, this potential set of instruments does not satisfy the exclusion restriction. Therefore,

factory production near Beijing is an invalid instrument in our case. Our set of potential instru-

ments therefore are winds blowing from locations other than Beijing that may have high pollution

that might blow into Beijing.

NOAA has 235 monitoring stations in China. We divide the wind directions into eight 45-degree

intervals: North, Northeast, East, Southeast, South, Southwest, West, and Northwest. Since we

only have around 1,000 observations of hourly pollution in year 2010 or year 2014 but 2,035 possible

candidate instruments, we run the risk of overfitting in the first stage. It is also inefficient to select

the polluted city manually. Hence, we adopt machine learning and LASSO regressions to select our

7The amount of transported pollution is large (Zhang et al., 2017).
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instruments for air pollution.8

5 Empirical Strategies

Equation (5) elicits the underlying utility function of a travel mode choice,

uimt = β11[m = indoor]Xt+β21[m = outdoor]Xt

+ γ1timeimt − γ2costimt + zit
′ηm + αm + ξmt + εitm,

where i represents the individual, t is the hour and m denotes the travel mode. We also

include an alternative-time preference parameter, ξtm, a constant specific to alternative m at time

t. It shows economic activities, which reflects the endogenous error term. Weather conditions and

individual characteristics are in the vector zi. Our Xi is the PM2.5, timeimt is the commute time

of mode m, and costimt is the out-of-pocket cost of mode m. These three variables form the core

of our trade-off analysis. Finally, ε satisfies the type-I extreme value distribution.

The utility function (23) is quasilinear as equation (5). However, we relax the assumption that

people know the air pollution difference between indoor and outdoor activities, if we interpret β1

and β2 as a combination of the cognition about indoor or outdoor exposure and the marginal effect

of the air pollution. Alternatively, the model measures the same preference if the cognition is

the same as the true exposure. Hence, our utility model for estimation is more flexible than the

theoretical foundation.

We also make proper assumptions to increase the efficiency of the estimation. In each trip,

though the time of exposure from cycling is lower then walking for the same distance, we assume

the disutility of air pollution for these two alternatives are the same since exercise accelerates

breathing. In each trip, the disutility of air pollution for the bus, car, taxi are also identical. While

some of the alternatives might be faster than the others, when respondents arrive the working

location, they stay in the building for the extra time, and experience the same indoor air pollution

exposure as the slower counterfactual world.

8Belloni et al. (2011) prove the efficiency of the LASSO method for a sparse Gaussian IV model. In Section 3 we
show the LASSO is still consistent under the weak IV scenario.
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We rely on equation (23) to do reduced form regression as well as logit regression. To deal with

their endogeneity,9 we use machine learning and LASSO regressions to select strong instruments

for air pollution.

5.1 Reduced-Form Regression

For the empirical analysis, we rely on a mean transformation of the cost and time over individuals

on hours, to utilize the linear model’s efficiency and convenience. The share regression therefore is

easily available,

lnSmt − lnS1t =β1[m = outdoor]Xt+

γ1(timemt − time1t) + γ2(costmt − cost1t) + zt
′(ηm − η1) + αm + ξmt

where β = β2 − β1.
10 We can use a classical IV approach to deal with this endogeneity from

ξtm, satisfying the inclusion restriction and exclusion restriction. The IV should be uncorrelated

with ξmt but correlated with the air pollution. Meanwhile, unlike the discrete choice model in a

consumption market, the average cost of the the travel mode is invariant over different markets

t. Beijing used a one-price mechanism in year 2010 and 2014 for the public transportation. The

parking fees of vehicles and the costs of taxi are also equivalent at different hours on average.

Moreover, walking and bicycle are zero cost. Overall, for all modes, the price is unlikely to change

over time. This is problematic since we cannot include the mode specific fixed effect αm due to

collinearity. To overcome the difficulty, in the reduced form regression, we use the logit model and

the control function method.

5.2 Logit Model and Control Function

The control function method extends a logit regression (Heckman and Robb Jr, 1985; Petrin and

Train, 2010), and discusses the endogenous errors at the individual level. We assume there is only

9In Section 4, we discussed three potential endogenous problems. Economic activities can represent all.
10The proof is in the appendix.
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one market where people make decisions on the travel mode,

uim = β1[m = outdoor]Xi + γ1timeim + γ2costim + zi
′ηm + αm + εim

Xi = γ0 + γ1f(weather condition far away) + µi

µim = 1[m = outdoor]µi

(23)

The endogenous error is εim and it is correlated with Xim through µim. To handle the potential

bias, we then decompose the εim into its mean conditional on µim and deviations around this mean:

εim = E(εim|µim) + ε̃im. The residual ε̃im is therefore uncorrelated with the µim.

