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Abstract

When faced with a crop disease that requires long-term investments in order to control,

short- and long-term decision-makers may choose to manage the disease di�erently.

We develop and estimate a dynamic structural econometric model of grower decision-

making that enables us to analyze how di�erences in decisions relate to di�erences in

decision-making time horizons as well as to alternative channels, and apply our model

to Verticillium wilt management for lettuce crops in Monterey County, California. We

�nd that an intertemporal externality arises with short-term decision-making by renters,

who may be less likely to incur costs or forego pro�t to invest in control options, even

though doing so would bene�t future renters and the landowner.
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1 Introduction

Invasive plant pathogens, including fungi, cause an estimated $21 billion in crop losses each

year in the United States (Rossman, 2009). Verticillium dahliae is a soil borne fungus that

is introduced to the soil via infested spinach seeds and that causes subsequent lettuce crops

to be a�icted with Verticillium wilt (V. wilt). Lettuce is an important crop in California,

and the majority of the lettuce production in the United States occurs in California. The

value of California's lettuce crop was $1.7 billion in 2013 (National Agricultural Statistics

Service, 2015). Measured by value, lettuce ranks in the top ten agricultural commodities

produced in California (National Agricultural Statistics Service, 2015).

Much of California's lettuce crop is grown in Monterey County, where lettuce pro-

duction value is 27% of the county's agricultural production value (Monterey County Agri-

cultural Commissioner, 2015). Approximately ten to �fteen thousand acres are planted to

lettuce in Monterey County each season (spring, summer, and fall). Spinach, broccoli, and

strawberries are also important crops in the region.

V. wilt can be prevented or controlled by the grower by fumigating with methyl bro-

mide, planting broccoli (a low-return crop), or not planting spinach. Each of these control

options entails incurring costs or foregoing pro�t in the current period for future bene�t.2

Because the options for controlling V. wilt require long-term investments for future gain, an

intertemporal externality arises with short-term growers (whom we call `renters'), who might

not reap the future bene�ts from investing in control options. Moreover, a renter planting

spinach will be long gone before microsclerotia builds up to a level that will a�ect lettuce.

Renters, therefore, might not make the long-term investments needed to control V. wilt.

As a consequence, future renters and the landowner may su�er from decisions of previous

renters.

In this paper, we analyze factors that a�ect crop choice and fumigation decisions made

by growers and examine how the decisions of long-term growers (whom we call `owners') di�er

from those of short-term growers (whom we call `renters'). Renters and owners di�er in their

time horizon, but may di�er in other ways as well. For example, renters and owners may face

di�erent conditions and work on land of di�ering quality and di�ering microsclerotia levels.

Alternatively, renters, whose incentives may be governed in part by renter contracts, may face

di�erent incentives from owners. We seek to understand how di�erences in decisions relate

to di�erences in decision-making time horizons as well as to alternative channels. Since there

2Some of these actions may also generate bene�ts in the current period. For example, in addition to
being an investment in protecting potential future lettuce crops from V. wilt, methyl bromide can also be
bene�cial to the current crop of strawberries. On net, however, and as veri�ed by our empirical analysis,
these control options generally require incurring net costs or foregoing pro�t in the current period.
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is no observable variable picking up 'time horizon', estimating its e�ect requires a structural

model that explicitly accounts for the time horizon as well as alternative channels.

Thus, in order to compare the long-term decision-making of owners with the short-

term decision-making of renters, we develop and estimate a dynamic structural econometric

model of growers' dynamic crop choice and fumigation decisions. The structural model gen-

erates parameter estimates with direct economic interpretations. We then use the parameter

estimates to simulate counterfactual scenarios to analyze how di�erences in grower decisions

relate to di�erences in time horizons, di�erences in state variables (which capture di�erences

in conditions such as soil microsclerotia levels, output prices, revenues, and previous con-

trol option use), and di�erences in payo� parameters (which re�ect di�erences in incentives,

including those that arise from marketing contracts, shipper contracts, and renter contracts).

We use a dynamic model for several reasons. First, the control options (fumigation,

planting broccoli, and not planting spinach) require incurring costs or foregoing pro�t in the

current period for possible future bene�t, and are thus are best modeled with a dynamic

model. Second, because crop and fumigation decisions are irreversible (as is the damage

from V. wilt) and have uncertain future payo�s, and because growers have leeway over the

timing of crop and fumigation decisions, there is an option value to waiting which requires a

dynamic model (Dixit and Pindyck, 1994). Third, Verticillium dahliae takes time to build

up in the soil, and once present, persists for many years.

There are several advantages to using a dynamic structural model for the crop and

fumigation decisions of owners and renters. First, a dynamic structural model best enables

us to understand how di�erences in decisions relate to di�erences in decision-making time

horizons as well as to alternative channels. Since there is no observable variable picking

up 'time horizon', estimating its e�ect requires a structural model that explicitly accounts

for the time horizon as well as alternative channels. Second, unlike reduced-form models,

a structural approach explicitly models the dynamics of crop and fumigation decisions by

incorporating continuation values that explicitly model how expectations about the future

a�ect current decisions. Since we structurally model how the continuation values relate to

the payo�s from the crop and fumigation choices, we are able to estimate parameters in

the payo�s from di�erent crop and fumigation choices. A third advantage of our structural

model is that we can use the parameter estimates from our structural model to simulate

various counterfactual scenarios. To analyze and address the possibility that owners and

renters may di�er in their characteristics, in the conditions they face, and/or in the quality

of their �elds, we run counterfactual simulations in which we use our structural model to

simulate owners on renter �elds and renters on owner �elds.

The balance of this paper proceeds as follows. Section 2 provides background on V. wilt,
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options to control the disease, and the intertemporal externality. Section 3 is a brief review

of the relevant literature. Section 4 describes our dynamic structural econometric model.

Section 5 describes our data. We present our results in Section 6 and our counterfactual

simulations in Section 7. Section 8 concludes.

2 Background

Verticillium dahliae is a soil borne fungus that causes subsequent lettuce crops to be a�icted

with V. wilt. No e�ective treatment exists once plants are infected by the fungus (Xiao and

Subbarao, 1998; Fradin and Thomma, 2006). The fungus can survive in the soil for fourteen

years as microsclerotia, which are resting structures that allow the fungus to remain in the

soil even without a host plant (Short et al., 2015b). When a susceptible host is planted,

microsclerotia attack through the roots, enter the water conducting tissue, and interfere

with water uptake and transport through the plant. If the density of microsclerotia in the

soil exceeds a threshold, a disease known as V. wilt occurs.

V. wilt was �rst documented on lettuce in 1995, after it killed a lettuce (Lactuca sativa

L.) crop in California's Santa Cruz County in the previous year. Prior to 1995, lettuce

was believed to be immune. Since then, the disease has spread rapidly through Monterey

County, the prime lettuce production region of California, where it was �rst observed on

lettuce in 1999. By 2010, more than 150 �elds were infected with V. wilt (Atallah, Hayes,

and Subbarao, 2011), amounting to more than 4,000 acres (Krishna Subbarao, personal

communication, 2013).3 Although growers have resisted reporting the extent of the disease

since 2010, it is likely that the number of a�ected acres has increased since then (Krishna

Subbarao, personal communication, 2013).

Verticillium dahliae is introduced to the soil in three possible ways. First, although it

does not spread locally from �eld to �eld on its own, V. wilt can be introduced from another

�eld via contaminated boots or equipment. Local spread is a relatively minor contributor,

however, and can be mitigated by growers by cleaning equipment before moving between

�elds. Second, V. wilt is introduced to the soil via infested lettuce seeds. Lettuce seeds are

also a relatively minor contributor. Studies of commercial lettuce seed lots from around the

world show that fewer than 18% tested positive for Verticillium dahliae and, of those, the

maximum incidence of infection was less than 5%, and therefore lower than the incidence of

3As not all the �elds that were infected by 2010 were known at the time Atallah, Hayes, and Subbarao
(2011) was published, the number of �elds a�ected by 2010 was actually even higher, numbering over 175 �elds
(Krishna Subbarao, personal communication, 2013). Krishna Subbarao is a Professor of Plant Pathology
and Cooperative Extension Specialist at the University of California at Davis. He has studied V. wilt for
many years.
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infection required for the high disease levels currently seen (Atallah, Hayes, and Subbarao,

2011).4

Third, V. wilt is introduced to the soil via infested spinach seeds. Spinach seeds have

been shown to be the main source of the disease (du Toit, Derie, and Hernandez-Perez, 2005;

Short et al., 2015a); 89% of spinach seed samples are infected, with an incidence of infected

seeds per sample of mean 18.51% and range 0.3% to 84.8% (du Toit, Derie, and Hernandez-

Perez, 2005). Infected spinach seeds carry an average of 200 to 300 microsclerotia per seed

(Maruthachalam et al., 2013). As spinach crops are seeded at up to nine million seeds per

hectare for baby leaf spinach, even a small proportion of infected seeds can introduce many

microsclerotia (du Toit and Hernandez-Perez, 2005). Recent conclusive evidence has proven

that planting infected spinach seeds causes V. wilt on lettuce (Short et al., 2015a).

One method for controlling V. wilt is to fumigate with methyl bromide. As methyl

bromide is an ozone depleting substance, the Montreal Protocol phased out methyl bromide

use for fumigation of vegetable crops such as lettuce in 2005; nevertheless, certain crops such

as strawberries have received critical-use exemptions through 20165 (California Department

of Pesticide Regulation, 2010; United States Environmental Protection Agency, 2020), and

the residual e�ects from strawberry fumigation may provide protection for one or two seasons

of lettuce before microsclerotia densities rise (Atallah, Hayes, and Subbarao, 2011). The

long-term availability of this solution is limited and uncertain.

A second method for controlling V. wilt is to plant broccoli. Broccoli is not susceptible

to V. wilt and also reduces the levels of microsclerotia in the soil (Subbarao and Hubbard,

1996; Subbarao, Hubbard, and Koike, 1999; Shetty et al., 2000). Owing to the relatively

low returns from broccoli in the region, growers who plant this control crop must forgo the

higher pro�ts they would have received if they had planted a higher return crop instead.

A third method for controlling V. wilt is to not plant spinach, since spinach seeds are

the vector of pathogen introduction (du Toit, Derie, and Hernandez-Perez, 2005). Growers

who use this third control method of not planting spinach must forgo any relative pro�ts

they may have received if they had planted spinach instead of another crop.

4Models of the disease suggest that it would be necessary for lettuce seed to have an incidence of infection
of at least 5% and be planted back to back for three to �ve seasons in order for the disease to appear, with
at least �ve subsequent seasons required for the high disease levels currently seen (Atallah, Hayes, and
Subbarao, 2011).

5Critical-use exemption requests through 2014 specify that up to one third of the California strawberry
crop may be fumigated with methyl bromide, but actual use was much lower. The remainder of the crop is
treated with alternatives such as chloropicrin or 1,3-Dichloropropene (1,3-D) (United States Environmental
Protection Agency, 2012). These alternatives (unless combined with methyl bromide) tend to be less e�ective
for V. wilt, however (Atallah, Hayes, and Subbarao, 2011). Field trials of other chemical fumigants either
have not been widely used due to township caps or are not yet registered and approved.
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V. wilt can therefore be prevented or controlled by the grower by fumigating with

methyl bromide, planting broccoli (a low-return crop), or not planting spinach. Because the

options for controlling V. wilt require long-term investments for future gain, an intertemporal

externality arises with renters, who might not make the long-term investments needed to

control V. wilt. As a consequence, future renters and the landowner may su�er from decisions

of previous renters.

Anecdotal evidence suggests that land values can drop as much as 25% when it is

discovered that acreage is contaminated with Verticillium dahliae. Landowners have also

reported renters asking for reduced rent because of Verticillium dahliae contamination (per-

sonal communication, Krishna Subbarao, 2013).

Contracting can sometimes internalize an externality that would otherwise be present

(Coase, 1960). Contracts would seem to be the ideal solution: usually only two parties are

involved in the rental agreement (the landowner and the renter) and a contract is likely

already in place. Adding stipulations to control V. wilt would seem logical and simple. For

example, contracts may include penalties for crop choice or fumigation decisions that do

not conform to the contract. In addition, pesticide applications must be reported to the

Monterey County Agricultural Commissioner, including the date, time, location, chemicals

applied, and application method. In principle, these methods could allow landowners to

monitor renters, should they choose to do so.

Nevertheless, the existing contracts may be ine�cient or unenforced, and enforcing

e�ort may not be possible. For example, it would be di�cult for the landowner to tell

if spinach had been planted until after it sprouted, by which time it would be too late

for preventative action. Similarly, the level of sanitation e�ort a renter exerts to wash their

boots and equipment every time they come to the �eld from elsewhere may not be observable

or veri�able. Moreover, even if the renter could be subject to penalties resulting from the

contract, the exact damages may be di�cult to determine.

It may likewise be di�cult for existing contracts to fully internalize the intertemporal

externality by penalizing renters if a lettuce crop is a�icted with V. wilt. The delayed

nature of the disease, wherein it may take several years for microsclerotia to build up in the

soil to damaging levels, means that it may be di�cult for landowners to observe when a

�eld was contaminated and who is responsible. If a lettuce crop is a�icted with V. wilt, the

contamination would likely have been the result of the actions of one or more previous renters

rather the current renter currently renting the land under the current renter contract. It

may be di�cult to exact and enforce penalties on previous renters no longer working on the

�eld for the contamination of a future crop years later. Moreover, even if would be possible

for a landowner to exact and enforce penalties on previous renters from many years ago, it
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would be di�cult for landowners to ascertain whether and how much each of the previous

renters contributed to the contamination.

When it is costly for the renter to prevent V. wilt, and costly for the landowner to

observe the renter's actions, a contract may not su�ce to internalize the intertemporal exter-

nality and induce an e�cient outcome. Furthermore, if contracts that include stipulations to

control V. wilt are not the norm in the area, highly restrictive contracts � such as a contract

that requires renters to plant broccoli, a low-return crop, in lieu of a more pro�table crop

� may be less desirable and receive lower rents. In addition, if such highly restrictive, less

desirable contracts would only be accepted by lower quality renters, who may be even less

likely to make long-term investments in land and soil quality than higher quality renters are,

then issues of adverse selection and possible market unraveling (Akerlof, 1970) may arise as

well.

Although we do not have data on contracts themselves, it is an empirical question

whether existing renter contracts internalize the intertemporal externality imposed by renters

on future renters and the landowner. To examine whether contracts internalize the intertem-

poral externality, we compare the results from renters with those from owners. Moreover,

since V. wilt was �rst documented on lettuce in 1995 and �rst observed on lettuce in Mon-

terey County in 1999, and the likely sources of the disease were not known until years later,

it is possible that renter contracts may have evolved over time to better internalize the

intertemporal externality as awareness and knowledge of V. wilt and its control options in-

creased over time. We therefore also compare the renter results from the early time period

(1993 to 2000) with those from the later time period (2001 to 2011).

3 Literature Review

The �rst strand of literature to which our paper relates is on the economics of pest man-

agement (Hueth and Regev, 1974; Carlson and Main, 1976; Wu, 2001; Noailly, 2008; McKee

et al., 2009), which focuses on pests for which treatment is available after crops are a�ected.

In contrast, V. wilt cannot be treated once crops are a�ected. Existing work on crop disease,

such as Johansson et al. (2006) and Gómez, Nunez, and Onal (2009) on soybean rust, and

Atallah et al. (2015) on grapevine leafroll disease, focuses on spatial issues regarding the

spread of the disease. In contrast, V. wilt has only a limited geographic impact, and thus

dynamic considerations are more important than spatial ones for V. wilt.

A second strand of literature to which our paper relates is on dynamic models in

agricultural management. As Verticillium dahliae persists in the soil for many years, a
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static model such as that proposed by Mo�tt, Hall, and Osteen (1984) will not properly

account for the future bene�ts of reducing microsclerotia in the soil. The dynamics of V.

wilt more closely �t the seed bank management model by Wu (2001).

Dynamic models have been used in agricultural management to analyze many prob-

lems. Weisensel and van Kooten (1990) use a dynamic model of growers' choices to plant

wheat, or to use tillage fallow versus chemicals to store moisture. In a related paper, van

Kooten, Weisensel, and Chinthammit (1990) use a dynamic model that explicitly includes

soil quality in the grower's utility function and the trade-o� between soil quality (which may

decline due to erosion) and net returns.

Our paper builds on the literature on dynamic structural econometric modeling. The

seminal dynamic structural econometric model developed by Rust (1987, 1988) has been

adapted for many applications, including bus engine replacement (Rust, 1987), nuclear power

plant shutdown (Rothwell and Rust, 1997), water management (Timmins, 2002), agriculture

(De Pinto and Nelson, 2009; Scott, 2013), durable goods (Gowrisankaran and Rysman, 2012;

Rapson, 2014), wind turbine shutdowns and upgrades (Cook and Lin Lawell, 2020), copper

mining decisions (Aguirregabiria and Luengo, 2016), supply chain externalities (Carroll et al.,

2021), environmental regulations (Blundell, Gowrisankaran, and Langer, 2020), technology

adoption (Oliva et al., 2020), the adoption of rooftop solar photovoltaics (Feger, Pavanini,

and Radulescu, 2020; Langer and Lemoine, 2018), vehicle scrappage programs (Li and Wei,

2013), agricultural productivity (Carroll et al., 2019), organ transplant decisions (Agarwal

et al., 2021), consumer stockpiling (Ching and Osborne, 2020), pest management (Yeh,

Gómez, and Lin Lawell, 2021), urban travel demand (Donna, 2019), hotel pricing (Cho

et al., 2018), forests (Araujo, Costa, and Sant'Anna, 2020), and vehicle ownership and usage

(Gillingham et al., 2016).

There exists an extensive literature on contract choice in agriculture in both developed

and developing country contexts (Allen and Lueck, 1992; Burchardi et al., 2019; At and

Thomas, 2019). Dubois (2002) analyzes contracts and land fertility in the Philippines using

a model that incorporates the dynamics of soil fertility: the tenant's actions in a given

season a�ect future production because land fertility is a function of both the previous

period's fertility and the tenant's actions.
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4 Dynamic Structural Econometric Model

4.1 Model

We develop and estimate a single-agent dynamic structural econometric model using the

econometric methods developed by Rust (1987). Each month t, each grower i chooses an

action dit ∈ D. The possible actions for each grower for each month include one of �ve crops

� lettuce, spinach, broccoli, susceptible (other than lettuce), or resistant � combined with the

choice to fumigate with methyl bromide. To focus on the crops most relevant to this problem,

we include each of the crops most relevant to V. wilt � lettuce, spinach, and broccoli � as a

separate crop; and we group the crops resistant to V. wilt together and the crops (other than

lettuce) susceptible to V. wilt together. Susceptible crops include strawberries, artichoke,

and cabbage. Resistant crops include cauli�ower and celery.

Although the raw data are observations on the day and time any fumigant is applied

on a �eld, we aggregate to monthly observations. The length of the season varies among

crops, from as short as one month for spinach (Koike et al., 2011), to twelve months long for

strawberries (SeeCalifornia, 2020). Moreover, growers who choose to fumigate a crop vary

in how often they fumigate, and do not necessarily fumigate every month. For this reason,

we choose a month as the time period for each crop-fumigation decision. To cover the case

of multi-month seasons, we include a dummy variable for whether the grower continues with

the same crop chosen in the previous month. Moreover, because not all crops are harvested

in all months, we also include dummy variables for each crop-month indicating whether a

particular month is a harvest month for a particular crop.

Growers consider multiple factors when making their crop and fumigation decisions,

including crop prices, yield, revenue, costs, non-monetary bene�ts, non-monetary costs, as

well as the costs of microsclerotia building up in the soil over time and potentially impacting

future crops. To estimate growers' losses from V. wilt, it would be ideal to observe actual

prices, quantities, costs, and level of microsclerotia for both growers facing losses from V. wilt

and those who are not. Unfortunately, data on individual growers' actual price, quantity,

costs, and level of microsclerotia are not available. Instead, we account for the important

factors in a grower's payo�-maximizing crop and fumigation decisions by including in their

monthly payo� function state variables that a�ect price, yield, revenue, costs, non-monetary

bene�ts, non-monetary costs, miscrosclerotia levels, and/or the spread of V. wilt. Costs

are accounted for by the crop-fumigation dummies and the constant in our model, and we

allow these costs to di�er between the early and later periods of our data set. Monthly costs

common to all crops are captured by the constant. The largest cost di�erence among crops

8



is due to fumigation, so we include a dummy for methyl bromide fumigation to account for

the costs of fumigation and to absorb cost di�erences among crops.

The per-period payo� to a grower from choosing action dit at time t depends on the

values of the state variables sit at time t as well as the choice-speci�c shock εit(dit) at time

t. The state variables sit at time t include discretized crop prices for each crop (priceit(dit)),

dummy variables for each crop that indicate whether this month is a harvest month for that

crop (harvest month dummyit(dit)), dummy variables for each crop that indicate whether

that crop is the same as the crop chosen in the previous month (last crop dummyit(dit)), a

variable measuring whether and how much the broccoli control option was used in the past

(broccoli historyit), and a variable measuring whether and how much the methyl bromide

control option was used in the past (methyl bromide historyit). There is a choice-speci�c

shock εit(dit) associated with each possible action dit ∈ D. The vector of choice-speci�c

shocks εit ≡ {εit(dit)|dit ∈ D} is observed by grower i at time t, before grower i makes his

time-t action choice, but is never observed by the econometrician.

The per-period payo� to a grower from choosing action dit at time t is given by:

U(dit, sit, εit, θ) = π(dit, sit, θ) + εit(dit),

where the deterministic component π(·) of the per-period payo� is given by:

π(dit,sit, θ) =

+ θ1 · lettuce dummyit

+ θ2 · spinach dummyit

+ θ3 · broccoli dummyit

+ θ4 ·methyl bromide dummyit

+ θ5 · (lettuce dummyit * broccoli historyit)

+ θ6 · (spinach dummyit * broccoli historyit)

+ θ7 · (lettuce dummyit * methyl bromide historyit)

+ θ8 · (spinach dummyit * methyl bromide historyit)

+ θ9 · (last crop dummyit(dit) * susceptible dummyit)

+ θ10 · (last crop dummyit(dit) * (1− susceptible dummyit)

+ θ11 · (priceit(dit) * harvest month dummyit(dit)))

+ θ12, (1)

where lettuce dummyit, spinach dummyit, broccoli dummyit, methyl bromide dummyit, and

susceptible dummyit are among the possible actions dit ∈ D.
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Since we include a separate term for the price of the crop being planted if it is a harvest

month for that crop, and since monthly input and growing costs common to all crops are

captured by the constant θ12, the coe�cients on the dummies for lettuce, spinach, and

broccoli capture any additional monthly costs (monetary and otherwise) of the respective

crops beyond the monthly costs common to all crops captured by the constant, as well as any

additional bene�ts (monetary or otherwise) to planting these respective crops that are not

internalized in their respective crop prices during their respective times of harvest. Because

price is the discretized marketing average price of lettuce per acre, the price measures revenue

per acre, and therefore incorporates yield as well. Thus, the coe�cients on the dummies for

lettuce, spinach, and broccoli capture any additional bene�ts or costs, monetary or otherwise,

that are not fully captured by the price, yield, or revenue per acre for that crop; or by costs

common to all crops.

In particular, the coe�cient θ1 on the lettuce dummy captures additional monthly costs

of planting and growing lettuce beyond the monthly costs common to all crops captured by

the constant; as well as any additional net bene�ts of lettuce that are not internalized in

the lettuce price, including any additional bene�ts that may explain why growers continue

to plant lettuce even though it is susceptible to V. wilt. Similarly, since planting spinach

will tend to increase microsclerotia, the coe�cient θ2 on the spinach dummy captures the

e�ects of spinach on payo�s that are not internalized in the spinach price, including the

monthly costs of planting and growing spinach beyond the monthly costs common to all

crops captured by the constant; as well as the microsclerotia costs (monetary and otherwise)

of planting spinach. Likewise, the coe�cient θ3 on the broccoli dummy captures the e�ects

of broccoli on payo�s that are not internalized in the broccoli price, including the monthly

costs of planting and growing broccoli beyond the common monthly crop costs captured in

the constant.

Especially in more recent years, methyl bromide fumigation is very expensive and raises

input costs dramatically. Fumigation is the largest cost di�erence among crops. The coe�-

cient θ4 on the dummy for methyl bromide fumigation accounts for the costs of fumigation

and absorbs the cost di�erences among crops.6

Since the control options require incurring costs or forgoing pro�t in the current period

for future bene�t, previous use of control options may a�ect current payo�s. We therefore

include variables indicating the broccoli history within the last twelve months and the fu-

6In addition to being an investment in protecting potential future lettuce crops from V. wilt, methyl
bromide can also be bene�cial to the current crop of strawberries. On net, however, methyl bromide fumi-
gation generally requires incurring net costs or foregoing pro�t in the current period. A negative sign on
the coe�cient on the dummy for methyl bromide fumigation would indicate a net cost to methyl bromide
fumigation.
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migation history with methyl bromide within the last twelve months. We expect broccoli

history and methyl bromide fumigation history to be closely linked to the presence of mi-

crosclerotia in a �eld. We interact the variables measuring previous use of control options

with a dummy variable for lettuce being planted in the current period because lettuce is the

primary susceptible crop. Broccoli history interacted with planting lettuce today would have

a positive coe�cient θ5 if having planted broccoli is an e�ective control option. Similarly,

methyl bromide fumigation history interacted with planting lettuce today would have a pos-

itive coe�cient θ7 if having fumigated with methyl bromide is an e�ective control option.

These two parameters therefore enable us to assess the e�ectiveness of these two respective

control options. We also interact the broccoli history and methyl bromide history variables

with the dummy variable for spinach being planted in the current period, to capture whether

the undesirability of spinach is mitigated by having broccoli history and/or methyl bromide

history.7

The last crop dummy variable is equal to one if the crop chosen this month is the

same as the crop planted in the previous month. The last crop dummy captures both the

requirement to grow a particular crop over multiple months, as well as any tendency for a

grower to choose to replant the same crop over and over again, perhaps harvest after harvest.

To separate out the two e�ects, we estimate the last crop dummy separately for susceptible

crops (which include strawberries, artichoke, and cabbage) and for all other crops (including

lettuce, spinach, broccoli, and resistant crops), since susceptible crops have a longer harvest

season length. In our data set, the average harvest season length for susceptible crops is 2.6

months, while the average harvest season length for all other crops is 1.7 months. Thus, the

coe�cient θ9 on the last crop dummy interacted with a dummy for susceptible crops captures

the requirement to grow a particular crop over multiple months, while the coe�cient θ10 on

the last crop dummy interacted with a dummy for all other crops captures the tendency

for a grower to choose to replant the same crop over and over again, perhaps harvest after

harvest.

Growers base decisions in part on the price or gross return they expect to receive for

their harvested crops (Scott, 2013). We interact price with a dummy variable that is equal

7We do not include spinach history in the per-period payo� for several reasons. First, as seen in Section
6, when we include spinach history in an alternative speci�cation, the spinach history variable does not have
a signi�cant e�ect over the entire period, in the early period, or in the later period. Second, Verticillium
dahliae takes several years to build up in the soil, and once present, persists for many years. The fungus
can survive in the soil for fourteen years as microsclerotia (Short et al., 2015b). The appropriate length of
time for spinach history is therefore likely to be quite long and at least as long as the time period of our
data set. We unfortunately do not have enough years of data in order to control for the long-term spinach
history in a relevant manner. Even if we did, growers may not necessarily base their decisions on long-term
spinach history, since they may not know or recall the entire spinach history over many years. We hope in
future work to acquire enough long-term data to enable us to include long-term spinach history.
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to one during the harvest season for each crop to capture the fact that although growers may

plant the same crop for multiple months, they only receive revenue during the months of the

harvest season for that crop.8 In particular, the expected gross revenue to harvesting a crop

during non-harvest season months (e.g., during the winter) is 0.9 Thus, by incorporating the

expected gross return in the payo� function and by modeling the dynamic decision-making

of growers choosing when and what to plant, and whether and when to fumigate, our model

accounts for the biological reality of how long a crop needs to be in the ground, because

pro�t-maximizing growers are unlikely to pull out the crop before it is ready to harvest (and

therefore before they would receive the expected return), barring problems such as V. wilt

or other issues that meant that crop was unhealthy.

We assume the state variables evolve as a �nite state �rst-order Markov process, with a

transition density given by Pr(st+1, εt+1|st, dt, εt, θ). Since the crop price variable we use is the
discretized annual county average, we assume that the crop and fumigation decisions of any

one grower would not have a large enough e�ect to in�uence crop prices, and therefore that

the distribution of discretized county-level crop prices next period does not depend on any

single grower's decisions this period; we therefore model crop prices as evolving exogenously.

We estimate the transition density for each crop price conditional on the crop prices for all

crops nonparametrically using our data on the discretized annual county-level crop prices

over the entire time period of our data set. In particular, we use empirical probabilities to

estimate a grower's expectation of future values of the discretized crop prices for each crop

conditional on the current values of the discretized crop prices for all crops. The endogenous

state variables (methyl bromide fumigation history, broccoli history, and last crop dummy)

evolve deterministically as a function of this period's action.

We make the following conditional independence assumption on the transition density:

Pr(st+1, εt+1|st, dt, εt, θ) = Pr(εt+1|st+1, θ) Pr(st+1|st, dt, θ).

We also assume that the choice-speci�c shocks are distributed multivariate extreme value.

A standard assumption in many dynamic structural models, our conditional indepen-

8As explained in detail in Section 6, we also run an alternative speci�cation to examine whether the
results are robust to the possibility that some growers may plant the same crop for multiple months in a
harvest season. As seen in the robustness checks in Section 6, we �nd that the results are robust to whether
we divide the marketing year average price for each crop by its average harvest season length, and therefore
to whether we assume growers who plant the same crop for multiple months receive more revenue than those
who plant that crop for only one month.

9Costs are accounted for by the crop-fumigation dummies and the constant in our model, and we allow
these costs to di�er between the early and later periods of our data set. Monthly input and growing costs
common to all crops are captured by the constant, which we expect to be negative.
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dence assumption implies that, conditional on the current state variables sit and the current

action dit chosen by the grower, the evolution of the observed state variables sit does not

depend on the particular realization of the idiosyncratic shocks εit to the payo�s of indi-

vidual growers from each possible crop and fumigation action choice. For broccoli history

and methyl bromide history, the conditional independence assumption makes sense since

these state variables evolve deterministically as a function of this period's value of these

state variables and this period's action. Similarly, for the last crop dummy, the conditional

independence assumption makes sense since the last crop dummy for next period is a de-

terministic function of this period's action. For the crop prices, which evolve stochastically,

since there are many growers in the county and no grower has a signi�cant market share, it

is reasonable to assume that shocks to any particular individual grower are unlikely to a�ect

how discretized county-level crop prices evolve at the aggregate level for all growers.

4.2 Value Functions, Continuation Values, and Choice Probabilities

To estimate the unknown parameters θ = (θ1, ..., θ12), we build on the nested �xed point

maximum likelihood estimation technique developed by Rust (1987, 1988). We assume that

the observed choices coincide with the optimal decision rule that solves the grower's dynamic

optimization problem. The di�erences in time horizons between long-term and short-term

growers result in slightly di�erent value functions and therefore slightly di�erent techniques

for solving for continuation values and choice probabilities, which we describe below.

4.2.1 Long-Term Growers (`Owners')

A long-term grower ('owner') faces an in�nite horizon dynamic programming problem. Under

the assumptions that the state variables and the choice-speci�c shocks εit are conditionally

independent and that the choice-speci�c shocks εit are distributed multivariate extreme value,

the value function for a long-term grower, which gives the present discounted value of the

grower's entire stream of per-period payo�s at the optimum, is given by the following in�nite-

horizon Bellman equation:

V (s, ε, θ) = max
d∈D(s)

(π(d, s, θ) + ε(d) + βV c(s, d, θ)),

where V c(·) is the continuation value, which is the expected value of the value function next

period conditional on the state variables and action this period:
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V c(s, d, θ) =

∫
V (s′, ε′; θ)dPr(s′, ε′|s, ε, d, θ),

and where β is the monthly discount factor. The choice probability for a long-term grower

is given by:

Pr(d|s, θ) = exp (π(d, s, θ) + βV c(s, d, θ))∑
d̃∈D(s) exp (π(d̃, s, θ) + βV c(s, d̃, θ))

.

After obtaining the model predictions for the choice probabilities as functions of the

state variables and the unknown parameters θ, we estimate the parameters θ using the nested

�xed point maximum likelihood estimation technique developed by Rust (1987, 1988). The

likelihood function is a function of the choice probabilities, and therefore a function of the

continuation value V c(·). For each guess of the parameters θ, we solve for the continuation

value V c(·) by solving for a �xed point, and use the continuation value to solve for the choice
probabilities, which we then plug into the likelihood function. From Blackwell's Theorem,

the �xed point is unique.

4.2.2 Short-Term Growers (`Renters')

In contrast to long-term growers, who face an in�nite horizon problem, short-term growers

face a �nite horizon dynamic programming problem with a �nite horizon of T = 12 months.

Under the assumptions that the state variables and the choice-speci�c shocks εit are con-

ditionally independent and that the choice-speci�c shocks εit are distributed multivariate

extreme value, the value function for a short-term grower for each period t, which gives

the present discounted value of the grower's entire stream of per-period payo�s from time t

forward at the optimum, is given by the following �nite-horizon Bellman equation:

Vt(s, ε, θ) = max
d∈D(s)

(π(d, s, θ) + ε(d) + βV c
t (s, d, θ)),

where V c
t (·) is the continuation value at time t, which is the expected value of the value

function at time t+ 1 conditional on the state variables and action at time t:

V c
t (s, d, θ) =

∫
Vt+1(s

′, ε′; θ)dPr(s′, ε′|s, ε, d, θ).

The continuation value V c
t (·) for each time t is solved for via backwards iteration from the

terminal condition that the �nal period continuation value V c
T at month T = 12 is equal to

zero. The choice probability for a short-term grower for each period t is given by:
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Prt(d|s, θ) =
exp (π(d, s, θ) + βV c

t (s, d, θ))∑
d̃∈D(s) exp (π(d̃, s, θ) + βV c

t (s, d̃, θ))
.

After obtaining the model predictions for the choice probabilities for each period t as

functions of the state variables and the unknown parameters θ, we estimate the parameters

θ using maximum likelihood estimation. The likelihood function is a function of the choice

probabilities, and therefore a function of the continuation values V c
t (·). For each guess of

the parameters θ, we solve for the continuation values V c
t (·) for each period t by backwards

iteration, and use the continuation values to solve for the choice probabilities for each period,

which we then plug into the likelihood function.

4.3 Econometric Estimation

As explained above, the di�erences in time horizons between long-term and short-term grow-

ers lead to slightly di�erent techniques for econometric estimation. For owners, who have an

in�nite horizon, an inner �xed point algorithm to compute the continuation value V c(·) is
nested within an outer optimization algorithm to �nd the maximizing value of the parame-

ters θ via maximum likelihood estimation (MLE). For renters, who have a �nite horizon, an

inner algorithm to compute the continuation value V c
t (·) for each period t using backwards

iteration is nested within an outer optimization algorithm to �nd the maximizing value of

the parameters θ via maximum likelihood estimation (MLE).

In our base-case speci�cation, owners and renters have the same parameters θ in their

per-period payo� functions, but di�er in their time horizons. Thus, in our base-case speci�-

cation, we pool owners (who have an in�nite horizon) and renters (who have a �nite horizon)

together and estimate the same parameters θ for both owners and renters. Using the same

per-period payo� function and parameters for owners and renters enables us to make welfare

comparisons between owners and renters.