We regress the air pollution on the weather conditions far away to get µim. Then decompose

the utility function as,

uim = β1[m = outdoor]Xi + γ1timeim + γ2costim + zi
′ηm + αm + λµim + ε̃im (24)

Due to the exogeneity of the ε̃im, we can rely on a logit model to get the result.

6 Empirical Results

6.1 Instrumental Variable Selection

We run two LASSO regressions for the first stage to select among 2,035 wind conditions as strong

instruments using 2,069 observations,11 controlling for 18 hourly, 2 monthly, and 7 weekday fixed ef-

fects, with other weather conditions in Beijing. The algorithms pick out more than 200 instruments

in total for two separate LASSO regressions for the year 2010 and 2014.

The number of selected instruments is too large that it is impossible to filter out those that

contradict facts manually. Therefore, we check the overlap locations – Tangshan, Shenyang and

Zhangjiakou – in year 2010 and year 2014, by running OLS as a first-stage regression of hourly

air pollution on their wind directions with the same set of controls. The coefficients and intuition

support the southwest wind in Tangshan as the optimal instrument for our empirical analysis. In

11The survey is in October, September, November year 2010 or 2014. We drop hours in the midnight. The pollution
at theses hours are not contributors to the estimation.
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Table 3, the signs of the coefficients are similar for three potential cities in two different years.

Therefore, there is no marked change in air pollution transition structure from the year 2010 to the

year 2014.

In Figure 7, the geographic locations with the economic intuition of three cities complement the

instrument selection. To begin with, the southwest wind in Shenyang, southwest wind in Zhangji-

akou, southeast wind in Tangshan, Northeast wind in Tangshan are four potential instruments

because they are strong and share similar coefficients in different years. The southwest wind in

Shenyang has -75.97 and -63.67 respectively for the years 2010 and 2014. The negative signs are

reasonable according to the map considering Shenyang is a highly polluted city. However, a north-

east wind pointing the city to Beijing should be a contributor to the the air pollution in Beijing.

The -33.00 and -20.89 reveal that the wind directions in Shenyang are less convincing as instru-

ments. Secondly, the southwest wind in Zhangjiakou also encounter the same obstacle because its

northwest wind has a -20.61 coefficient in 2014. Finally, Tangshan satisfies the matching of the

predicted signs from relative position and the estimated coefficients of the wind directions. Though

the coefficient of northwest wind in Tangshan change from 2010 to 2014, the results are still rea-

sonable since the northwest wind could either be a contributor or a eliminator to the air pollution

in Beijing, depending on whether a relative north or a west wind dominates in the period. Hence,

we use the southeast wind in Tangshan as the instrument, with a first-stage F-statistic of 54.91.

6.2 Reduced-From Estimation Results

Baseline Analysis The reduced-form estimation results uncover the distinguished travel patterns

for the years 2010 and 2014 when the air is bad at different hours. We use the one way commuting

trip and investigate the compulsory trade-off of the indoor and outdoor travel mode when the

air is bad. In Table 4 from column 1 to 2, as Figure 1, without the instrument and alternative

specific fixed effect, 100 µg/m3 PM2.5 exposure increases the the utility by 0.0343 in year 2010

but decreases 0.0608 in year 2014. In column 3 and 4, with the fixed effect,12 the signs sustain

12The average cost of the the travel mode is invariant over different markets t. Beijing used an one price mechanism
in year 2010 and 2014 for the public transportation. The parking fees of vehicles and the costs of taxi were also
equivalent at different hours on average. Moreover, walking and bicycle are zero cost. Overall, for all modes, the
price is unlikely to change over time.
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as 0.0233 and -0.0948 for year 2010 and year 2014 respectively. Temperature control derives the

insignificance for coefficients in column 1 and 3.

We use the southeast wind in Tangshan as the instrument with a F statistics 54.91. Then,

-0.382 for 100 units of air pollution exposure, significant at 1% level, in year 2014 and -0.1811 for

100 units of air pollution exposure, significant at 10% level emphasize the pollution reaction after

the media coverage to the pollution in year 2013. The numbers for year 2010 and year 2014 in

column 7 and 8 are not significant but keep the directions of the coefficients.

With the negative coefficients of the cost and the negative coefficients of the time for all columns,

the value of time (VOT) delivers a convincing increase over the years. We use columns 7 and 8

to calculate the parameters by distuility of time
disutility of cost . With a wealthier society, people value time more,

from 4.78 RMB per hour to 9.05 RMB per hour. On averge, over yearly increase rate 20% for the

parameter in Beijing is a large amount.

Preference Heterogeneity Intuitively, different age groups and income groups have heteroge-

neous preference to air pollution. We run the same set of regression but for different subgroups.

As the pattern in Table 4, in Table 5 and Table 6, 2014 has a higher disutility for the same level of

air pollution exposure than year 2010. Additionally, instruments promote the significance. These

results show the robustness of the estimation.