Although we use the same per-period payo� functions for long-term and short-term

growers in our base-case speci�cation, owing to the intertemporal externality, we expect

short-term growers to be less concerned about the impact of their actions on the level of

microsclerotia in the soil in the future. As a consequence, short-term growers may be less

likely to incur costs or forego pro�t to fumigate or plant broccoli if they will not see the

future bene�t of engaging in these control options.

We also try an alternative speci�cation for owners and renters in which we allow owners

(who have an in�nite horizon) and renters (who have a �nite horizon) to not only have

di�erent time horizons for their dynamic decision-making (i.e., long- vs. short-term), but
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also have di�erent parameters θ in their per-period payo� functions as well. The parameters

θ in the payo� functions measure how di�erent actions and state variables a�ect their per-

period payo�. Di�erences in parameter values between owners and renters may arise if there

are di�erences in incentives faced by renters versus owners � including di�erences in monetary

bene�ts, monetary costs, non-monetary bene�ts, non-monetary costs, marketing contracts,

shipper contracts, and/or renter contracts � that lead to di�erences between owners and

renters in how di�erent actions and state variables a�ect their per-period payo�s.

Identi�cation of the parameters θ comes from the di�erences between per-period payo�s

across di�erent action choices, which in in�nite horizon dynamic discrete choice models are

identi�ed when the discount factor β and the distribution of the choice-speci�c shocks εit

are �xed; and which in �nite horizon dynamic discrete choice models are identi�ed when

the discount factor β, the distribution of the choice-speci�c shocks εit, and the �nal period

continuation value V c
T are �xed (Abbring, 2010; Magnac and Thesmar, 2002; Rust, 1994). We

set our monthly discount factor to β = 0.999.10 The parameters θ in our model are identi�ed

because each term in the deterministic component π(·) of the per-period payo� given in

Equation (1) depends on the action dit being taken at time t, and therefore varies based

on the action taken; as a consequence, the parameters do not cancel out in the di�erences

between per-period payo�s across di�erent action choices and are therefore identi�ed. For

example, the coe�cient θ1 on the lettuce dummy is identi�ed in the di�erence between the

per-period payo� from choosing to plant lettuce and the per-period payo� from any action

choice dit that does not involve planting lettuce. To identify the constant θ12, we normalize

the deterministic component π(·) of the per-period payo� from choosing the outside option

`other' to 0.

Standard errors are formed by a nonparametric bootstrap. Fields are randomly drawn

from the data set with replacement to generate 100 independent panels each with the same

number of owner �elds and the same number of renter �elds as in the original data set. The

structural model is run on each of the new panels. The standard errors are then formed by

taking the standard deviation of the parameter estimates from each of the panels.

5 Data

We use Pesticide Use Reporting (PUR) data from the California Department of Pesticide

Regulation.11 Our data set is composed of all �elds in Monterey County on which any

10A monthly discount factor of β = 0.999 corresponds to a real annual interest rate of 1.2%. Rust (1987)
uses a monthly discount factor of β = 0.9999, which corresponds to a real annual interest rate of 0.1%.

11For more information see: http://www.cdpr.ca.gov/docs/pur/purmain.htm.
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regulated pesticide was applied in the years 1993 to 2011, inclusive.12 Additional data on

prices, yields, and acreage come from the Monterey Agricultural Commissioner's O�ce. We

collapse the data set into monthly observations.13

We group the crops into �ve categories: lettuce, spinach, broccoli, susceptible (which

includes strawberries, artichoke, and cabbage; but excludes lettuce), and resistant (cauli�ower

and celery). From these, we form nine action choices: susceptible, susceptible with methyl

bromide fumigation, resistant, broccoli, broccoli with methyl bromide fumigation, lettuce,

lettuce with methyl bromide fumigation, spinach, and other.14

For control options, we use recent histories for broccoli and methyl bromide because

their e�ects on microsclerotia are relatively short-lived. Microsclerotia levels rebound within

one to two seasons, or approximately one year. Thus, broccoli history is the number of

months broccoli was planted in the last 12 months, and methyl bromide history is the

number of months methyl bromide was used in the last 12 months.

Our data point to a variety of di�erent types of growers. The vast majority (94%) of

�elds have only one grower over the entire time period. Of these, we call long-term growers

(`owners') those who appear on the same �eld every year from 1994 to 2010, and we model

their decision-making as an in�nite horizon problem. Some long-term growers are associated

with a large number of �elds which they plant repeatedly and consecutively; other long-term

growers have only a few �elds.

The other 6% of the Pesticide Use Data �elds have multiple growers who appear during

the observed time period.15 Of these, we want to consider growers who are most likely to

12We use the �eld identi�er as as well as the section, township, and range data from the PUR data set
to match �elds across time. We delete a small number of observations that are non-agricultural uses (golf
courses, freeway sidings, etc.).

13The data contain the crop planted in each �eld for each recorded pesticide application. Although
the focus of our research is on methyl bromide, the other pesticides provide observations regarding which
crops are in the ground at which times. Due to the nature of the data, sometimes we do not observe the
entire production cycle of a crop. For example, strawberries are often in the ground for a year or more; if
there is no registered pesticide applied in one of those months, however, a gap in the production cycle may
appear in our data. We account for this issue in several ways. As long as the missing data are missing for
exogenous reasons, missing data will not bias the results. We compared the distribution of these months
between short-term and long-term growers and �nd that they are similar distributions. In the simulations,
we simulate all months in the time period, but only count grower-months that are present in the actual data
when calculating welfare and other statistics for comparison purposes.

14To make the model manageable, we include only the most common crops in Monterey County and those
that are most often grown in rotation with lettuce. The crops explicitly included in our model account for
nearly 90% of the observations. The outside option of `other' includes various agricultural land uses that are
rarely chosen in Monterey County, including livestock and nursery products.

15For a very small number of �elds (191 out of more than 130,000, or less than 0.15%), the �eld identi�-
cation appears to be either miscoded or reused such that a �eld is not uniquely identi�ed. On these �elds,
there are more than �ve di�erent growers per �eld. In some cases, there are overlaps related to collapsing the
data set into monthly observations, i.e., one grower harvests a crop early in the month and another grower
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be renters who have not invested in the land or soil quality. Due to the limited nature of

the Pesticide Use Reporting (PUR) data, we adopt a conservative approach to identifying

possible renters. In particular, we call short-term growers (`renters') those who appear on a

�eld for only one year and never repeat, and who grow on a �eld on which other di�erent

short-term growers appear at di�erent times over the course of the data set.16 Although

other growers may also have a short-term time horizon, we focus on this particular group in

order to look at the maximum di�erence between the short-term and long-term growers. Of

the short-term growers, only 37% do not appear on any other �elds in any other year. To

have a su�cient sample size, we use both growers who appear to rent on only one �eld as

well as those who appear to rent on multiple �elds.

Our data set for long-term growers ('owners') consists of 615 growers, each appearing

on his or her own �eld over seventeen years. Our data set for short-term growers ('renters')

consists of 3,409 growers who appear for one year each; the same �eld may be rented by

di�erent short-term growers ('renters') in di�erent years.

We use a marketing year average price for each crop17 to represent growers' expectations

about prices for each year. The marketing year average price is in units of dollars per acre,

and therefore measures revenue per acre and incorporates yield. The Monterey County

Agricultural Commissioner's O�ce publishes annual crop reports including prices, yields,

and acreages for major crops in the county. Monterey County is a major producer of many

of the crops included in our model. For most crops, these prices are highly correlated with

California-wide price data published by the National Agricultural Statistics Service. We

discretize the marketing year average price into 6 bins; the marketing year average price bins

are shown in Figure A.3 in Appendix A.18

plants a di�erent crop near the end of the month; but other cases are less clear, where di�erent growers are
recorded fumigating di�erent crops on di�erent size plots during the same time period. We do not include
these �elds in either the owner or renter data set.

16It is possible that the limited nature of the Pesticide Use Reporting data (encoded by grower identi�-
cation number and �eld identi�cation number) may be obscuring growers who have long-term interests at
heart, even though they appear in a limited capacity. For example, rentals within a family, or a pest control
advisor applying pesticide on behalf of an owner, may appear in what we are calling the renter data set. In
a sense, the family bond may serve to reduce contract enforcement costs and, assuming the family members
want to remain on good terms, may result in a type of repeated game rather than a single interaction. If
anything, this issue should skew our results in favor of renters acting like owners, which would act against
our �nding any di�erences between owners and renters. In this case, our results would be a lower bound on
the di�erences between owners and renters, and on the intertemporal externality.

17For lettuce, we use a weighted average of the prices for head and leaf lettuce. In the early years of the
data set, romaine and other types of lettuce were not broken out separately, so gross revenue numbers vary
based on this reporting, but do not a�ect the discretized value of the price.

18The cuto� values for the �rst 5 price bins are the 5 quintiles for marketing year average price, as
calculated using the distribution of pooled prices over all time periods. Since the marketing year average
price for susceptible crops (which include strawberries) is always in the highest quintile in every year of our
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As seen in Figure A.3 in Appendix A, the marketing year price for broccoli is relatively

low, almost always lower than the marketing year price for lettuce, and generally the lowest

among the 5 crops, a�rming that broccoli is a low-return crop, and therefore that planting

broccoli to control V. wilt involves forgoing pro�t in the current period for future bene�t. In

addition, the marketing year price for spinach is sometimes higher than the marketing year

price for lettuce, a�rming that not planting spinach as a means of controlling V. wilt also

involves forgoing pro�t in the current period for future bene�t.

We combine the marketing year average price data with data on the timing of harvests

for various crops in Monterey. For each crop, the harvest month dummy variable for that

crop is equal to one in months during which that crop may be harvested, and zero in months

during which that crop is not harvested (i.e., winter months for most crops).19 For all crops,

we have observations during the winter months, including crops that have just been planted

and are not yet ready for harvest, and crops such as strawberries that overwinter for harvest

in the coming year.20

As data on growers' actual costs are unfortunately not available,21 costs are captured

data set, and since the highest quintile spans a wide range of prices, we further divide the highest quintile
into 2 bins, using the median marketing year average price for susceptible crops as the cuto� value. By
splitting the highest quintile into 2 bins based on the median susceptible crop price, we allow the discretized
marketing year average price for susceptible crops to vary over time, rather than always being in the same
bin every single year of the data set. We do not use sextiles to delineate bins because the marketing year
average price for susceptible crop is in the highest sextile in all except 3 years of our data set, and therefore
would still almost always be in the highest bin; and also because the top sextile would span an even wider
range of prices than our highest bin does. State space constraints, along with sample size considerations for
our nonparametric estimation of the transition density for crop prices, preclude us from using more than 6
bins for price.

19There is a separate harvest month dummy variable for each crop-month. These data come from Richard
Smith, Farm Advisor for Vegetable Crop Production & Weed Science with the University of California
Cooperative Extension in Monterey County.

20Using the current year's marketing year average price assumes that growers have rational expectations
about what the average marketing year price will be that year. For robustness, we also run the model using
lagged prices instead of current prices, which assumes that the growers' best guess for this year's price is last
year's price. As seen in our robustness results below, the results are robust to whether we assume growers
have rational expectations about prices or whether we assume instead that growers use last year's price as
the best guess for this year's price.

21Cost estimates for Monterey County from the University of California `Cost and Return Studies' (Uni-
versity of California Agricultural Issues Center, 2020a,b) are not available for any of the 19 years of our
analysis (1993-2011) for several of the key crops in our model; are only available for very few of the 19 years
of our analysis for other crops in our model; and are not available for any of the crops in our model for
any year in the early period (1993-2000). Spinach cost estimates for Monterey County are not available for
any of the 19 years of our analysis; the latest year of spinach cost estimates for Monterey County prior to
the time period of our data set is 1986, and the earliest year of spinach cost estimates for Monterey County
after the time period of data set is 2015. Similarly, there are no cost estimates for resistant crops for any
of the 19 years of our data set; the latest cost estimate for celery for Monterey County is for 1986, and the
latest cost estimate for cauli�ower for Monterey County is for 1986. The only cost estimate for resistant
crops during the 19 years of our data set is the cost estimate for cauli�ower for the entire Central Coast
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by our crop-fumigation dummies and our constant. Monthly costs common to all crops

are captured by the constant. Cost di�erences among crops are mainly driven by methyl

bromide fumigation, which is explicitly included in the model. We expect the crop-fumigation

dummies to at least partially capture the cost di�erences among the di�erent crops.

Figure 1 plots the actual fraction of grower-months in each action type for owners and

renters for the entire time period of our data set from 1993 to 2011 (`all'), the early period

of the data from 1993 to 2000 (`early'), and the later period of the data from 2001 to 2011

(`late'). Figures A.1 and A.2 in Appendix A plot the actual fraction of grower-months in each

action type by year for owners and renters, respectively. Summary statistics for the action

and state variables for owners and renters are presented in Tables A.1 and A.2, respectively,

in Appendix A.22

As seen in these �gures and summary statistics tables, lettuce accounts for over 60%

of the grower-months for owners. For renters, the two most frequent action choices are

lettuce and other susceptible crops: lettuce accounts for over 40% of the grower-months

in the early period and almost 30% of the grower-months in the later period, while other

susceptible crops (which include strawberries, artichoke, and cabbage) account for over 20%

of the grower-months in the early period and approximately 50% of the grower-months in

the later period.

Also as seen in the �gures and summary statistics tables, renters in the early period

plant spinach more frequently than owners do and more frequently than renters in the late

period do. Renters also plant broccoli less frequently than owners do, and are even less

likely to plant broccoli in the late period compared to the early period. Relatedly, renters

region in 2001. Among susceptible crops, the latest cost estimate for artichoke in Monterey County is in
1981, prior to the time period of our data set; the only cost estimate for cabbage in the Central Coast region
is for Santa Cruz in 1972, prior to the time period of our data set; and cost estimates for strawberries in
Monterey County are only available for �ve out of the 19 years of our analysis, all of which are in the later
time period (2001, 2003, 2006, 2010, and 2011), with only one other year of strawberry cost estimates for
the entire Central Coast region in 1990. Cost estimates for broccoli in Monterey County are only available
for two out of the 19 years of our analysis, both in the later time period (2001 and 2004); the latest year
of broccoli cost estimates for Monterey County prior to the time period of our data set is 1986; the earliest
year of broccoli cost estimates for Monterey County after the time period of our data set is 2017; and the
earliest year of broccoli cost estimates for any part of the Central Coast region after the time period of our
data set is 2012 for San Luis Obispo. Cost estimates for lettuce in Monterey County are only available for
three out of the 19 years of our analysis, all in the later time period (2001, 2009, and 2010); the latest year of
lettuce cost estimates for Monterey County prior to the time period of our data set is 1992; and the earliest
year of lettuce cost estimates for Monterey County after the time period of our data set is 2015 (University
of California Agricultural Issues Center, 2020a,b).

22To get a sense of how the grower-�elds in our owner data set and our renter data set compare with
all the grower-�elds in the entire data set, Table A.3 in Appendix A compares the summary statistics for
the discretized state variables for the owners and renters over the entire time period with those of all the
grower-�elds in the entire data set over the entire time period.
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worked on land that had lower broccoli history than owners did. These statistics suggest

that, by planting spinach and by not planting broccoli, renters impose an intertemporal

externality on future renters and landowners, thereby causing the land used by renters to

have lower broccoli history and potentially higher microsclerotia levels. These statistics

therefore provide suggestive evidence that existing renter contracts do not fully internalize

the intertemporal externality imposed by renters on future renters and the landowner.

In terms of using methyl bromide, however, renters were more likely to fumigate with

methyl bromide than owners were; and moreover, while the methyl bromide use of owners

declined over time between the early and late period, the methyl bromide use of renters

increased over time. Relatedly, renters worked on land that had higher methyl bromide

history than owners did.

Figure A.4 in Appendix A presents a map of the owners in our data set by township

range. Each township range is approximately 6 miles by 6 miles.23 Figures A.5-A.7 in

Appendix A present maps of the renters in our data set over the entire time period, the

early period, and the late period, respectively, by township range. Comparing the map

for the owners with the maps for the renters, the spatial distributions of owners and of

renters are roughly similar, which provides evidence that owners and renters faced similar

agricultural and environmental conditions. To further examine whether the di�erences in

crop and fumigation decisions of owners and renters in our data set may have resulted from

di�erences in their characteristics, in the conditions they faced, and/or in the quality of their

�elds, we run counterfactual simulations in which we use the results of our structural model

to simulate owners on renter �elds and renters on owner �elds, as we explain in detail in

Section 7.

6 Results

6.1 Base-Case Speci�cation

The base-case results are presented in Table 1. Since V. wilt �rst killed a lettuce crop in

1994, was �rst documented as having done so in 1995, and was �rst observed on lettuce

in Monterey County in 1999, and since the likely sources of the disease were not known

until years later, we run our model using data from 3 di�erent time periods: the entire time

period of our data set from 1993 to 2011 (`all'), the early period of the data from 1993 to

23The larger, more irregularly shaped areas are areas along the Highway 101 corridor, in the populated
areas at the North end of the county, and in the hot springs area in the Southwest part of the county that
were at some point rezoned to other types of land.
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2000 (`early'), and the later period of the data from 2001 to 2011 (`late'). We report our

estimates of the parameters in the per-period payo� function in Equation (1). The payo�s

do not have units because price is discretized and therefore no longer in dollars. Since we do

not have units for payo�s, we can compare only relative payo�s and welfare.

According to the base-case results in Table 1, the lettuce dummy has a signi�cant posi-

tive coe�cient, which means that growers derive additional net bene�ts from planting lettuce

for reasons that are not fully captured by its price and by the common crop costs subsumed

in the constant.24 One possible bene�t beyond price that growers may derive from planting

lettuce is that planting lettuce enables them to meet shipper contract requirements.25 The

lettuce dummy has a signi�cant and positive total average e�ect as well. Thus, it is desirable

for growers to control V. wilt, since they bene�t from planting lettuce.