Table 5 indicates responses to air pollution for young and old, with 50 as the threshold. With

instrument validating the analysis, when the cost coefficient is standarized, the disutility of 100

µg/m3 air pollution exposure for the old 6.13 is higher than the disutility of 6.08 for the young,

implying respondents vulnerable to air pollution are reluctant to expose to the bad air. As for the

VOT, 9.18 RMB per hour from the young is lower than 10.32 RMB per hour from the old for year

2014, suggesting the old value time more than the young.

Table 6 describes avoidance behavior adjustments over time for different income groups, with

annual income 100,000 RMB as the cutoff. Column 7 and 8 are the cores of our analysis as before.

The disutiliy of per 100 units of air pollution exposure is -0.4787 for the high income group, which

is a 36% higher magnitude than the poor group. Moreover, the rich group has the negative utility

for the air pollution exposure even in year 2010, arguing that the rich people are among the first
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set of people obtaining the harmful information about the air pollution. The VOT again works as

a robust test for the empirical procedure. The value of time is higher for the high income group

compared to the values from the low income group.

6.3 Logit Regression and Control Function

To avoid the potential problem of the share model,13 we also use a logit regression and control

function method parallel to ordinary least squares (OLS) and the two-stage least squares (2SLS).

In Table 7, the coefficients match the results in the share regression section’s estimates. The air

pollution exposure per 100µg/m3 has an insignificant coefficient in year 2010 while in year 2014

the air pollution exposure per 100µg/m3 has -0.0454 coefficient significant at 1% level. The value

of time is 6.70 RMB per hour in year 2010 and 12.47 RMB per hour.

After dividing the sample into different bins for ages or incomes, the heterogeneity disutility

of one unit exposure to PM2.5 results for year 2014 with IV are in Figures 8a and 8b. The cost

coefficients are normalized to negative 1. Figure 8a argues that extreme young, acquiring pollution

information easily, and extreme old people, vulnerable to the pollution, are more likely to avoid the

pollution. While the monetary values for air pollution in different income groups do not reflect a

intuitive trend, the large standard errors cannot reject the null hypothesis that high income people

have a higher disutility for the same amount of PM2.5.
14

Though we calculate the disutility of an average trip time air pollution exposure and then the

average WTP for the clean air, a longer time exposure to the air pollution will be more harmful

than a shorter one. We divide the exposure time for trips into different time bins and show in

Figure 8c the disutility increases as the exposure time increases linearly.

13There is collinearity between hourly average cost and alternative specific fixed effect.
14Currently, we use the reduced-form regression to discuss the income WTP difference due to the significance, while

logit regressions are more reasonable.
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7 Discussion

7.1 Willingness-to-Pay

To interpret the coefficients in Section 6 for welfare analysis, we base our willingness to pay for

the clean air on Table 7 column 4, because people started to realize the harmfulness of smog after

2013. Equation (5) motivates our empirical framework (23), where h′(P̄ T ) = β
(1−I/O)γ2 t̄

and t̄ is the

average trip time. The disutilty of an hour exposure to the air pollution is therefore 0.014 RMB per

µg/m3 PM2.5, which equals to 0.00223 dollars, according to the exchange rate in 2014, when we set

the infiltration factor as 0.56. Since we have 8,760 hours in a year, the lower bound15 of long-term

individual WTP is therefore around 19.53 dollars per year to remove 1 µg/m3 PM2.5. The number

is similar to previous literature, but still have a different interpretation, since the rationale for our

optimization framework on air pollution exposure is distinctive.

7.2 Air Pollution Exposure

Representative Consumer The main advantage of our method is that our estimates represent

all citizens. In our analysis, the sample is random over the whole city. Moreover, almost every

people in the city make a trade-off between the pollution and the travel cost.

By contrast, people who purchase air cleaning equipment or can afford to live at better locations

are those who pay attention to their health, so their WTP for clean air is likely higher than that of

the general population. Furthermore, WTP estimates based on air cleaning equipment purchasing

behavior or residential housing location choice measure the WTP at equilibrium prices in the

equipment or housing market, thus we have no information about the WTP of other people whose

WTP is lower than the equilibrium price on the demand curve. Therefore, our estimation is more

unbiased.

Rational Expectations When estimating the long term WTP for the clean air, researchers

assume people can realize the total air pollution reduction induced by their behaviors. However,

it is hard for people to predict the air pollution in the future and capture sufficient information

15A first order approximation might be a lower bound for the air pollution if the well being function h is convex.
See Section 3 for the details.
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about the clean neighborhood. Additionally, when purchasing a house, people may care more about

intangible assets, like the neighborhood education, or other facilities that are hard to measure and

correlated with the air pollution exposure. Therefore, the estimates might be biased to a greater

magnitude and highly depends on the data set collection.