The coe�cient on the spinach dummy is signi�cant and negative, which suggests that

the costs (monetary and otherwise) of planting and growing spinach are even higher than

the common crop costs captured in the constant, and therefore that planting spinach is

undesirable for reasons that are not fully captured by its price and by the common crop costs

subsumed in the constant.26 This coe�cient provides evidence that V. wilt is a problem,

since it is likely due to the fact that spinach is associated with V. wilt that planting spinach

is undesirable and imposes costs on growers, monetary and otherwise, beyond the costs

common to all crops.27

The broccoli dummy coe�cient is signi�cant and negative, which suggests that the

monthly costs of planting and growing broccoli are even higher than the common monthly

crop costs captured in the constant. Thus, broccoli is not only a low-return crop with a

24Because lettuce price is the discretized marketing average price of lettuce per acre, the lettuce price
measures revenue per acre, and therefore incorporates yield as well. Monthly costs common to all crops
are captured by the constant. Thus, the signi�cant positive coe�cient on the lettuce dummy suggests that
lettuce is desirable to plant for reasons that are not fully captured by its price, yield, or revenue per acre; or
by costs common to all crops.

25Although contracts can and do specify prices, the price we use in the model is the discretized county-level
marketing average price, which we expect to be exogenous to individual contracting decisions.

26Because price is the discretized marketing average price of spinach per acre, the price measures revenue
per acre, and therefore incorporates yield as well. The constant captures monthly costs common to all crops.
Thus, the signi�cant negative coe�cient on the spinach dummy suggests that spinach is not desirable to
plant for reasons that are not fully captured by its price, yield, or revenue per acre; or by common crop
costs.

27One may worry that the negative coe�cient on the spinach dummy may possibly result from spinach
having a shorter, one-month harvest season and therefore being potentially less appealing than crops with
longer harvest seasons. Even when crop prices are divided by the length of the respective harvest season,
however, the returns to spinach versus other crops still follow the same relative rank order, which suggests that
the harvest season length is not the driving factor behind the negative coe�cient on the spinach dummy. We
con�rm in robustness checks below that the signi�cant negative coe�cient on the spinach dummy is robust
to whether we divide prices by harvest season length.
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relatively low marketing year price (Figure A.3 in Appendix A), but it is also a relatively

high-cost crop as well. In contrast, lettuce has a higher marketing year price than broccoli, as

well as relatively low monthly net costs that are lower than the common monthly crop costs

subsumed in the constant (since the lettuce dummy has a signi�cant positive coe�cient).

Thus, broccoli is not a highly pro�table crop, and less desirable to plant than lettuce, but

planting broccoli may yield future bene�ts for lettuce growers. Planting broccoli is therefore

a control option that requires incurring costs or forgoing pro�t in the current period for

future bene�t.

The coe�cient on methyl bromide in the current period is signi�cant and negative,

which means that growers incur costs to fumigate with methyl bromide, even if doing so

may yield future bene�t to either the current crop or a future crop. The coe�cient is more

negative in the later period, likely because the Montreal Protocol started to limit the legal

availability of methyl bromide during the later period (California Department of Pesticide

Regulation, 2010; United States Environmental Protection Agency, 2020),28 and also possibly

because increased demand for methyl bromide in the later period when V. wilt became more

of a problem may have resulted in higher costs to buying and using methyl bromide.

The coe�cient on the interaction term between lettuce and broccoli history is signi�-

cant and positive, which suggests that planting broccoli is an e�ective control option. The

bene�ts of lettuce are enhanced in the presence of control options such as broccoli history.

Moreover, for the entire time period and in the later period, the coe�cient on the spinach

dummy and broccoli history interaction term is signi�cant and positive, and the point esti-

mate is larger in magnitude than the spinach dummy, which suggests that the undesirability

of planting spinach is o�set by broccoli history, thereby providing further evidence that

planting broccoli is an e�ective control option, especially in the later time period. Broccoli

history has a signi�cant positive total average e�ect on a grower's per-period payo�.

Our results show that methyl bromide does not appear to be as e�ective a control

option as planting broccoli. The coe�cient on the interaction term between lettuce and

methyl bromide history is signi�cant and negative over the entire time period and in the

early time period, but is not statistically signi�cant at a 5% level in the later time period.

Similarly, the coe�cient on the spinach dummy and methyl bromide history interaction

term is signi�cant and negative over the entire time period and in the later time period.

28As explained in more detail in Section 2, the Montreal Protocol phased out methyl bromide use for
fumigation of vegetable crops such as lettuce in 2005; nevertheless, certain crops such as strawberries have
received critical-use exemptions through 2016 (California Department of Pesticide Regulation, 2010; United
States Environmental Protection Agency, 2020), and the residual e�ects from strawberry fumigation may
provide protection for one or two seasons of lettuce before microsclerotia densities rise (Atallah, Hayes, and
Subbarao, 2011).
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The signi�cant negative coe�cients on the terms interacting methyl bromide history with

lettuce and with spinach may indicate that methyl bromide may not have been an e�ective

control option in the early period. The signi�cant negative coe�cient on the interaction

term between lettuce and methyl bromide history in the early period may also indicate that

in the early period, when growers and landowners were less aware of V. wilt, growers would

only fumigate with methyl bromide if they already su�ered from V. wilt; as a consequence,

if growers on �elds with methyl bromide history planted lettuce, their lettuce crop would

be more likely to succumb to V. wilt. The signi�cant negative coe�cients on the terms

interacting methyl bromide history with lettuce and with spinach may also indicate that

lettuce is not as valuable if the soil has been recently fumigated, for example, because it is

not organic. Methyl bromide history has a signi�cant negative total average e�ect, which

suggests that methyl bromide is neither an e�ective or desirable control option.

The last crop dummy interacted with a dummy for susceptible crops (which include

strawberries, artichoke, and cabbage), which captures the requirement to grow a particular

crop over multiple months, is signi�cant and positive. Thus, as expected, growers growing

crops that need to be grown over multiple months do grow these crops over multiple months.

The last crop dummy interacted with a dummy for all other crops (including lettuce,

spinach, broccoli, and resistant crops), which captures the tendency for a grower to choose

to replant the same crop over and over again, perhaps harvest after harvest, is signi�cant

and positive as well, and is larger in magnitude than the last crop dummy interacted with a

dummy for susceptible crops.29 The signi�cant positive coe�cient on the last crop dummy

interacted with a dummy for all other crops suggests that growers tend to replant the same

crop over and over again, perhaps harvest after harvest, and are less likely to switch crops.

For example, growers or landowners may have connections and contracts that tie them to

certain crops. They may have expertise or risk pro�les that better suit certain crops. Growers

may view the cost of switching to other crops to be too high. Uncertainty related to the

future of methyl bromide and its lack of suitable replacements for treating V. wilt could also

play a role.

29For the early time period, as seen in Table B.1 in Appendix B, we are unable to separately identify the
last crop dummy for susceptible crops (other than lettuce) and for all other crops; we thus estimate one last
crop dummy for all crops, which we �nd to be signi�cant and positive. Results for the speci�cation using one
last crop dummy for all crops for the entire time period and the late time period as well are in Table B.2 in
Appendix B. As seen in Table B.2 in Appendix B, results of likelihood ratio tests show that, for owners and
renters over the entire period, owners in the early period, and owners and renters in the late period, the data
does not reject the constrained model constraining the last crop dummy to be the same for susceptible crops
and for all other crops, since the unconstrained model allowing the last crop dummy to di�er for susceptible
crops and for all other crops does not produce a statistically signi�cant improvement in the ability of the
model to �t data at a 5% level.
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The coe�cient on price at the time of harvest is not statistically signi�cant at a 5%

level. Thus, after controlling for crop and fumigation dummies for lettuce, spinach, broccoli,

and methyl bromide, and after controlling for the requirement to grow a particular crop

over multiple months and for the tendency for a grower to choose to replant the same crop

over and over again, growers do not additionally respond to price. For example, although

strawberries have a much higher revenue per acre than any of the vegetable crops, most

owners concentrate on either strawberry crops or vegetable crops, so there are very few

cases in the data of owners switching to strawberries from vegetable crops, even though that

behavior is what one might expect based on price alone. As seen in the signi�cant positive

coe�cient on the last crop dummy interacted with a dummy for all other crops, growers tend

to replant the same crop over and over again, perhaps harvest after harvest, and therefore

may not respond to price. For example, some owners may consider themselves vegetable

growers and the cost of switching to strawberries is too high. Moreover, strawberry growers

in California tend to rely heavily on methyl bromide (Hayden-Smith, 2016), and methyl

bromide fumigation has high costs monetary and otherwise (as evidenced by our signi�cant

negative coe�cient on the methyl bromide dummy), which may o�set the high strawberry

crop price. Indeed, strawberry costs are generally an order of magnitude higher than for the

vegetable crops, in part due to fumigation cost (Richard Smith, Farm Advisor for Vegetable

Crop Production & Weed Science with the University of California Cooperative Extension

in Monterey County, personal communication, 2014).30 Owners managing their land for

long-term use may be particularly averse to fumigating with methyl bromide, for example

because it renders their crops no longer organic, and therefore may be averse to planting

crops such as strawberries that may necessitate methyl bromide fumigation. In addition,

some strawberry growers are switching to contracts in which the price plays very little role

in determining their pro�t. They are paid a baseline amount for growing the crop and may

make more money in a particularly good year, but do not bear the downside risk in a poor

year (Mohapatra et al., 2010; Guthman, 2017).

Costs are accounted for by the crop-fumigation dummies and the constant in our model,

and we allow these costs to di�er between the early and later periods of our data set. The

largest cost di�erence among crops is due to fumigation, so we include a dummy for methyl

bromide fumigation to account for the costs of fumigation and to absorb cost di�erences

among crops. As expected, the constant, which captures monthly costs that are common to

all crops, is signi�cant and negative. Also as expected, the coe�cient on methyl bromide

30We also tried including a dummy for susceptible crops (which include strawberries) in our per-period
payo�, but were unable to separately identify its coe�cient from the coe�cient on the methyl bromide
dummy owing to collinearity; we therefore do not include the susceptible crop dummy in our base-case
speci�cation.
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fumigation is signi�cant and negative as well.

We use the parameter estimates to calculate the normalized average grower welfare per

grower per month for owners and for renters over the entire time period (`all'), the early time

period (`early'), and the later time period (`late'). The welfare is calculated as the present

discounted value of the entire stream of payo�s to growers evaluated at the parameter values,

summed over all growers in the relevant data set, then divided by the number of grower-

months in the relevant data set. For each set of parameters (`all', `early', and `late'), the

average grower welfare per grower per month is normalized so that the average welfare per

grower per month for owners using that set of parameters is 100. The standard errors for

the welfare values are calculated using the parameter estimates from each of 100 bootstrap

samples. For each of the 100 bootstrap samples, we calculate the average welfare per grower

per month using the parameter estimates from that bootstrap sample, and normalize it. The

standard error of the normalized welfare is the standard deviation of the normalized welfare

over all 100 bootstrap samples.

In the absence of an intertemporal externality, and if owners and renters faced the same

state variables, we do not necessarily expect the renters to have a lower average welfare per

grower-month. Indeed, over a short enough time period, in the absence of an intertemporal

externality, and if owners and renters faced the same state variables, it is possible that

renters, who optimize over a short time horizon, may have a higher average welfare per

grower-month than owners, who optimize over a long time horizon and are therefore more

willing to incur costs and forego pro�ts in the short term in order to increase their future

pro�ts. Nevertheless, according to our welfare results in Table B.3 in Appendix B, average

welfare per grower-month is higher for owners than for renters over the entire period, in the

early time period, and in the later time period. Thus, owners who optimize over an in�nite

horizon instead of a �nite horizon and who internalize the intertemporal externality are able

to earn a higher discounted payo� per grower-month. We simulate counterfactual scenarios

to analyze potential explanations for these results in Section 7.

6.2 Robustness Checks

We run two alternative speci�cations as robustness checks. In the �rst robustness check,

we estimate our dynamic structural econometric model using lagged crop prices rather than

current crop prices. In contrast to our base-case speci�cation, which assumes rational expec-

tations about crop price, this alternative speci�cation assumes that growers' best guess for

this year's crop price is last year's crop price. Table B.4 in Appendix B presents the results.

The results are robust to whether we use lagged prices or current prices.
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In our second robustness check, we examine whether the results are robust to the

possibility that some growers may plant the same crop for multiple months in a harvest

season. In our base-case speci�cation, growers receive the average price each month during

the harvest season. We run our second robustness check to address concerns related to double

counting the revenues received by growers who grow crops with multi-month harvest seasons

versus crops that grow in potentially only one-month harvest seasons (namely spinach).

In particular, we examine whether the results are robust to whether we divide the

marketing year average price for each crop by its average harvest season length, and therefore

to whether we assume growers who plant the same crop for multiple months in a harvest

season receive more revenue than those who plant that crop for only one month in the harvest

season. Thus, in our second robustness check, we divide the marketing year average price for

each crop by its average harvest season length in the data set, so that the grower receives the

marketing year average price over the course of the harvest season, rather than the marketing

year average price each month during the harvest season.

For each crop, we calculate the average number of months that crop is grown during

the harvest season for that crop. On average, the length of the harvest season is less than

2 months in our data set, and equal to about 1.5 months on average for most crops. The

exception are susceptible crops, which include strawberries, and which have an average har-

vest season length of 2.59 months. In the case of strawberries, however, strawberries are

an ongoing harvest crop and therefore the more months in the harvest season it is grown,

the more product can be harvested, so it is reasonable to assume that a grower may receive

revenue each harvest month during which strawberries are grown.

For each crop and year, we divide the revenue by the average number of months for

that crop and rebin the revenue values. This method better accounts for concerns about

crops with a long growing season (e.g., strawberries) arti�cially having a higher value for

revenue than crops with a short growing season (e.g., spinach).31

The results of the robustness check in which we divide the marketing year average price

for each crop by its average harvest season length are presented in Table B.5 in Appendix

B. Once again, the results are robust to whether we divide the marketing year average price

for each crop by its average harvest season length.

In addition to our two robustness checks, we also try a third alternative speci�cation

31We choose not to model growers as only receiving the revenue for their crop the �rst month of the harvest
season, as this method would not explain why growers may plant the same crop for multiple months in the
harvest season. Staying in the harvest season longer sometimes yields higher revenue because it enables the
grower to harvest more product or replant the crop for more harvest, both of which are better captured by
having growers receive more revenue if they stay in the harvest season longer. For similar reasons, we choose
not to model growers as only receiving the revenue for their crop the last month of the harvest season.
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in which we drop the terms interacting the spinach dummy with broccoli history and with

methyl bromide history, and include a spinach history variable instead. As seen in the results

in Table B.6 in Appendix B, the spinach history variable does not have a signi�cant e�ect

in the entire period, in the early period, or in the later period. We therefore do not include

spinach history in our base-case speci�cation.

6.3 Alternative Speci�cations for Owners vs. Renters

In our base-case speci�cation, owners and renters have the same parameters θ in their per-

period payo� functions, but di�er in their time horizons. Thus, in our base-case speci�ca-

tions, we pool owners (who have an in�nite horizon) and renters (who have a �nite horizon)

together and estimate the same parameters θ for both owners and renters.

We also try several alternative speci�cations for owners vs. renters. In the �rst alter-

native speci�cation for owners vs. renters, we allow owners (who have an in�nite horizon)

and renters (who have a �nite horizon) to not only have di�erent time horizons for their

dynamic decision-making (i.e., long- vs. short-term), but also have di�erent parameters θ

in their per-period payo� functions as well. The parameters θ in the payo� functions mea-

sure how di�erent actions and state variables a�ect their per-period payo�. Di�erences in

parameter values between owners and renters may arise if there are di�erences in incentives

faced by renters versus owners � including di�erences in monetary bene�ts, monetary costs,

non-monetary bene�ts, non-monetary costs, marketing contracts, shipper contracts, and/or

renter contracts � that lead to di�erences between owners and renters in how di�erent actions

and state variables a�ect their per-period payo�s. We conduct a likelihood ratio test of the

model allowing owners and renters to have di�erent parameters versus the analogous base-

case model constraining owners and renters to have the same parameters to see if owners

and renters have di�erent parameters.

The results of the �rst alternative speci�cation for owners vs. renters, in which we

allow owners and renters to not only have di�erent time horizons for their dynamic decision-

making, but also have di�erent parameters θ, are reported in Table 2 for owners and Table

3 for renters.32 As seen in the results of the likelihood ratio tests, the data rejects the

constrained base-case model constraining owners and renters to have the same parameters,

since the unconstrained model allowing owners and renters to have di�erent parameters

produces a statistically signi�cant improvement in the ability of the model to �t the data at

a 0.1% level for both owners (Table 2) and renters (Table 3).

We obtain similar results when we allow the last crop dummy to di�er for susceptible

32Standard errors are reported in Table B.7 for owners and Table B.8 for renters in Appendix B.
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crops and all other crops in Table B.9 for owners and Table B.10 for renters in Appendix B.

Once again, as seen in the results of the likelihood ratio tests, the data rejects the constrained

base-case model constraining owners and renters to have the same parameters, since the

unconstrained model allowing owners and renters to have di�erent parameters produces a

statistically signi�cant improvement in the ability of the model to �t the data at a 0.1% level

for both owners (Table B.9) and renters (Table B.10).33

In the second alternative speci�cation for owners vs. renters, we allow owners and

renters to have not only the same parameters θ in their per-period payo� functions, but also

the same in�nite time horizon for their dynamic decision-making. Thus, this second alter-

native speci�cation for owners vs. renters assumes that even though renters are short-term

growers who only grow on the �eld for a short period of time, existing renter contracts inter-

nalize the intertemporal externality imposed by renters on future renters and the landowner,

and thus induce renters to make the dynamically optimal decision as if they had an in�nite

time horizon rather than a �nite time horizon. The results are reported in Table B.11.

We then conduct a likelihood ratio test of the �rst alternative speci�cation for owners

vs. renters � in which we allow owners and renters to not only have di�erent time horizons

for their dynamic decision-making, but also have di�erent parameters � versus the second

alternative speci�cation for owners vs. renters � in which we constrain owners and renters

to have the same parameters and the same in�nite time horizon � to see if owners and

renters have di�erent parameters and di�erent time horizons. As seen in the results of the

likelihood ratio tests, the data rejects the constrained model constraining owners and renters

to have the same parameters and same in�nite time horizon, since the unconstrained model

allowing owners and renters to have di�erent parameters and di�erent time horizons produces

a statistically signi�cant improvement in the ability of the model to �t the data at a 0.1%

level for both owners (Table 2) and renters (Table 3). We obtain similar results when we

allow the last crop dummy to di�er for susceptible crops and all other crops in Table B.12.34

33For owners (Table B.9), we are unable to separately identify the last crop dummy for susceptible crops
(other than lettuce) and for all other crops. For both owners (Table B.9) and renters (Table B.10), results
of likelihood ratio tests show that the data does not reject the constrained model constraining the last crop
dummy to be the same for susceptible crops and for all other crops, since the unconstrained model allowing
the last crop dummy to di�er for susceptible crops and for all other crops does not produce a statistically
signi�cant improvement in the ability of the model to �t data at a 5% level. Thus, for the �rst alternative
speci�cation for owners vs. renters, wherein owners and renters have di�erent time horizons and di�erent
parameters, the speci�cation in which we estimate the same last crop dummy for all crops, as reported in
Table 2 for owners and Table 3 for renters, is a better �t to the data.

34We also conduct a likelihood ratio test of the base-case model allowing owners and renters to have the
same parameters but di�erent time horizons versus the model constraining owners and renters to have the
same parameters and the same in�nite time horizon. As seen in the results of the likelihood ratio tests, the
data does not reject the constrained model constraining owners and renters to have the same parameters
and same in�nite time horizon, since the unconstrained model allowing owners and renters to have the same
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Since the likelihood ratio tests show that allowing owners and renters to have di�erent

parameters as well as di�erent time horizons produces a statistically signi�cant improvement

in the ability of the model to �t the data, we also run the base-case speci�cation and the

second alternative speci�cation for owners vs. renters using two alternative speci�cations for

the per-period payo� in which owners and renters have some of the same parameters θ in

their per-period payo�, while some other parameters θ are allowed to vary either by owner vs.

renter or by time period. In these alternative speci�cations of the per-period payo�, we use

the same per-period payo� function for owners and renters, but we allow those parameters

that appear to di�er between owners and renters in Tables 2 and 3 to di�er between owners

and renters, and allow parameters that appear to di�er between early and late periods in

Tables 1, 2, and/or 3 to di�er between the early and late periods. In particular, in both

alternative speci�cations for the per-period payo�, the coe�cient on the spinach dummy

is allowed to di�er by time period (early vs. late); and the coe�cients on broccoli dummy,

methyl bromide dummy, and price at the time of harvest are allowed to di�er between owners

and renters. In addition, in the second alternative speci�cation for the per-period payo�, the

coe�cient on the last crop dummy no longer di�ers between susceptible crops and all other

crops, but is instead allowed to di�er between owners and renters. All other parameters are

the same for owners and renters and for the entire time period.

Table B.13 presents the results for both alternative speci�cations for the per-period

payo� when owners and renters have some of the same parameters θ in their per-period

payo� functions, but di�er in their time horizons. As seen in the results of the likelihood

ratio tests, the data rejects the constrained model constraining owners and renters to have

some of the same parameters, since the unconstrained model allowing owners and renters

to have di�erent parameters and di�erent time horizons produces a statistically signi�cant

improvement in the ability of the model to �t data at a 0.1% level for both owners and

renters.

Table B.14 presents the results for both alternative speci�cations for the per-period

payo� when owners and renters have not only some of the same parameters θ in their per-

period payo� functions, but also the same in�nite time horizon for their dynamic decision-

making. As seen in the results of the likelihood ratio tests, the data rejects the constrained

model constraining owners and renters to have some of the same parameters and same in�nite

parameters but di�erent time horizons does not produce a statistically signi�cant improvement in the ability
of the model to �t the data at a 5% level. Nevertheless, the �rst alternative speci�cation for owners vs.
renters � in which we allow owners and renters to not only have di�erent time horizons for their dynamic
decision-making, but also have di�erent parameters � better �ts the data than both the base-case model and
the model constraining owners and renters to have the same parameters and the same in�nite time horizon.
We obtain similar results when we allow the last crop dummy to di�er for susceptible crops and all other
crops in Table B.12.
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time horizon, since the unconstrained model allowing owners and renters to have di�erent

parameters and di�erent time horizons produces a statistically signi�cant improvement in

the ability of the model to �t data at a 0.1% level for both owners and renters.

Thus, the best-�t model for both owners and renters is the model allowing owners and

renters to have di�erent parameters and di�erent time horizons, as reported in Table 2 for

owners and Table 3 for renters.35 When owners and renters are allowed to have di�erent

parameters in their per-period payo�, there are several main di�erences between the payo�

parameters of owners and renters. First, in the early period, the coe�cient on the spinach

dummy is less negative for renters than for owners. Thus, existing contracts did not penalize

renters for planting spinach in the early period. Second, in the late period, the coe�cient

on the lettuce dummy is less positive for renters than for owners, suggesting that renters

bene�ted less from planting lettuce in the late period than owners did, perhaps because V.

wilt was more of a problem for renters in the late period because the previous renters working

on these �elds in the early period had not been penalized for planting spinach. Third, the

broccoli dummy has a signi�cant positive total average e�ect for owners, but its total average

e�ect is not signi�cant at a 5% level for renters. Thus, existing contracts did not incentivize

renters to plant broccoli despite its e�ectiveness as a control option and despite the future

bene�ts it provides for future renters and the landowner. Fourth, the coe�cient on the methyl

bromide dummy is less negative for renters than for owners, suggesting that renters face lower

costs (monetary and otherwise) than owners do for fumigating with methyl bromide. Owners

managing their land for long-term use may be particularly averse to fumigating with methyl

bromide, for example because it renders their crops no longer organic. As strawberry growers

in California tend to rely heavily on methyl bromide (Hayden-Smith, 2016), the lower costs

(monetary and otherwise) of methyl bromide fumigation for renters may explain in part why

renters are more likely to plant susceptible crops (including strawberries) than owners are.

7 Counterfactual Simulations

There are several possible explanations for why the crop and fumigation decisions di�er

between owners and renters, and why the crop and fumigation decisions of renters di�er

in the earlier and later periods. One possible explanation is that renters faced di�erent

conditions such as di�erent soil microsclerotia levels, output prices, revenues, soil quality,

land quality, and previous control option use in the earlier period than in the later period;

and similarly that owners had di�erent characteristics, faced di�erent conditions, and had

35Standard errors are reported in Table B.7 for owners and Table B.8 for renters in Appendix B.
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di�erent �elds than renters did. Di�erences in conditions faced by owners and renters, and

by renters in the early and late periods, are captured in part by di�erences in the data (or

state variables) they faced. For example, as seen in the summary statistics in Tables A.1

and A.2 in Appendix A, one di�erence in the land and soil conditions between renters and

owners is that renters worked on land that had lower broccoli history than owners did.

A second possible explanation for the di�erences in crop and fumigation decisions is

that owners optimize over an in�nite horizon, while renters optimize over a �nite horizon.

The di�erences in time horizons may explain di�erences in crop and fumigation decisions

between owners and renters. The di�erences in time horizons may also explain why the crop

and fumigation decisions change over time for renters but not for owners: the intertemporal

externality that renters impose on future renters may cause conditions faced by renters to

change and possibly deteriorate over time, leading to di�erent crop and fumigation decisions

by renters in the earlier and later periods.

A third possible explanation for the di�erences in crop and fumigation decisions be-

tween owners and renters, and between renters in the earlier periods and renters in the later

periods, is that the parameters in the growers' payo� functions, which measure how di�erent

actions and state variables a�ect their per-period payo�, are di�erent between owners and

renters, and between renters in the earlier periods and renters in the later periods. Dif-

ferences in parameter values between owners and renters may arise if there are di�erences

in incentives faced by renters versus owners � for example due to di�erences in monetary

bene�ts, non-monetary bene�ts, monetary costs, non-monetary costs, marketing contracts,

shipper contracts, and/or renter contracts � that lead to di�erences between owners and

renters in how di�erent actions and state variables a�ect their per-period payo�s. Similarly,

di�erences in parameter values between renters in the earlier periods and renters in the later

periods may re�ect in part di�erences over time in incentives faced by renters � re�ecting dif-

ferences over time in the severity of V. wilt, the e�ectiveness of control options, and renter

contracts � that lead to di�erences over time in how di�erent actions and state variables

a�ect the per-period payo�s of renters.

To distinguish among the di�erent explanations for di�erences in crop and fumigation

decisions between owners and renters, and between renters in the earlier periods and renters

in the later periods, we simulate counterfactual scenarios to analyze how di�erences in grower

crop and fumigation decisions relate to di�erences in the data, di�erences in time horizons,

and di�erences in parameter estimates. In particular, we simulate counterfactual scenarios

that vary the data type (owner or renter), data time period (all, early, or late), time horizon

(in�nite or �nite), parameter type (owner or renter), and/or parameter time period (all, early,

or late). By using the results of our structural model to simulate owners on renter �elds and
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renters on owner �elds, our counterfactual simulations also enable us to address any concerns

that the owners and renters in our data set may have di�ered in their characteristics, in the

conditions they faced, and/or in the quality of their �elds.

For each counterfactual scenario, we run twenty-�ve simulations.36 In each simulation,

we start with the state variables in the relevant data set from the �rst year of the relevant

time period, and we simulate the actions and state variables for all relevant growers for all

relevant time periods of the relevant time horizon. For each time period of the simulation,

we take a draw from the choice probabilities evaluated at the state variables to simulate

the action choice for each grower. We also take a draw from the transition density for the

exogenous state variables (crop prices) to determine the values of the exogenous state vari-

ables next period.37 We then calculate next period's values of the endogenous state variables

(methyl bromide fumigation history, broccoli history, and last crop dummy), which evolve

deterministically as a function of this period's action. Once the next period's state vari-

ables are determined, we draw the action for the next period from the choice probabilities

evaluated at next period's state variables. We continue simulating actions and state vari-

ables for the length of the time horizon. For each simulation, we calculate the number of

grower-months in each action type and the average welfare per grower-month.38 For each

counterfactual scenario, our estimates for the number of grower-months in each action type

are calculated by taking the average of the number of grower-months in each action type

over all twenty-�ve simulations for that scenario.

Standard errors are calculated using a nonparametric bootstrap. In particular, for each

counterfactual scenario, we calculate the standard errors using the parameter estimates from

each of twenty-�ve bootstrap samples. For each of the twenty-�ve bootstrap samples, we run

twenty-�ve simulations using the parameter estimates from that bootstrap sample. For each

counterfactual scenario, the standard error of the simulation statistics (e.g., mean fraction)

for that scenario is the standard deviation of the respective statistic over all twenty-�ve

bootstrap samples.39

36Constraints on computational time, particularly for the standard error calculations below, which require
running twenty-�ve simulations using the parameter estimates from each of the twenty-�ve bootstrap samples,
preclude us from running more than twenty-�ve simulations per scenario.

37As explained in more detail in Section 4, since the price variable we use is the annual county average,
we assume that the choice of any one grower would not have a large enough e�ect to in�uence prices and
therefore that the distribution of price next period does not depend on any single grower's decisions this
period.

38If a grower-month is missing in the actual data, we do not use that grower-month in the simulated data
in calculating the number of grower-months in each action type and the average welfare per grower-month.

39Constraints on computational time preclude us from running the twenty-�ve simulations per bootstrap
sample per scenario for more than twenty-�ve bootstrap samples per scenario. When we calculated the
standard errors of the simulation statistics using 100 bootstrap samples instead of twenty-�ve bootstrap
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To examine whether the owners in our data set would have made di�erent crop and

fumigation decisions in di�erent periods of time if in one period (e.g., the early period) they

faced the conditions (owner data) and/or parameters from a di�erent period (e.g., the later

period), we run counterfactual scenarios in which we simulate the decision-making of owners

using owner data and owner in�nite horizon under various di�erent combinations of time

periods for parameters and owner data. Figure C.1 in Appendix C presents the simulation

results of the mean fraction of grower-months in each action for nine di�erent counterfactual

scenarios using owner data and owner in�nite horizon using the structural parameters from

the base-case speci�cation in which owners and renters have the same parameters in Table

1. Each of the nine graphs presents the results from a di�erent counterfactual scenario using

owner data from one of three time periods (all, early, or late) and using parameter estimates

from one of three time periods (all, early, or late). Across the di�erent combinations of time

periods for parameters and owner data, results show that the majority of grower-months are

planted to lettuce. These crop-fumigation pro�les resemble the actual choices of owners in the

data in Figure 1. We also obtain similar results in Figure C.2 in Appendix C, which presents

the simulation results of the mean fraction of grower-months in each action for the scenarios

using owner data, owner in�nite horizon, and the structural parameters for owners from the

best-�t speci�cation, wherein owners and renters are allowed to have di�erent parameters,

in Table 2.40 When examining the fraction of grower-months in each action type by year for

the simulations using the owner parameters, data, and in�nite horizon (Figures C.3-C.5) in

Appendix C, we similarly �nd that the crop mix is similar to the actual owner choices. Thus,

the simulation results using owner data and owner (in�nite) horizon appear to replicate the

actual owner decisions relatively well.

To examine whether the owners in our data set would have made di�erent crop and

fumigation decisions if they had optimized over a �nite horizon rather than an in�nite hori-

zon, and therefore whether di�erences in owner and renter crop and fumigation decisions

are a result of di�erences in decision-making time horizon, we run counterfactual scenarios

in which we simulate the decision-making of growers who are faced with the conditions (or

state variables) faced by the owners in our data set (owner data) but who optimize over a

�nite horizon (renter horizon) instead of an in�nite horizon. Figure 2 presents the simulation

results of the mean fraction of grower-months in each action for nine di�erent counterfactual

scenarios using owner data and renter �nite horizon using the structural parameters from the

samples for the �rst counterfactual scenario we ran � the counterfactual scenario using owner parameters for
the entire period, owner data for the entire period, and an owner in�nite horizon � the values of the standard
errors calculated using 100 bootstrap samples were similar to those calculated using twenty-�ve bootstrap
samples.

40Standard errors for the owner parameters are reported in Table B.7 in Appendix B.
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base-case speci�cation in Table 1. Across the di�erent time periods for both the data and

the parameters, results of our counterfactual scenarios using a �nite horizon show that when

growers face a short-term planning horizon rather than a long-term one, they are less likely

to engage in control options such as planting broccoli or fumigating with methyl bromide

that require incurring current costs for future gain.

To examine whether the owners in our data set would have made di�erent crop and

fumigation decisions if they had faced the same conditions and values of the state variables

that the renters faced (renter data) rather than their actual conditions and state variables

(owner data), and therefore whether the di�erences in crop and fumigation decisions between

owners and renters are due to di�erences in data, which re�ect di�erences in the conditions

faced by renters and owners, we run counterfactual scenarios in which we simulate the

decision-making of growers who optimize over an in�nite horizon (owner horizon), but who

are faced with the conditions (or state variables) faced by the renters in our data set (renter

data). Figure 3 presents the simulation results of the mean fraction of grower-months in each

action for nine di�erent counterfactual scenarios using renter data and owner in�nite horizon

using the structural parameters from the base-case speci�cation in Table 1. The results

are similar across the parameter times, but di�er across the data times. Using the early

renter data results in lettuce being the most frequent crop choice, followed by susceptible

crops; while using the late renter data results in susceptible crops being the most frequent

crop choice, followed by lettuce. These crop-fumigation pro�les resemble the actual renter

decisions observed in the data in Figure 1. We also obtain similar results in Figure C.6 in

Appendix C, which presents the simulation results of the mean fraction of grower-months

in each action for nine di�erent counterfactual scenarios using renter data, owner in�nite

horizon, and the structural parameters for owners from the best-�t speci�cation, wherein

owners and renters are allowed to have di�erent parameters, in Table 2.41 These results

suggest that the di�erences in crop-fumigation choices between renters and owners may be

due in part to di�erences in data, which capture di�erences in state variables and therefore

di�erences in the conditions faced by growers.

The counterfactual scenarios in Figure 3 and Figure C.6 in Appendix C also enable us

to examine whether di�erences in renter crop and fumigation decisions between the early and

late period were due to di�erences in the conditions and values of the state variables that the

renters had faced in the early and late period, as captured by di�erences in the renter data in

di�erent time periods. Irrespective of the parameter time, using the early renter data results

in crop-fumigation pro�les that begin to resemble the actual renter decisions in the early

period in Figure 1, with lettuce being the most frequent crop choice, followed by susceptible

41Standard errors for the owner parameters are reported in Table B.7 in Appendix B.
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crops. Similarly, irrespective of the parameter time, using the late renter data results in

crop-fumigation pro�les that begin to resemble the actual renter decisions in the late period

in Figure 1, with susceptible crops being the most frequent crop choice, followed by lettuce.

This pattern seems to suggest that the di�erences in crop-fumigation choices between renters

in the early and late period may be due in part to di�erences in data faced by renters in the

early and late period, which capture di�erences in state variables and therefore di�erences

in the conditions faced by renters in the early and late period.