In contrast, in our paper, we estimate the short term effect: people can directly observe the air

pollution through through the transparency or smell of the air. After waking up, they can look

outside and decide the travel mode they will use. It is similar to people notice it is raining outside

so they take an umbrella. Moreover, people can also check the air quality index through their

phones easily after 2013.

Exclusive Avoidance Even if people perceived the air pollution change correctly, the change

might not be the same as the data record. All revealed preference methods rely on some exclusive

avoidance behavior. In the previous literature, indoor behaviors are the only source to bring down

air pollution. When purchasing a house or buying a filter, people are assumed to stay in their home

as long as possible. This overestimates the reduction of the purchasing behavior.

We also make a similar assumption in our estimation. Though people might start to wear masks

in 2014 to protect themselves, which might lead to lower air pollution exposure than our estimation

for the outdoor activities, the masks are not fine enough to protect people from PM2.5 in 2014.

There are many media reports in 2014 covered the uselessness of the masks and mentioned only

some special version could protect people. The production of those special masks was very low.

Additionally, similar to the status quo during the Covid-19 pandemic, it takes time for people to

get used to the masks. In 2014, people were reluctant to wear a mask, because either most masks

in the market were not protective, or they were uncomfortable to wear.

8 Conclusion

In this paper, we develop a model to estimate the short-term WTP to be 0.00223 dollars per hour to

avoid 1 µg/m3 PM2.5, which translates to a lower bound of the long-term WTP at 19.53 dollars per

year to avoid 1 µg/m3 PM2.5. Our estimation relaxes a few assumptions in the previous literature

and provides a new direction to quantify the WTP. In our compulsory work trip scenario, most
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citizens have to choose between an indoor and outdoor mode to work, even if the air pollution

can be directly observed. Accurate information is readily available on phone applications for those

decision-makers, so we can assume that they reckon with air pollution levels when making decisions.

The WTP is higher in the elder and richer groups, and is higher for longer travels. A longer

potential exposure to the air pollution prevents people from walking and cycling. People older than

55 years old are vulnerable to pollution and thus more likely to avoid pollution. Richer people,

who value their health more, are more likely to avoid the pollution as well.

We also show the behavioral change hinges on the knowledge about the dirty air. The avoidance

behavior not only depends on whether people can observe the air pollution or not, but is also

determined by the knowledge toward the harmfulness of it. The air pollution may have long-lasting

health effect but people would not use any strategy to avoid it before building the connection

between the pollution and their sickness. Therefore, in 2010, before the realization of the harmful

air pollution, people did not show any avoidance evidence.

Finally, our empirical strategy supplements the growing literature on machine learning in eco-

nomics. Our proof validates that a LASSO regression is still useful under the weak IV scenario,

though the model require more numbers of observations. As an application of choosing wind direc-

tions for the endogenous air pollution, we select the southwest wind in Tangshan, the wind direction

pointing a high polluted city to Beijing. The empirical procedure after the algorithm exhibits the

importance of economic intuition besides a tedious theoretical framework for a high-dimensional

estimation.

Since we focus on the compulsory work trips, our estimates of the pure willingness-to-pay

(WTP), expected compensating variation (CV), and expected avoidance cost are daily measures

based on commuting. As discussed in discussed in Section 7, focusing on compulsory work trips

enables us relax the three common assumptions made in the previous WTP literature: representa-

tive consumer, rational expectations, and exclusive avoidance. The presence of avoidance behavior

in compulsory work trips suggests that avoidance behavior in non-compulsory activities may take

place and possibly be at least as large.
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Figure 1: Daily Average Air Pollution and Outdoor Mode Shares

Note: Travel data are from the Beijing Household Travel Survey (BHTS) and air pollution average
is from U.S. Embassy in Beijing. Outdoor travel modes are {Walking,Bicycle}. The full data
description is in Section 4. The negative correlation between air pollution and outdoor travel in
the year 2014 is evidence for the existence of avoidance behavior in 2014. In contrast, the positive
correlation in the year 2010 suggests that in 2010 the WTP, which depends on information, was
based on the expected cost of fog rather than the actual damage from smog. In 2010, people might
not have been willing to pay anything for clean air, despite the adverse effects of air pollution on
their health. With the dissemination of knowledge about air pollution during China’s 2013-2014 air
quality monitoring and disclosure program, the WTP in 2014 better reflects the true social welfare
loss from air pollution.
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Figure 2: Travel Mode Share

Note: Figure 2 presents the 6 modes shares of work commuting trips in Beijing. Beijing’s rapid
subway expansion from 2008 to 2014 led to an increase in aggregate welfare with modest congestion
reduction. The increase in the number of cars owned by each individual also reflects the wealth
increment in Beijing.
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Figure 3: U.S. Embassy Station and Other Air Pollution Monitors

Note: The green dot represents the U.S. Embassy in Beijing. There are 35 observation stations
from Chinese government as blue dots for year 2014, but for year 2010 we only have one U.S.
Embassy station. To check the different travel patterns for year 2010 and year 2014, with respect
to air pollution variation under the same scale, we use the U.S. Embassy station data.