To examine whether the owners in our data set would have made di�erent crop and

fumigation decisions if they had made decisions based on the parameters faced by renters

(renter parameters) rather than their actual (owner) parameters, and therefore whether the

di�erences in crop and fumigation decisions between owners and renters are due to di�er-

ences in parameter estimates � which re�ect di�erences in incentives, monetary bene�ts,

non-monetary bene�ts, monetary costs, non-monetary costs, marketing contracts, shipper

contracts, and/or renter contracts � Figure 4 presents the simulation results of the mean

fraction of grower-months in each action for nine di�erent counterfactual scenarios using

owner data, owner in�nite horizon, and the structural parameters for renters (renter param-

eters) from the best-�t speci�cation, wherein owners and renters are allowed to have di�erent

parameters, in Table 3.42 Results show that, when using the renter parameters, planting sus-

ceptible crops (other than lettuce) is the most frequently chosen action choice, and there is

very little if any planting of broccoli or fumigation with methyl bromide. Certain cases, such

as the middle column of Figure 4, which uses the renter parameters from the early period,

and which therefore re�ects renter contracts in the early period, closely approximate the ac-

tual decisions made by renters in the data. When examining the fraction of grower-months

in each action type by year in Figures C.7-C.9 in Appendix C, we �nd that there is very

little if any planting of broccoli or fumigating with methyl bromide, except in the very �rst

years of the simulations with an in�nite horizon. In the �rst years of the simulation, the

crop mix is split between lettuce and other susceptible crops. As the years progress in the

simulation, a larger and larger portion of the grower-months is planted to susceptible crops

(other than lettuce). In the actual observed choices of renters over time in Figure A.2 in

Appendix A, there is also a gradual switch from lettuce to other susceptible crops, but it

is not as dramatic as in the simulations. Thus, when using the renter parameters, which

re�ect the incentives faced by renters due in part to renter contracts, growers are less likely

to engage in control options such as planting broccoli that require incurring current costs for

future gain.

42Standard errors for the renter parameters are reported in Table B.8 in Appendix B.
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8 Conclusion

In this paper we analyze and compare short- versus long-term decision-making for crop

disease control by developing and estimating a dynamic structural econometric model of V.

wilt management over the period 1993 to 2011. Results show that although planting broccoli

can be an e�ective control option, growers with a short time horizon are less likely to incur

costs and forego pro�ts in the current period for future bene�t by planting this low-return,

high-cost control crop. Renters plant broccoli less frequently than owners do, and are even

less likely to plant broccoli in the late period (2001 to 2011) compared to the early period

(1993 to 2000). In addition, renters in the early period plant spinach more frequently than

owners do. By planting spinach and not planting broccoli, renters impose an intertemporal

externality on future renters and landowners, thereby raising the microsclerotia levels and

lowering the land quality of the land used by future renters. As a consequence, renters work

on land that has lower broccoli history, higher microsclerotia levels, and lower quality than

owners do. These di�erences in the conditions faced by renters and owners, and in conditions

faced by renters in the early and late period, further contribute to di�erences in the crop

and fumigation choices being made by renters and owners, and by renters in the early and

late period.

Although contracts can be a potential method for internalizing an externality between

di�erent parties, our empirical results show that existing renter contracts do not fully inter-

nalize the intertemporal externality imposed by renters on future renters and the landowner.

Di�erences in payo� parameter estimates between renters and owners, which re�ect di�er-

ences in incentives faced by owners and renters that lead to di�erences in how di�erent

actions and state variables a�ect their per-period payo�s, suggest that existing contracts

did not penalize renters for planting spinach in the early period; and moreover that existing

contracts did not incentivize renters to plant broccoli despite its e�ectiveness as a control

option and despite the future bene�ts it provides for future renters and the landowner. In

counterfactual simulations using the renter payo� parameters, which re�ect renter contracts

and incentives faced by renters, growers are less likely to engage in control options such as

planting broccoli that require incurring current costs for future gain.

There are several possible reasons why existing renter contracts do not fully internal-

ize the intertemporal externality imposed by renters on future renters and the landowner,

including the relatively recent development of the disease and knowledge of its causes, more

restrictive contracts not being the norm, the possibility of land unknowingly being contam-

inated before rental, di�culty in enforcing or monitoring aspects of the contract such as

whether boots and equipment are washed between �elds, di�culty in enforcing penalties on
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previous renters no longer working on the �eld for the contamination of a future crop years

later, and/or di�culty in ascertaining how much each of the previous renters contributed to

the contamination once it is discovered. V. wilt was not documented on lettuce until 1995

and was not observed on lettuce in Monterey County until 1999, and the likely sources of the

disease were not known until years later. If contracts that include stipulations to control V.

wilt are not the norm in the area, highly restrictive contracts � such as a contract that re-

quires or incentivizes renters to plant broccoli, a low-return crop, in lieu of a more pro�table

crop � may be less desirable and receive lower rents. In addition, if such highly restrictive,

less desirable contracts would only be accepted by lower quality renters, who may be even

less likely to make long-term investments in land and soil quality than higher quality renters

are, then issues of adverse selection and possible market unraveling (Akerlof, 1970) may arise

as well, and further explain why renter contracts do not fully internalize the intertemporal

externality imposed by renters on future renters and the landowner.

Our results point to several potential avenues for future research. First, in order to

best examine and illustrate the di�erences in long-term and short-term decision-making for

crop disease control, and the intertemporal externalities that arise with the latter, we have

focused on extreme and clearly de�ned cases of long- and short-term growers, and we have

de�ned 'owners' and 'renters' in such a way that precludes the possibility that a grower might

switch from one status to the other during the time period of our data set. In future work,

we hope to consider growers with di�erent lengths of history on a �eld, and also to add an

option for owners to rent land to short-term users. Second, when we consider growers with

di�erent lengths of history on a �eld in future work, unobserved heterogeneity may become

more important. In our best-�t speci�cation, which allows the parameters to di�er for owners

and renters, we allow for unobserved heterogeneity between owners and renters by estimating

the dynamic structural econometric model separately for owners and for renters. We hope

in future work to further capture unobserved heterogeneity using methods developed by

Arcidiacono and Miller (2011), Scott (2013), and Connault (2016). Third, although costs

are accounted for by the crop-fumigation dummies and the constant in our model, although

we allow these costs to di�er between the early and later periods of our data set, although

the costs we capture include monthly input and growing costs that are incurred even during

months prior to harvest, and although the costs we capture include both monetary and

non-monetary costs, we do not explicitly model changes in crop and fumigation costs over

time, as time series data on growers' crop and fumigation costs are not available.43 In future

43As explained in detail in Section 5, cost estimates for Monterey County from the University of California
`Cost and Return Studies' are not available for either spinach or any resistant crop for any of the 19 years
of our analysis; are not available for any of the crops in our model for any year in the early period; are only
available for broccoli for two out of the 19 years of our analysis; and are only available for lettuce for three
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work we hope to develop methods and/or acquire data to enable us to further capture and

estimate crop and fumigation costs and changes in these costs over time.

out of the 19 years of our analysis (University of California Agricultural Issues Center, 2020a,b).
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Figure 1
Actual fraction of grower-months in each action
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Notes: Figures present the actual mean fraction of grower-months in each action for owners
and renters, as calculated from the actual data for owners and renters from the entire time
period from 1993 to 2011 (`all'), the early period from 1993 to 2000 (`early'), and the later
period from 2001 to 2011 (`late').
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Table 1
Structural parameter estimates: Base-case speci�cation

All Early Late

Coe�cients in the per-period payo� function on:

Lettuce dummy 1.3687∗∗∗ 1.3916∗∗∗ 1.3486∗∗∗

(0.0142) (0.054) (0.0268)
Spinach dummy −1.0234∗∗∗ −0.7893∗∗∗ −1.3114∗∗∗

(0.0077) (0.0978) (0.0049)
Broccoli dummy −0.7452∗∗∗ −0.9193∗∗∗ −0.6099∗∗∗

(0.0082) (0.1033) (0.0246)
Methyl bromide dummy −5.0341∗∗∗ −5.0627∗∗∗ −5.0226∗∗∗

(0.0022) (0.3354) (0.0066)
Lettuce dummy*Broccoli history 0.2819∗∗∗ 0.2815∗∗∗ 0.2893∗∗∗

(0.0078) (0.0220) (0.0130)
Spinach dummy*Broccoli history 0.1327∗∗∗ 0.0987 0.1960∗∗∗

(0.0100) (0.0987) (0.0209)
Lettuce dummy*Methyl bromide history −0.1526∗∗∗ −0.2640∗∗ −0.0428

(0.0280) (0.0817) (0.0481)
Spinach dummy*Methyl bromide history −0.2777∗∗∗ −0.3192 −0.4895∗∗∗

(0.0026) (0.3044) (0.0019)
Last crop dummy*Susceptible 9.3716∗∗∗ 8.9883∗∗∗

(0.0012) (0.0068)
Last crop dummy*(1-Susceptible) 13.3819∗∗∗ 13.4399∗∗∗

(0.0001) (0.0007)
Last crop dummy 13.5478∗∗∗

(1.1456)
Price*Harvest month dummy −0.0254 −0.0371 −0.0100

(0.0157) (0.0207) (0.0144)
Constant −1.2615∗∗∗ −1.2139∗∗∗ −1.3245∗∗∗

(0.0166) (0.1587) (0.0428)

Total average e�ects on per-period payo� of:

Lettuce dummy 1.3775∗∗∗ 1.4002∗∗∗ 1.3575∗∗∗

(0.0142) (0.0540) (0.0268)
Spinach dummy −1.0195∗∗∗ −0.7868∗∗∗ −1.3056∗∗∗

(0.0077) (0.0978) (0.0049)
Broccoli history 0.1611∗∗∗ 0.1635∗∗∗ 0.1638∗∗∗

(0.0044) (0.0127) (0.0072)
Methyl bromide history −0.0930∗∗∗ −0.1610∗∗∗ −0.0352

(0.0156) (0.0476) (0.0265)

Number of growers 4,024 2,329 2,537
Number of observations 34,570 14,855 19,715

Notes: In our base-case speci�cation, owners and renters have the same parameters θ in their per-period
payo� functions, but di�er in their time horizons: owners have an in�nite horizon and renters have a �nite
horizon. Table reports results from estimating the base-case model using data from the entire time period
from 1993 to 2011 (`all'), the early period from 1993 to 2000 (`early'), and the later period from 2001 to 2011
(`late'). For the early time period, as seen in Table B.1 in Appendix B, we are unable to separately identify
the last crop dummy for susceptible crops (other than lettuce) and for all other crops; we thus estimate one
last crop dummy for all crops. Standard errors are in parentheses. Signi�cance codes: ∗∗∗ 0.1% level, ∗∗
1% level, ∗ 5% level.
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Table 2
Structural parameter estimates for owners: Di�erent parameters for owners and renters speci�cation

All Early Late

Coe�cients in the per-period payo� function on:

Lettuce dummy 1.4346∗∗∗ 1.3844∗∗∗ 1.4691∗∗∗

Spinach dummy −1.1311∗∗∗ −1.1905∗∗∗ −1.0703∗∗∗
Broccoli dummy −0.3320 −0.5953 −0.1615
Methyl bromide dummy −6.0705∗∗∗ −5.6993∗∗∗ −6.3633∗∗∗
Lettuce dummy*Broccoli history 0.3682∗∗∗ 0.3674∗∗∗ 0.3707∗∗∗

Spinach dummy*Broccoli history 0.2643 0.2665 0.2573
Lettuce dummy*Methyl bromide history 0.3717 0.1992 0.8501∗

Spinach dummy*Methyl bromide history 0.0260 0.0787 0.2734
Last crop dummy 21.2161∗∗∗ 24.2249∗∗∗ 20.0534∗∗∗

Price*Harvest month dummy −0.1585∗∗∗ −0.1558∗∗∗ −0.16∗∗∗
Constant −1.1482∗∗∗ −1.0881∗∗∗ −1.1906∗∗∗

Total average e�ects on per-period payo� of:

Lettuce dummy 1.4498∗∗∗ 1.4003∗∗∗ 1.4838∗∗∗

Spinach dummy −1.1206∗∗∗ −1.1791∗∗∗ −1.0603∗∗∗
Broccoli history 0.2424∗∗∗ 0.2390∗∗∗ 0.2460∗∗∗

Methyl bromide history 0.2378 0.1276 0.5554∗

Likelihood ratio test to compare with model constraining owners and renters to have the same parameters:

HO: Owners and renters have the same parameters

LR Test statistic D for owners 544.0∗∗∗ 170.6∗∗∗ 403.2∗∗∗

Likelihood ratio test to compare with model constraining owners and renters to have same parameters and same in�nite horizon:

HO: Owners and renters have the same parameters and same owner in�nite horizon

LR Test statistic D for owners 384.0∗∗∗ 115.6∗∗∗ 310.4∗∗∗

Number of growers 615 615 615
Number of observations 25,761 10,833 14,928

Notes: Table presents owner parameter estimates for the speci�cation in which we allow owners (who have an in�nite horizon) and renters (who have a
�nite horizon) to not only have di�erent time horizons, but also have di�erent parameters θ in their per-period payo� functions as well. Table reports
results from estimating the model using data from the entire time period from 1993 to 2011 (`all'), the early period from 1993 to 2000 (`early'), and
the later period from 2001 to 2011 (`late'). Standard errors are in parentheses. Signi�cance codes: ∗∗∗ 0.1% level, ∗∗ 1% level, ∗ 5% level.
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Table 3
Structural parameter estimates for renters: Di�erent parameters for owners and renters speci�cation

All Early Late

Coe�cients in the per-period payo� function on:

Lettuce dummy 1.1418∗∗∗ 1.3062∗∗∗ 0.9446∗∗∗

Spinach dummy −0.9102∗∗∗ −0.4113∗∗∗ −1.6942∗∗∗
Broccoli dummy −0.7869∗ −0.7347∗∗∗ −0.8572∗∗∗
Methyl bromide dummy −3.4359∗∗∗ −3.2691∗∗∗ −3.4927∗∗∗
Lettuce dummy*Broccoli history 0.0900 0.0865 0.1188
Spinach dummy*Broccoli history 0.0685 −0.0602 0.2835
Lettuce dummy*Methyl bromide history −0.7858 −1.2257∗∗ −0.5477
Spinach dummy*Methyl bromide history −0.6607∗∗∗ −0.5787∗∗∗ −1.8690∗∗∗
Last crop dummy 6.2960∗∗∗ 6.5520∗∗∗ 6.0021∗∗∗

Price*Harvest month dummy 0.1689∗∗∗ 0.1091∗∗∗ 0.2249∗∗∗

Constant −1.4824∗∗∗ −1.3666∗∗∗ −1.6426∗∗∗

Total average e�ects on per-period payo� of:

Lettuce dummy 1.1421∗∗∗ 1.3049∗∗∗ 0.9458∗∗∗

Spinach dummy −0.9100∗∗∗ −0.4129∗∗∗ −1.6914∗∗∗
Broccoli history 0.0322 0.0331 0.0367
Methyl bromide history −0.2830 −0.5310∗∗ −0.1763

Likelihood ratio test to compare with model constraining owners and renters to have the same parameters:

HO: Owners and renters have the same parameters

LR Test statistic D for renters 723.4∗∗∗ 215.2∗∗∗ 592.0∗∗∗

Likelihood ratio test to compare with model constraining owners and renters to have same parameters and same in�nite horizon:

HO: Owners and renters have the same parameters and same owner in�nite horizon

LR Test statistic D for renters 597.0∗∗∗ 188.2∗∗∗ 468.2∗∗∗

Number of growers 3,409 1,714 1,922
Number of observations 9,306 4,144 5,162

Notes: Table presents renter parameter estimates for the speci�cation in which we allow owners (who have an in�nite horizon) and renters (who have a
�nite horizon) to not only have di�erent time horizons, but also have di�erent parameters θ in their per-period payo� functions as well. Table reports
results from estimating the model using data from the entire time period from 1993 to 2011 (`all'), the early period from 1993 to 2000 (`early'), and
the later period from 2001 to 2011 (`late'). Standard errors are in parentheses. Signi�cance codes: ∗∗∗ 0.1% level, ∗∗ 1% level, ∗ 5% level.
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Figure 2
Counterfactual fraction of grower-months in each action:
Simulations using owner data and renter horizon
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Notes: Figures present the counterfactual results for mean fraction of grower-months in
each action from 9 di�erent counterfactual scenarios using parameter estimates from our
base-case speci�cation in Table 1 applied to owner data and a renter �nite horizon. In
our base-case speci�cation, owners and renters have the same parameters θ in their per-
period payo� functions, but di�er in their time horizons: owners have an in�nite horizon
and renters have a �nite horizon. Each of the 9 �gures presents the results from a di�erent
counterfactual scenario using owner data from one of 3 time periods (all, early, or late) and
using parameter estimates from one of 3 time periods (all, early, or late). For each of the
9 counterfactual scenarios, the fraction of grower-months in each action is averaged over 25
simulations. Error bars represent the 95% con�dence interval, which is calculated using a
nonparametric bootstrap.
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Figure 3
Counterfactual fraction of grower-months in each action:
Simulations using renter data and owner horizon
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Notes: Figures present the counterfactual results for mean fraction of grower-months in
each action from 9 di�erent counterfactual scenarios using parameter estimates from our
base-case speci�cation in Table 1 applied to renter data and an owner in�nite horizon. In
our base-case speci�cation, owners and renters have the same parameters θ in their per-
period payo� functions, but di�er in their time horizons: owners have an in�nite horizon
and renters have a �nite horizon. Each of the 9 �gures presents the results from a di�erent
counterfactual scenario using renter data from one of 3 time periods (all, early, or late) and
using parameter estimates from one of 3 time periods (all, early, or late). For each of the
9 counterfactual scenarios, the fraction of grower-months in each action is averaged over 25
simulations. Error bars represent the 95% con�dence interval, which is calculated using a
nonparametric bootstrap.
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Figure 4
Counterfactual fraction of grower-months in each action:
Simulations using renter parameters, owner data, and owner horizon

Parameter Time

D
at
a
T
im
e

All

Early

Late

All Early Late

Notes: Figures present the counterfactual results for mean fraction of grower-months in each
action from 9 di�erent counterfactual scenarios using the structural parameters for renters
from the best-�t speci�cation, wherein owners and renters are allowed to have di�erent
parameters, in Table 3 (standard errors in Table B.8 in Appendix B) applied to owner data
and an owner in�nite horizon. Each of the 9 �gures presents the results from a di�erent
counterfactual scenario using owner data from one of 3 time periods (all, early, or late)
and using renter parameter estimates from one of 3 time periods (all, early, or late). For
each scenario, the fraction of grower-months in each action is averaged over 25 simulations.
Error bars represent the 95% con�dence interval, which is calculated using a nonparametric
bootstrap.
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Figure A.1
Actual fraction of grower-months for each action by year: Owners
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Figure A.2
Actual fraction of grower-months for each action by year: Renters
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Figure A.3
Marketing year average prices per acre

Notes: The marketing year average price is in units of dollars per acre, and therefore measures
revenue per acre and incorporates yield. The Monterey County Agricultural Commissioner's
O�ce publishes annual crop reports including prices, yields, and acreages for major crops in
the county. Monterey County is a major producer of many of the crops included in our model.
For most crops, these prices are highly correlated with California-wide price data published
by the National Agricultural Statistics Service. We discretize the marketing year average
price into 6 bins. Black dashed lines delineate the bins used to discretize the marketing year
average price. The cuto� values for the �rst 5 price bins are the 5 quintiles for marketing year
average price. Since the marketing year average price for susceptible crops (which include
strawberries) is always in the highest quintile in every year of our data set, and since the
highest quintile spans a wide range of prices, we further divide the highest quintile into 2
bins, using the median marketing year average price for susceptible crops as the cuto� value.
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Table A.1
Summary statistics: Owners

Owner all Owner early Owner late
Lettuce dummy 0.6379 0.6288 0.6444

(0.4806) (0.4831) (0.4787)
Spinach dummy 0.0285 0.0299 0.0276

(0.1665) (0.1703) (0.1637)
Broccoli dummy 0.0606 0.0566 0.0634

(0.2385) (0.2312) (0.2438)
Methyl bromide dummy 0.0033 0.0051 0.0021

(0.0577) (0.0709) (0.0455)
Broccoli history 1.5821 1.3330 1.7639

(1.9597) (1.9818) (1.9232)
Lettuce dummy * Broccoli history 1.1709 0.9565 1.3273

(1.8277) (1.7727) (1.8513)
Spinach dummy * Broccoli history 0.0397 0.0418 0.0382

(0.3701) (0.3795) (0.3630)
Methyl bromide history 0.0567 0.0791 0.0404

(0.3424) (0.3639) (0.3249)
Lettuce dummy * Methyl bromide history 0.0229 0.0364 0.0131

(0.1602) (0.1945) (0.1286)
Spinach dummy * Methyl bromide history 0.0015 0.0027 0.0006

(0.0431) (0.0598) (0.0246)
Lettuce price * Lettuce harvest month dummy 1.9552 1.5739 2.2333

(1.1004) (0.9202) (1.1371)
Spinach price * Spinach harvest month dummy 2.5268 1.7349 3.1043

(1.4709) (1.0454) (1.4676)
Broccoli price * Broccoli harvest month dummy 1.1742 1.0828 1.2409

(0.5082) (0.4455) (0.5398)
Susceptible price * Susceptible harvest month dummy 5.0660 4.6038 5.4032

(1.4914) (0.4831) (1.4988)
Resistant price * Resistant harvest month dummy 1.8748 1.8736 1.8757

(1.6125) (1.5703) (1.6427)
Number of observations 25,789 10,877 14,912
Notes: Means are presented for owners over the entire time period from 1993 to 2011 (`all'),
owners over the early period from 1993 to 2000 (`early'), and owners over the later period
from 2001 to 2011 (`late'). Standard deviations are in parentheses. For each crop, the
harvest month dummy variable for that crop is equal to one in months during which that
crop may be harvested, and zero in months during which that crop is not harvested (i.e.,
winter months for most crops).
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Table A.2
Summary statistics: Renters

Renter all Renter early Renter late
Lettuce dummy 0.3380 0.4129 0.2776

(0.4730) (0.4924) (0.4479)
Spinach dummy 0.0264 0.0431 0.0130

(0.1604) (0.2031) (0.1132)
Broccoli dummy 0.0349 0.0445 0.0271

(0.1835) (0.2063) (0.1625)
Methyl bromide dummy 0.0134 0.0101 0.0161

(0.1151) (0.1001) (0.1258)
Broccoli history 0.3348 0.2874 0.3730

(1.0003) (1.0009) (0.9982)
Lettuce dummy * Broccoli history 0.1402 0.1355 0.1440

(0.6573) (0.6455) (0.6667)
Spinach dummy * Broccoli history 0.0098 0.0096 0.0099

(0.1906) (0.1452) (0.2204)
Methyl bromide history 0.1450 0.1117 0.1718

(0.5813) (0.5048) (0.6351)
Lettuce dummy * Methyl bromide history 0.0081 0.0053 0.0103

(0.1559) (0.1074) (0.1860)
Spinach dummy * Methyl bromide history 0.0007 0.0017 0.0000

(0.0274) (0.0410) (0.0000)
Lettuce price * Lettuce harvest month dummy 2.0509 1.3110 2.6468

(1.2716) (0.7618) (1.2869)
Spinach price * Spinach harvest month dummy 2.9083 2.3483 3.3592

(1.4310) (1.2836) (1.3835)
Broccoli price * Broccoli harvest month dummy 1.0841 1.0176 1.1377

(0.4188) (0.3269) (0.4735)
Susceptible price * Susceptible harvest month dummy 5.1649 4.7183 5.5246

(1.3913) (1.1529) (1.4609)
Resistant price * Resistant harvest month dummy 1.9244 1.7260 2.0841

(1.6409) (1.4392) (1.7709)
Number of observations 9,312 4,154 5,158
Notes: Means are presented for renters over the entire time period from 1993 to 2011 (`all'),
renters over the early period from 1993 to 2000 (`early'), and renters over the later period
from 2001 to 2011 (`late'). Standard deviations are in parentheses. For each crop, the
harvest month dummy variable for that crop is equal to one in months during which that
crop may be harvested, and zero in months during which that crop is not harvested (i.e.,
winter months for most crops).
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Table A.3
Summary statistics: All grower-�elds

Owner all Renter all All grower-�elds
Lettuce dummy 0.6379 0.3380 0.4746

(0.4806) (0.4730) (0.4994)
Spinach dummy 0.0285 0.0264 0.0516

(0.1665) (0.1604) (0.2212)
Broccoli dummy 0.0606 0.0349 0.1222

(0.2385) (0.1835) (0.3275)
Methyl bromide dummy 0.0033 0.0134 0.0060

(0.0577) (0.1151) (0.0770)
Broccoli history 1.5821 0.3348 0.8693

(1.9597) (1.0003) (1.6892)
Lettuce dummy * Broccoli history 1.1709 0.1402 0.4341

(1.8277) (0.6573) (1.2114)
Spinach dummy * Broccoli history 0.0397 0.0098 0.0259

(0.3701) (0.1906) (0.3138)
Methyl bromide history 0.0567 0.1450 0.0465

(0.3424) (0.5813) (0.3247)
Lettuce dummy * Methyl bromide history 0.0229 0.0081 0.0069

(0.1602) (0.1559) (0.0982)
Spinach dummy * Methyl bromide history 0.0015 0.0007 0.0006

(0.0431) (0.0274) (0.0272)
Lettuce price * Lettuce harvest month dummy 1.9552 2.0509 1.9387

(1.1004) (1.2716) (1.2289)
Spinach price * Spinach harvest month dummy 2.5268 2.9083 2.5978

(1.4709) (1.4310) (1.4904)
Broccoli price * Broccoli harvest month dummy 1.1742 1.0841 1.1357

(0.5082) (0.4188) (0.5046)
Susceptible price * Susceptible harvest month dummy 5.0660 5.1649 4.8486

(1.4914) (1.3913) (1.8276)
Resistant price * Resistant harvest month dummy 1.8748 1.9244 1.9542

(1.6125) (1.6409) (1.6296)
Number of observations 25,789 9,312 1,033,964
Notes: Means are presented for owners over the entire time period from 1993 to 2011, renters
over the entire time period from 1993 to 2011, and for all grower-�elds in the entire data
set over the entire time period from 1993 to 2011. Standard deviations are in parentheses.
For each crop, the harvest month dummy variable for that crop is equal to one in months
during which that crop may be harvested, and zero in months during which that crop is not
harvested (i.e., winter months for most crops).
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Figure A.4
Map of owners
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Figure A.5
Map of renters over the entire time period
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Figure A.6
Map of renters in the early time period
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Figure A.7
Map of renters in the late time period
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Table B.1
Di�erent last crop dummy for susceptible crops and all other crops speci�cation

All Early Late
(Base) (Base)

Coe�cients in the per-period payo� function on:

Lettuce dummy 1.3687∗∗∗ 1.3917∗∗∗ 1.3486∗∗∗

Spinach dummy −1.0234∗∗∗ −0.7889∗∗∗ −1.3114∗∗∗
Broccoli dummy −0.7452∗∗∗ −0.919∗∗∗ −0.6099∗∗∗
Methyl bromide dummy −5.0341∗∗∗ −5.0627∗∗∗ −5.0226∗∗∗
Lettuce dummy*Broccoli history 0.2819∗∗∗ 0.2814∗∗∗ 0.2893∗∗∗

Spinach dummy*Broccoli history 0.1327∗∗∗ 0.0985∗ 0.1960∗∗∗

Lettuce dummy*Methyl bromide history −0.1526∗∗∗ −0.2641∗∗∗ −0.0428
Spinach dummy*Methyl bromide history −0.2777∗∗∗ −0.3191∗∗∗ −0.4895∗∗∗
Last crop dummy*Susceptible 9.3716∗∗∗ 24.2170∗∗∗ 8.9883∗∗∗

Last crop dummy*(1-Susceptible) 13.3819∗∗∗ 24.2170∗∗∗ 13.4399∗∗∗

Price*Harvest month dummy −0.0254 −0.0371∗ −0.0100
Constant −1.2615∗∗∗ −1.2139∗∗∗ −1.3245∗∗∗

Total average e�ects on per-period payo� of:

Lettuce dummy 1.3775∗∗∗ 1.4003∗∗∗ 1.3575∗∗∗

Spinach dummy −1.0195∗∗∗ −0.7864∗∗∗ −1.3056∗∗∗
Broccoli history 0.1611∗∗∗ 0.1635∗∗∗ 0.1638∗∗∗

Methyl bromide history −0.0930∗∗∗ −0.1610∗∗∗ −0.0352

Number of observations 34,570 14,855 19,715

Notes: Table presents parameter estimates for the speci�cation in which owners and renters
have the same parameters θ in their per-period payo� functions, but di�er in their time
horizons (owners have an in�nite horizon and renters have a �nite horizon); and in which we
estimate the last crop dummy separately for susceptible crops (which include strawberries,
artichoke, and cabbage) and for all other crops (including lettuce, spinach, broccoli, and
resistant crops). We use this speci�cation as our base-case speci�cation for the entire time
period (`all') and for the later time period (`late') in Table 1. For the early time period,
however, we are unable to separately identify the last crop dummy for susceptible crops
(other than lettuce) and for all other crops. Standard errors are in parentheses. Signi�cance
codes: ∗∗∗ 0.1% level, ∗∗ 1% level, ∗ 5% level.
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Table B.2
Same last crop dummy for all crops speci�cation

All Early Late
(Base)

Coe�cients in the per-period payo� function on:

Lettuce dummy 1.3698∗∗∗ 1.3916∗∗∗ 1.3499∗∗∗

Spinach dummy −1.0215∗∗∗ −0.7893∗∗∗ −1.3084∗∗∗
Broccoli dummy −0.7429∗∗∗ −0.9193∗∗∗ −0.6076∗∗∗
Methyl bromide dummy −5.0336∗∗∗ −5.0627∗∗∗ −5.0232∗∗∗
Lettuce dummy*Broccoli history 0.2816∗∗∗ 0.2815∗∗∗ 0.2889∗∗∗

Spinach dummy*Broccoli history 0.1324∗ 0.0987 0.1954∗∗∗

Lettuce dummy*Methyl bromide history −0.1526∗∗ −0.2640∗∗ −0.0415
Spinach dummy*Methyl bromide history −0.2873∗∗∗ −0.3192 −0.4864∗∗∗
Last crop dummy 10.5370∗∗∗ 13.5478∗∗∗ 9.9679∗∗∗

Price*Harvest month dummy −0.0256 −0.0371 −0.0104
Constant −1.2619∗∗∗ −1.2139∗∗∗ −1.3244∗∗∗

Total average e�ects on per-period payo� of:

Lettuce dummy 1.3786∗∗∗ 1.4002∗∗∗ 1.3588∗∗∗

Spinach dummy −1.0177∗∗∗ −0.7868∗∗∗ −1.3026∗∗∗
Broccoli history 0.1609∗∗∗ 0.1635∗∗∗ 0.1636∗∗∗

Methyl bromide history −0.0932∗∗ −0.1610∗∗∗ −0.0344

Likelihood ratio test to compare with model that does not constrain last crop dummy to be the same for all crops:

HO: Last crop dummies are the same for susceptible crops and all other crops

LR Test statistic D for owners 2.0 0.0 1.2
LR Test statistic D for renters −9.4 10.0∗∗ −4.2

Number of observations 34,570 14,855 19,715

Notes: Table presents parameter estimates for the speci�cation in which owners and renters have the same parameters θ in their per-period payo�
functions, but di�er in their time horizons (owners have an in�nite horizon and renters have a �nite horizon); and in which we estimate one last crop
dummy for all crops. For the early time period, as seen in Table B.1 in Appendix B, we are unable to separately identify the last crop dummy for
susceptible crops (other than lettuce) and for all other crops; we therefore use this speci�cation, which estimates one last crop dummy for all crops,
as our base-case speci�cation for the early time period (`early') in Table 1. Standard errors are in parentheses. Signi�cance codes: ∗∗∗ 0.1% level, ∗∗
1% level, ∗ 5% level.
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Table B.3
Normalized average present discounted grower welfare per grower-month

All Early Late

Owner Welfare (per grower-month) 100 100 100
(0.62) (8.81) (0.69)

Renter Welfare (per grower-month) 74.05 78.44 74.17
(0.89) (7.56) (1.03)

Notes: Table presents the results for the normalized average present discounted grower
welfare per grower-month using parameter estimates from our base-case speci�cation in
Table 1. In our base-case speci�cation, owners and renters have the same parameters θ in
their per-period payo� functions, but di�er in their time horizons: owners have an in�nite
horizon and renters have a �nite horizon. For each set of parameters (`all', `early', and
`late'), the average grower welfare per grower per month is normalized so that the average
welfare per grower per month for owners using that set of parameters is 100. Standard
errors in parentheses. The standard errors for the welfare values are calculated using the
parameter estimates from each of 100 bootstrap samples. All welfare values are signi�cant
at a 0.1% level.
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Table B.4
Robustness 1: Lagged price speci�cation

All Early Late

Coe�cients in the per-period payo� function on:

Lettuce dummy 1.7493∗∗∗ 1.3791∗∗∗ 1.4046∗∗∗

(0.0355) (0.0361) (0.0785)
Spinach dummy −0.8753∗∗∗ −0.8100∗∗∗ −1.2646∗∗∗

(0.0573) (0.1007) (0.1295)
Broccoli dummy −0.6736∗∗∗ −0.9819∗∗∗ −0.5769∗∗∗

(0.0588) (0.0835) (0.1215)
Methyl bromide dummy −4.8272∗∗∗ −5.0042∗∗∗ −5.0278∗∗∗

(0.0303) (0.0944) (0.5451)
Lettuce dummy*Broccoli history 0.2732∗∗∗ 0.265∗∗∗ 0.2794∗∗∗

(0.0183) (0.0178) (0.0207)
Spinach dummy*Broccoli history 0.1112∗∗ 0.0951 0.1882∗∗∗

(0.0384) (0.0638) (0.044)
Lettuce dummy*Methyl bromide history −0.5608∗∗∗ −0.2819∗∗ −0.0092

(0.0702) (0.0857) (0.1006)
Spinach dummy*Methyl bromide history −0.4572∗∗∗ −0.3671∗∗∗ −0.5362∗∗∗

(0.0213) (0.0227) (0.0321)
Last crop dummy 1.7816∗∗∗ 15.4141∗∗∗ 20.0112∗∗∗

(0.0737) (0.0032) (0.0055)
Price*Harvest month dummy −0.0601∗∗∗ −0.0776∗∗∗ 0.0069

(0.0106) (0.0150) (0.0208)
Constant −0.738∗∗∗ −1.1003∗∗∗ −1.3785∗∗∗

(0.1095) (0.1200) (0.1977)

Total average e�ects on per-period payo� of:

Lettuce dummy 1.7573∗∗∗ 1.3871∗∗∗ 1.4132∗∗∗

(0.0355) (0.0361) (0.0785)
Spinach dummy −0.8724∗∗∗ −0.8078∗∗∗ −1.2590∗∗∗

(0.0573) (0.1007) (0.1295)
Broccoli history 0.1556∗∗∗ 0.1540∗∗∗ 0.1582∗∗∗

(0.0203) (0.0104) (0.0114)
Methyl bromide history −0.3259∗∗∗ −0.1728∗∗∗ −0.0178

(0.0392) (0.0488) (0.0544)

Number of observations 34,570 14,855 19,715

Notes: Table presents parameter estimates for the alternative speci�cation in which we use lagged

crop prices rather than current crop prices for Price. Standard errors are in parentheses. As in our

base-case speci�cation, owners and renters have the same parameters θ in their per-period payo�

functions, but di�er in their time horizons: owners have an in�nite horizon and renters have a �nite

horizon. Signi�cance codes: ∗∗∗ 0.1% level, ∗∗ 1% level, ∗ 5% level.