36



Figure 4: Air Pollution Correlations from Different Monitors

Note: The U.S. Embassy is located near the East Third Ring Road in Beijing. Figure 4 presents
a data correlation diagram for the 8 monitoring stations near or inside of the third ring roads in
Beijing. The Pearson correlation coefficients of the PM 2.5 data detected by these stations are
above 0.94 and significant at the level of 0.01. Therefore, we believe that the data from the U.S.
Embassy monitoring station is representative of the air conditions in Beijing.
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Figure 5: Revisiting Figure 1 under Different Temperature Levels in Year 2010

Note: In Figure 1, we examine the correlation between air pollution and the outdoor travel share.
The positive correlation for the year 2010 suggests that in 2010, people might not have been willing
to pay anything for clean air, despite the adverse effects of air pollution on their health. In Figure
5, we divide the temperature over high and low using 20 Celsius degree as a threshold to investigate
the phenomenon in year 2010. In 2010, outdoor travel declines with air pollution when temperatures
are high, but increases with air pollution when temperatures are low.
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Figure 6: Wind and Air Pollution in China

Note: Figure 6 shows the pollution heat and wind direction in China for a random day in year
2021. It reflects the air pollution transmission highly depends on the air pollution. The source is
https://www.iqair.cn/cn-en/air-quality-map.

39



Figure 7: Selected Wind Locations

Note: The number of selected instruments is too large to attain optimal. Therefore, we check the
overlap locations selected by LASSO – Tangshan, Shenyang and Zhangjiakou – in year 2010 and
year 2014.
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Figure 8: Logit Regressions for Different Age, Income, and Time Groups in Year 2014

(a) Different Age Groups

(b) Different Income Groups

(c) Different Time Groups

Note: We divide the sample into different bins for ages [20, 30], [30, 40], [40, 50], and [50,∼], for
income [0, 50,000], [50,000, 100,000], [100,000, 150,000], and [150,000,∼] RMB, and for potential
walking time [10, 25], [25, 40], [40, 60], and [60,∼] minutes to run the logit regression. The
figure reflects the heterogeneity disutility of one unit exposure to PM2.5 for year 2014 with IV,
standardizing the negative impact of cost.
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Table 1: Individual Charateristics

2010 2014
mean sd mean sd

Annual inncome (RMB) 73,141.48 41,268.83 101,939.57 62,971.84
Number of cars owned 0.47 0.59 0.72 0.67
Female (=1) 0.45 0.50 0.44 0.50
Age (years) 37.78 10.43 38.69 10.11
Schooling (years) 13.74 2.79 13.87 2.86

Observations 21,657 27,055

Notes: Table 1 reports respondent characteristics of all work commuting trips in these two years.
The individual income increases from from 73,141.48 RMB in year 2010 to 101,939.57 RMB in
year 2014, a 40% increase matching the growth rates averaging 10% in Beijing. The match
implies the randomness of the household survey. The increase in the number of cars owned by
each individual also reflects the wealth increment in Beijing. Other variables are similar in these
two years.
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Table 2: Travel Information

2010 2014
mean sd mean sd

Travel time (hours) 0.66 0.62 0.60 0.55
Travel cost (Yuan) 2.63 5.81 3.72 7.08
Walk 0.14 0.34 0.13 0.33
Bike 0.24 0.43 0.24 0.43
Bus 0.24 0.42 0.18 0.38
Subway 0.04 0.21 0.06 0.24
Car 0.24 0.43 0.31 0.46
Taxi 0.01 0.11 0.01 0.09

Observations 24,027 29,446

Notes: Table 2 presents the work commuting trip information. The travel time is
lower in year 2014. Beijing’s rapid subway expansion from 2008 to 2014 led to an
increase in aggregate welfare with modest congestion reduction. Additionally, more
people uses car in 2014, compared to other modes. No number contradicts our intuition
given that Beijing becomes richer over years.
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Table 3: Hourly Air Pollution on Wind Directions First Stage

(1) (2) (3) (4) (5) (6)
2010 Tangshan 2014 Tangshan 2010 Shenyang 2014 Shenyang 2010 Zhangjiakou 2014 Zhangjiakou

North Wind -77.45∗∗∗ -20.75∗ 5.254 -21.45 -1.828 -11.06
(18.718) (11.787) (27.424) (13.714) (17.190) (13.390)

Northeast Wind -34.77∗ -35.21∗∗∗ -33.00 -20.89 51.16∗∗∗ -6.982
(19.108) (11.636) (50.731) (16.428) (18.407) (16.393)

East Wind 25.14 4.622 17.58 1.885 19.37 -28.79∗∗

(20.885) (9.345) (28.653) (14.113) (15.558) (13.124)
Southeast Wind 64.53∗∗∗ 39.82∗∗∗ 45.76 19.63 121.3∗∗∗ -20.04

(20.684) (12.863) (28.595) (14.906) (21.556) (13.576)
South Wind -5.886 -20.11∗∗ 6.775 -5.456 102.6∗∗∗ 5.492

(18.078) (9.945) (27.681) (15.358) (16.347) (12.367)
Southwest Wind -9.583 -51.96∗∗∗ -75.97 -63.67∗∗ 73.44∗∗∗ 47.19∗∗∗

(24.983) (14.080) (48.067) (29.265) (20.601) (14.437)
West Wind -57.54∗∗∗ -11.69 11.83 -30.67∗∗ 21.37 2.025

(18.184) (9.808) (29.967) (14.728) (19.718) (16.085)
Northwest Wind -46.40∗∗ 76.32∗∗∗ -13.81 -12.31 0.528 -20.61

(22.301) (18.658) (29.571) (15.069) (27.412) (25.947)
Wind Speed 0.345 -1.865∗∗∗ -0.0773 0.244 0.814∗∗ 0.995∗∗∗

(0.312) (0.333) (0.407) (0.210) (0.356) (0.275)

Observations 849 1026 849 1026 849 1026
Adjusted R2 0.143 0.078 0.015 0.024 0.135 0.066

Notes: We check the overlap locations given by LASSO for year 2010 and year 2014, by running OLS for the first stage of
hourly air pollution on their wind directions controlling for 18 hourly (6 AM to 11 PM ), 2 monthly, and 7 weekday fixed effects,
with other weather conditions in Beijing. Tangshan satisfies the matching of the predicted signs from relative position and the
estimated coefficients of the wind directions. Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4: Hourly Share Regression

(1) (2) (3) (4) (5) (6) (7) (8)
2010 2014 2010 2014 2010 IV 2014 IV 2010 IV 2014 IV

Pollution Exposure (100 µg/m3) 0.0343 -0.0608∗ 0.0233 -0.0948∗∗∗ -0.1811∗ -0.3822∗∗∗ 0.2424 -0.4711
(0.056) (0.032) (0.029) (0.030) (0.094) (0.066) (0.297) (0.513)

Time (Hour) -0.5681∗∗∗ -0.7400∗∗∗ -0.2515∗∗∗ -0.2343∗∗∗ -0.5797∗∗∗ -0.7553∗∗∗ -0.2558∗∗∗ -0.2605∗∗∗

(0.082) (0.067) (0.047) (0.052) (0.086) (0.068) (0.049) (0.053)
Cost (RMB) -0.1155∗∗∗ -0.0783∗∗∗ -0.1214∗∗∗ -0.0836∗∗∗

(0.010) (0.009) (0.010) (0.009)
Alternative * 18 Hourly Fixed Effect N N Y Y N N Y Y
First Stage F test 54.91 54.91 54.91 54.91

Observations 900 1,118 900 1,118 860 1,116 860 1,116
Adjusted R2 0.902 0.912 0.901 0.912 0.903 0.911 0.902 0.910

Notes: 6 alternatives are {Walking, Car, Subway, Bus, Taxi, Bicycle}. Standard errors are clustered at the daily level. Alternative
specific weather conditions are controlled. The dependent variable is lnsmt − lns1t at hourly level. We exclude hours from 23 to 5.
The instrument is the southeast wind in Tangshan. Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

45



Table 5: Hourly Share Regression for Different Age Groups

(1) (2) (3) (4) (5) (6) (7) (8)
2010 Young 2010 Old 2014 Young 2014 Old 2010 Young IV 2010 Old IV 2014 Young IV 2014 Old IV

Pollution Exposure (100 µg/m3) -0.0072 -0.1972∗∗ -0.0506∗ -0.2120∗∗∗ -0.2840∗∗∗ 0.0373 -0.4520∗∗∗ -0.2819∗∗

(0.032) (0.082) (0.030) (0.079) (0.083) (0.129) (0.089) (0.139)
Time (hour) -0.6116∗∗∗ -0.4197∗∗∗ -0.8028∗∗∗ -0.4740∗∗∗ -0.5170∗∗∗ -0.4272∗∗∗ -0.8174∗∗∗ -0.4778∗∗∗

(0.043) (0.050) (0.036) (0.051) (0.035) (0.050) (0.036) (0.051)
Cost (RMB) -0.1059∗∗∗ -0.0117 -0.0844∗∗∗ -0.0346∗∗ -0.1227∗∗∗ -0.0214 -0.0890∗∗∗ -0.0463∗∗∗

(0.007) (0.026) (0.005) (0.014) (0.007) (0.027) (0.005) (0.014)

Observations 850 354 1027 491 961 373 1030 493
Adjusted R2 0.678 0.566 0.753 0.620 0.689 0.564 0.759 0.615

Notes: The age threshold is 50. Standard errors are clustered at the daily level. Alternative specific weather conditions are controlled. The dependent
variable is lnsmt − lns1t at hourly level. The instrument is the southeast wind in Tangshan. Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05,
∗∗∗ p < 0.01.
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Table 6: Hourly Share Regression for Different Income Groups

(1) (2) (3) (4) (5) (6) (7) (8)
2010 Low 2010 High 2014 Low 2014 High 2010 Low IV 2010 High IV 2014 Low IV 2014 High IV

Pollution Exposure (100 µg/m3) -0.0330 0.2078∗ -0.0833∗∗∗ 0.0444 -0.2109∗∗∗ -0.4539∗∗∗ -0.3780∗∗∗ -0.4787∗∗∗

(0.031) (0.114) (0.032) (0.069) (0.078) (0.152) (0.089) (0.106)
Time (hour) -0.5515∗∗∗ -0.7464∗∗∗ -0.6170∗∗∗ -0.9816∗∗∗ -0.4898∗∗∗ -0.7794∗∗∗ -0.6279∗∗∗ -1.0076∗∗∗

(0.040) (0.102) (0.033) (0.058) (0.032) (0.099) (0.032) (0.057)
Cost (RMB) -0.1178∗∗∗ -0.0527∗∗∗ -0.0897∗∗∗ -0.0758∗∗∗ -0.1342∗∗∗ -0.0618∗∗∗ -0.0937∗∗∗ -0.0808∗∗∗

(0.007) (0.014) (0.006) (0.006) (0.007) (0.014) (0.006) (0.006)

Observations 871 290 930 627 980 305 934 628
Adjusted R2 0.712 0.498 0.740 0.719 0.721 0.504 0.744 0.727

Notes: The income threshold is 100,000 RMB. Standard errors are clustered at the daily level. Alternative specific weather conditions are
controlled. The dependent variable is lnsmt − lns1t at hourly level. The instrument is the southeast wind in Tangshan. Standard errors in
parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 7: Logit Regression

(1) (2) (3) (4)
VARIABLES 2010 2014 2010 IV 2014 IV

Pollution Exposure (100 µg/m3) 0.0816** -0.0429** 0.0511 -0.0454*
(0.0338) (0.0214) (0.0396) (0.0259)

Time (Hour) -2.034*** -3.198*** -2.035*** -3.198***
(0.0801) (0.0853) (0.0802) (0.0853)

Cost (RMB) -0.0350*** -0.0585*** -0.0350*** -0.0585***
(0.00604) (0.00513) (0.00604) (0.00513)

Observations 70,908 142,458 70,908 142,458

Notes: 6 alternatives are {Walking, Car, Subway, Bus, Taxi, Bicycle}. Alternative
specific individual characteristics and weather condition are controlled, with instru-
ment as the southeast wind in Tangshan. The standard errors are clustered at house-
hold level. The model also include 18 hourly fixed effects, excluding hours from 23 to
5. Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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A Appendix

A.1 Utility Maximization

The utility maximization problem is given by:

max
m∈M,e>0,x>0

h(pm; e) + γ2x+ εm

s.t. γ2 · (x+ e+ cm) ≤ γ1 · (T − tm),

(A.1)

where pollution exposure pm depends on the outdoor air pollution level Po, the indoor pollution

level Pi, and whether the travel mode m is indoors or outdoors, and is given by:

pm = PiT + (Po − Pi)1[m = outdoor]tm. (A.2)

Proof. Since the utility function is monotone in x, the budget constraint is binding. Therefore,

γ2x = γ1(T − tm)− γ2e− γ2cm and the maximization problem is equivalent to:

max
m∈M,e>0,x>0

h(pm; e) + γ1(T − tm)− γ2e− γ2cm + εm. (A.3)

A monotone transformation does not change the order of the preference. Thus, abstracting

from the health expenditure choice problem and holding health expenditures fixed at ē, the average

health expenditure over the year, we obtain:

max
m∈M

h(pm; ē)− γ1tm − γ2cm + εm. (A.4)

We note that we can approximate the health or well-being function h(·; ē) using a first-order

A-1



Taylor series approximation around P̄ T , where P̄ is the average air pollution over the year, as

follows:

h(pm; ē) = h(PiT + (Po − Pi)1[m = outdoor]tm; ē)

≈ h(P̄ T ; ē) + h′(P̄ T ; ē)((Po − Pi)1[m = outdoor]tm + (Pi − P̄ )T )

(A.5)

Again the parts that do not contain m in the utility function do not influence the order of the

preference. Thus, the utility maximization problem can be approximated by:

max
m∈M

h′(P̄ T ; ē)(Po − Pi)1[m = outdoor]tm − γ1tm − γ2cm + εm. (A.6)

A.2 Appendix B. LASSO Regression

Denote our model as θ = (β1, . . . , βs,
1√
npγ1, . . . ,

1√
npγp)

′, x = (x1, . . . , xn)
′, ε = (ε1, . . . , εn)

′.

x = Aβ + ϵ, where Aij
iid∼ N(0, 1) and 1

n ||ε||1 = 1
n

∑n
i=1 |εi| < v. The following theorem validates

the LASSO when
√
p log(s+ p) << n.

Theorem Let θ̂ solve min ||θ||1 s.t. 1
n ||Aθ − x||22 ≤ v2.16

Then, E||θ̂ − θ||2 ≤
√
8π

[(√
s||β||2 +

√
p ¯|γ|√
n

) √
log(s+p)

n + v

]
.

Proof. The intuition of this proof comes from Donoho and Elad (2003). Consider the convex

hull K̄ = conv{±ei}s+p
i=1 , where ei are unit vectors in Rs+p, x =

∑s
i=1 βsei +

∑s+p
i=s

1√
npγiei. Let

K = ||x||1K̄.

16|| · ||1 represents the l1 norm: ||θ||1 =
∑s+p

j=1 |θj |. || · ||2 represents the l2 norm (or Euclidean norm): ||x||2 =(∑n
i=1 x

2
i

) 1
2 . The minimization problem is a special case of LASSO. The equivalence comes from the duality of the

optimization problem.
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Observe that θ̂ also minimizes the gauge || · ||K with respect to K:

min ||θ||K̄ s.t.
1

n
||Aβ − x||22 ≤ v2,

since

||θ||K̄ = min {λ > 0| θ = λ

s+p∑
i=1

ηiei, ηi > 0,

s+p∑
i=1

ηi = 1}

= ||θ||1

We use the general M* bound (Milman, 1985; Pajor and Tomczak-Jaegermann, 1986), which ensures

E||θ̂ − θ||2 ≤
√
8π

(
w(K)√

n
+ v

)
,

where w(K) is the gaussian mean width of K.

To conclude, according to the definition of K and θ,

w(K) = ||θ||1w(K̄) ≤ ||θ||1
√
log(s+ p)

=

(∑
|βi|+

∑
|γi|√
np

)√
log(s+ p)

n

≤

(
√
s||β||2 +

p|γ|
√
np

)√
log(s+ p)

n
.

The last inequality comes from Cauchy-Schwarz.
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A.3 Reduced-Form Regression

Proof. We rely on the utility function to get the reduced-form regression

uimt = β1[m = outdoor]Xt

+ γ1timeimt − γ2costimt + zit
′ηm + αm + ξmt + εitm,

(A.7)

where β = β2 − β1 and it captures the utility of staying outside with an extra unit of PM2.5. We

assume the error term ϵitm is distributed type I extreme value. Therefore, we can get a closed-form

probability function for individual i choosing mode m at time t with pimt,

pimt =
exp(β1[m = outdoor]Xt + γ1timeimt − γ2costimt + zit

′ηm + αm + ξmt)∑
k∈M exp(β1[k = outdoor]Xt + γ1timeikt − γ2costikt + zit′ηk + αk + ξkt)

To obtain the the population share Smt for mode m at time t, we take the expected value of

pimt over all individuals i (or, equivalently, integrate over the distribution of i):

Smt = E

[
exp(β1[m = outdoor]Xt + γ1timeimt − γ2costimt + zit

′ηm + αm + ξmt)∑
k∈M exp(β1[k = outdoor]Xt + γ1timeikt − γ2costikt + zit′ηk + αk + ξkt)

]

Normalizing the case-specific coefficients α1 and ξ1t for the base alternative m = 1 to 0, we get:
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lnSmt − lnS1t = β1[m = outdoor]Xt+

γ1(E[timemt]− E[time1t]) + γ2(E[costmt]− E[cost1t]) + E[zt]
′ηm + αm + ξmt

= β1[m = outdoor]Xt+

γ1(timemt − time1t) + γ2(costmt − cost1t) + zt
′ηm + αm + ξmt,

which is the closed form equation we are interested in.
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Figure A.1: Daily Average Air Pollution and Outdoor Mode Shares

Note: Travel data are from the Beijing Household Travel Survey (BHTS) and air pollution average
is from U.S. Embassy in Beijing. Outdoor travel modes are {Walking,Bicycle}. The full data
description is in Section 4. The positive slope for year 2014 in the figure shows the existence of the
avoidance behaviors in 2014, while the negative slopes for year 2010 implies that the WTP, depends
on information and is the expected air pollution cost rather than the true loss. In 2010, people
might not be willing to pay anything for the clean air, despite the adverse effects on their health.
With the popularization of knowledge about air pollution, the WTP gets closer to the actual social
welfare loss.
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