B-5



Table B.5
Robustness 2: Price divided by harvest season speci�cation

All Early Late

Coe�cients in the per-period payo� function on:

Lettuce dummy 1.4112∗∗∗ 1.4584∗∗∗ 1.3825∗∗∗

(0.1106) (0.043) (0.0966)
Spinach dummy −1.0011∗∗∗ −0.7456∗∗∗ −1.2972∗∗∗

(0.1132) (0.0949) (0.0946)
Broccoli dummy −0.6758∗∗∗ −0.8328∗∗∗ −0.5479∗∗∗

(0.1759) (0.0763) (0.1475)
Methyl bromide dummy −5.0377∗∗∗ −5.0667∗∗∗ −5.0249∗∗∗

(0.1556) (0.1719) (0.3949)
Lettuce dummy*Broccoli history 0.2822∗∗∗ 0.2821∗∗∗ 0.2899∗∗∗

(0.0189) (0.0218) (0.0216)
Spinach dummy*Broccoli history 0.1340∗ 0.1040 0.1957∗∗

(0.0648) (0.0604) (0.0538)
Lettuce dummy*Methyl bromide history −0.1507∗∗ −0.2646∗∗ −0.0422

(0.0476) (0.0830) (0.0851)
Spinach dummy*Methyl bromide history −0.2753∗∗∗ −0.3280∗∗∗ −0.4648∗∗∗

(0.0183) (0.0391) (0.0340)
Last crop dummy 10.5161∗∗∗ 24.2158∗∗∗ 9.9676∗∗∗

(0.0381) (0.0105) (0.2279)
Price*Harvest month dummy 0.0037 0.0039 0.0138

(0.0238) (0.0168) (0.0192)
Constant −1.3585∗∗∗ −1.3385∗∗∗ −1.4130∗∗∗

(0.1618) (0.1365) (0.1777)

Total average e�ects on per-period payo� of:

Lettuce dummy 1.4200∗∗∗ 1.4670∗∗∗ 1.3914∗∗∗

(0.1106) (0.0430) (0.0966)
Spinach dummy −0.9972∗∗∗ −0.7429∗∗∗ −1.2914∗∗∗

(0.1132) (0.0949) (0.0946)
Broccoli history 0.1613∗∗∗ 0.1641∗∗∗ 0.1642∗∗∗

(0.0107) (0.0126) (0.0120)
Methyl bromide history −0.0918∗∗∗ −0.1616∗∗∗ −0.0343

(0.0266) (0.0473) (0.0468)

Number of observations 34,570 14,855 19,715

Notes: Table presents parameter estimates for the alternative speci�cation in which Price is the

marketing year average price for each crop by its average harvest season length in the data set, so

that the grower receives the marketing year average price over the course of the harvest season,

rather than the marketing year average price each month during the harvest season. As in our

base-case speci�cation, owners and renters have the same parameters θ in their per-period payo�

functions, but di�er in their time horizons: owners have an in�nite horizon and renters have a �nite

horizon. Standard errors are in parentheses. Signi�cance codes: ∗∗∗ 0.1% level, ∗∗ 1% level, ∗ 5%
level.

B-6



Table B.6
Spinach history speci�cation

All Early Late

Coe�cients in the per-period payo� function on:

Spinach history 0.1509 0.1694 0.1491
(11.0300) (1.6888) (5.1846)

Lettuce dummy 1.3659 1.3806 1.3535
(5.8202) (1.9822) (1.4321)

Spinach dummy −1.1311 −1.0287 −1.2726∗∗∗
(2.1952) (2.9695) (0.3272)

Broccoli dummy −0.7140 −0.8970 −0.5656
(3.9122) (2.8765) (0.9259)

Methyl bromide dummy −5.0433∗∗∗ −5.0742∗∗∗ −5.0367∗∗∗
(0.3957) (0.2990) (0.6697)

Lettuce dummy*Broccoli history 0.2742 0.2750 0.2815
(1.2886) (0.9935) (1.3728)

Lettuce dummy*Methyl bromide history −0.1313 −0.2518 −0.0202
(3.1238) (0.7852) (0.4219)

Last crop dummy 10.5808∗∗∗ 40.3207∗∗∗ 9.9888∗∗∗

(2.1192) (3.4052) (1.9682)
Price*Harvest month dummy −0.0304 −0.0448 −0.0106

(1.2317) (0.6217) (0.6791)
Constant −1.3479 −1.2508 −1.4644

(4.1856) (2.4994) (1.6673)

Total average e�ects on per-period payo� of:

Lettuce dummy 1.5247 1.6188 1.3919
(12.4286) (3.0294) (1.7665)

Spinach dummy −1.1311 −1.0287 −1.2726∗∗∗
(2.1952) (2.9695) (0.3272)

Broccoli history 0.1531 0.1565 0.1549
(0.7194) (0.5655) (0.7553)

Methyl bromide history −0.0733 −0.1433 −0.0111
(1.7440) (0.4469) (0.2321)

Number of observations 34,570 14,855 19,715

Notes: Table presents parameter estimates for the alternative speci�cation in which we drop the

interactions between the spinach dummy and broccoli history and between the spinach dummy

and methyl bromide history, and include a spinach history variable instead. Standard errors are in

parentheses. As in our base-case speci�cation, owners and renters have the same parameters θ in

their per-period payo� functions, but di�er in their time horizons: owners have an in�nite horizon

and renters have a �nite horizon. Signi�cance codes: ∗∗∗ 0.1% level, ∗∗ 1% level, ∗ 5% level.
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Table B.7
Di�erent parameters for owners and renters speci�cation: Results for owners

All Early Late

Coe�cients in the per-period payo� function on:

Lettuce dummy 1.4346∗∗∗ 1.3844∗∗∗ 1.4691∗∗∗

(0.1817) (0.1874) (0.1782)
Spinach dummy −1.1311∗∗∗ −1.1905∗∗∗ −1.0703∗∗∗

(0.2981) (0.3297) (0.2419)
Broccoli dummy −0.3320 −0.5953 −0.1615

(0.2035) (0.4956) (0.1800)
Methyl bromide dummy −6.0705∗∗∗ −5.6993∗∗∗ −6.3633∗∗∗

(0.0640) (0.1077) (0.0630)
Lettuce dummy*Broccoli history 0.3682∗∗∗ 0.3674∗∗∗ 0.3707∗∗∗

(0.0605) (0.0632) (0.0558)
Spinach dummy*Broccoli history 0.2643 0.2665 0.2573

(0.4769) (0.2598) (0.6341)
Lettuce dummy*Methyl bromide history 0.3717 0.1992 0.8501∗

(0.4648) (0.4174) (0.3797)
Spinach dummy*Methyl bromide history 0.0260 0.0787 0.2734

(0.1956) (0.3034) (0.1949)
Last crop dummy 21.2161∗∗∗ 24.2249∗∗∗ 20.0534∗∗∗

(1.0463) (3.8795) (0.7860)
Price*Harvest month dummy −0.1585∗∗∗ −0.1558∗∗∗ −0.1600∗∗∗

(0.0414) (0.0458) (0.0399)
Constant −1.1482∗∗∗ −1.0881∗∗∗ −1.1906∗∗∗

(0.3027) (0.2381) (0.2592)

Total average e�ects on per-period payo� of:

Lettuce dummy 1.4498∗∗∗ 1.4003∗∗∗ 1.4838∗∗∗

(0.1817) (0.1874) (0.1782)
Spinach dummy −1.1206∗∗∗ −1.1791∗∗∗ −1.0603∗∗∗

(0.2987) (0.3299) (0.2431)
Broccoli history 0.2424∗∗∗ 0.2390∗∗∗ 0.2460∗∗∗

(0.0409) (0.0405) (0.0400)
Methyl bromide history 0.2378 0.1276 0.5554∗

(0.2968) (0.2630) (0.2450)

Number of observations 25,761 10,833 14,928

Notes: Table presents owner parameter estimates and standard errors for the speci�cation in which

we allow owners (who have an in�nite horizon) and renters (who have a �nite horizon) to not only

have di�erent time horizons, but also have di�erent parameters θ in their per-period payo� functions

as well. Standard errors are in parentheses. Signi�cance codes: ∗∗∗ 0.1% level, ∗∗ 1% level, ∗ 5%
level. Parameter estimates are also reported in the paper in Table 2.
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Table B.8
Di�erent parameters for owners and renters speci�cation: Results for renters

All Early Late

Coe�cients in the per-period payo� function on:

Lettuce dummy 1.1418∗∗∗ 1.3062∗∗∗ 0.9446∗∗∗

(0.0515) (0.1030) (0.1746)
Spinach dummy −0.9102∗∗∗ −0.4113∗∗∗ −1.6942∗∗∗

(0.0649) (0.0991) (0.2957)
Broccoli dummy −0.7869∗ −0.7347∗∗∗ −0.8572∗∗∗

(0.3779) (0.1953) (0.2350)
Methyl bromide dummy −3.4359∗∗∗ −3.2691∗∗∗ −3.4927∗∗∗

(0.1099) (0.2273) (0.3797)
Lettuce dummy*Broccoli history 0.0900 0.0865 0.1188

(0.0890) (0.0574) (0.0659)
Spinach dummy*Broccoli history 0.0685 −0.0602 0.2835

(0.4075) (0.1735) (0.5055)
Lettuce dummy*Methyl bromide history −0.7858 −1.2257∗∗ −0.5477

(0.4823) (0.4757) (0.9411)
Spinach dummy*Methyl bromide history −0.6607∗∗∗ −0.5787∗∗∗ −1.869∗∗∗

(0.0591) (0.1674) (0.0788)
Last crop dummy 6.2960∗∗∗ 6.5520∗∗∗ 6.0021∗∗∗

(0.7458) (0.3843) (0.7797)
Price*Harvest month dummy 0.1689∗∗∗ 0.1091∗∗∗ 0.2249∗∗∗

(0.0179) (0.0242) (0.0275)
Constant −1.4824∗∗∗ −1.3666∗∗∗ −1.6426∗∗∗

(0.0824) (0.1334) (0.1894)

Total average e�ects on per-period payo� of:

Lettuce dummy 1.1421∗∗∗ 1.3049∗∗∗ 0.9458∗∗∗

(0.0515) (0.1030) (0.1746)
Spinach dummy −0.9100∗∗∗ −0.4129∗∗∗ −1.6914∗∗∗

(0.0650) (0.0991) (0.2957)
Broccoli history 0.0322 0.0331 0.0367

(0.0319) (0.0249) (0.0194)
Methyl bromide history −0.2830 −0.5310∗∗ −0.1763

(0.1631) (0.1972) (0.2613)

Number of observations 9,306 4,144 5,162

Notes: Table presents renter parameter estimates and standard errors for the speci�cation in which

we allow owners (who have an in�nite horizon) and renters (who have a �nite horizon) to not only

have di�erent time horizons, but also have di�erent parameters θ in their per-period payo� functions

as well. Standard errors are in parentheses. Signi�cance codes: ∗∗∗ 0.1% level, ∗∗ 1% level, ∗ 5%
level. Parameter estimates are also reported in the paper in Table 3.
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Table B.9
Di�erent parameters for owners and renters, and di�erent last crop dummy for susceptible crops and all other crops speci�cation:
Results for owners

All Early Late

Coe�cients in the per-period payo� function on:

Lettuce dummy 1.4339∗∗∗ 1.3862∗∗∗ 1.4734∗∗∗

Spinach dummy −1.1346∗∗∗ −1.1974∗∗∗ −1.0804∗∗∗
Broccoli dummy −0.3305∗∗∗ −0.5902∗∗∗ −0.1570∗∗∗
Methyl bromide dummy −5.9540∗∗∗ −5.6621∗∗∗ −6.2346∗∗∗
Lettuce dummy*Broccoli history 0.3683∗∗∗ 0.3676∗∗∗ 0.3705∗∗∗

Spinach dummy*Broccoli history 0.2636∗∗∗ 0.2690∗∗∗ 0.2604∗∗∗

Lettuce dummy*Methyl bromide history 0.3612∗∗∗ 0.1950∗∗∗ 0.7924∗∗∗

Spinach dummy*Methyl bromide history 0.0869∗∗∗ 0.0159∗∗∗ 0.2837∗∗∗

Last crop dummy*Susceptible 21.2161∗∗∗ 24.2249∗∗∗ 20.0534∗∗∗

Last crop dummy*(1-Susceptible) 21.2161∗∗∗ 24.2249∗∗∗ 20.0535∗∗∗

Price*Harvest month dummy −0.1588∗∗∗ −0.1561∗∗∗ −0.1589∗∗∗
Constant −1.1463∗∗∗ −1.0891∗∗∗ −1.1970∗∗∗

Total average e�ects on per-period payo� of:

Lettuce dummy 1.4461∗∗∗ 1.3981∗∗∗ 1.4875∗∗∗

Spinach dummy −1.1261∗∗∗ −1.1888∗∗∗ −1.0712∗∗∗
Broccoli history 0.2130∗∗∗ 0.2128∗∗∗ 0.2196∗∗∗

Methyl bromide history 0.2041∗∗∗ 0.1093∗∗∗ 0.4605∗∗∗

Likelihood ratio test to compare with model constraining owners and renters to have the same parameters:

HO: Owners and renters have the same parameters

LR Test statistic D for owners 542.0∗∗∗ 170.8∗∗∗ 402.4∗∗∗

Likelihood ratio test to compare with model that does not constrain last crop dummy to be the same for all crops:

HO: Last crop dummies are the same for susceptible crops and all other crops

LR Test statistic D for owners 0.0 0.2 0.4

Number of observations 25,534 10.779 14,755

Notes: Table presents owner parameter estimates for the speci�cation in which we allow owners (who have an in�nite horizon) and renters (who have a �nite horizon) to not only
have di�erent time horizons, but also have di�erent parameters θ in their per-period payo� functions as well; and in which the last crop dummy is allowed to di�er for susceptible
crops (which include strawberries, artichoke, and cabbage) and all other crops (including lettuce, spinach, broccoli, and resistant crops). Standard errors are in parentheses.
Signi�cance codes: ∗∗∗ 0.1% level, ∗∗ 1% level, ∗ 5% level.

B
-10



Table B.10
Di�erent parameters for owners and renters, and di�erent last crop dummy for susceptible crops and all other crops speci�cation:
Results for renters

All Early Late

Coe�cients in the per-period payo� function on:

Lettuce dummy 1.1468∗∗∗ 1.3081∗∗∗ 0.9604∗∗∗

Spinach dummy −0.9052∗∗∗ −0.4095∗∗∗ −1.6720∗∗∗
Broccoli dummy −0.7748∗∗∗ −0.7260∗∗∗ −0.8220∗∗∗
Methyl bromide dummy −3.4430∗∗∗ −3.2756∗∗∗ −3.4992∗∗∗
Lettuce dummy*Broccoli history 0.08730∗∗ 0.0847 0.1123∗∗

Spinach dummy*Broccoli history 0.0673∗∗∗ −0.0624 0.2805∗∗∗

Lettuce dummy*Methyl bromide history −0.7743∗∗∗ −1.2215∗∗∗ −0.5296∗∗∗
Spinach dummy*Methyl bromide history −0.6512∗∗∗ −0.5722∗∗∗ −12.9356∗∗∗
Last crop dummy*Susceptible 6.8455∗∗∗ 7.1930∗∗∗ 6.5727∗∗∗

Last crop dummy*(1-Susceptible) 5.9026∗∗∗ 6.2993∗∗∗ 5.4360∗∗∗

Price*Harvest month dummy 0.1660∗∗∗ 0.1071∗∗∗ 0.2216∗∗∗

Constant −1.4781∗∗∗ −1.3644∗∗∗ −1.6404∗∗∗

Total average e�ects on per-period payo� of:

Lettuce dummy 1.1478∗∗∗ 1.3102∗∗∗ 0.9636∗∗∗

Spinach dummy −0.9045∗∗∗ −0.4117∗∗∗ −1.6696∗∗∗
Broccoli history 0.0519∗∗ 0.0451 0.0685∗∗

Methyl bromide history −0.4625∗∗∗ −0.6857∗∗∗ −0.5993∗∗∗

Likelihood ratio test to compare with model constraining owners and renters to have the same parameters:

HO: Owners and renters have the same parameters

LR Test statistic D for renters 163.2∗∗∗ 1.6 239.6∗∗∗

Likelihood ratio test to compare with model that does not constrain last crop dummy to be the same for all crops:

HO: Last crop dummies are the same for susceptible crops and all other crops

LR Test statistic D for renters −569.6 −203.6 −356.6

Number of observations 9,036 4,076 4,960

Notes: Table presents renter parameter estimates for the speci�cation in which we allow owners (who have an in�nite horizon) and renters (who have a �nite horizon) to not only
have di�erent time horizons, but also have di�erent parameters θ in their per-period payo� functions as well; and in which the last crop dummy is allowed to di�er for susceptible
crops (which include strawberries, artichoke, and cabbage) and all other crops (including lettuce, spinach, broccoli, and resistant crops). Standard errors are in parentheses.
Standard errors are in parentheses. Signi�cance codes: ∗∗∗ 0.1% level, ∗∗ 1% level, ∗ 5% level.
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Table B.11
Same in�nite horizon for owners and renters speci�cation

All Early Late

Coe�cients in the per-period payo� function on:

Lettuce dummy 1.2846∗∗∗ 1.3334∗∗∗ 1.2426∗∗∗

Spinach dummy −1.0994∗∗∗ −0.8412∗∗∗ −1.4039∗∗∗
Broccoli dummy −0.4288∗∗ −0.5787∗∗∗ −0.2969
Methyl bromide dummy −5.0993∗∗∗ −5.1816∗∗∗ −5.0448∗∗∗
Lettuce dummy*Broccoli history 0.3709∗∗∗ 0.3624∗∗∗ 0.3862∗∗∗

Spinach dummy*Broccoli history 0.2230∗∗∗ 0.1831∗∗∗ 0.2888∗∗∗

Lettuce dummy*Methyl bromide history −0.2041 −0.2673 −0.1486∗
Spinach dummy*Methyl bromide history −0.3649∗∗∗ −0.3579∗∗ −0.7843∗∗∗
Last crop dummy 17.5703∗∗∗ 15.9081∗∗∗ 25.4309∗∗∗

Price*Harvest month dummy −0.0255 −0.0366∗ −0.0079
Constant −1.2613∗∗∗ −1.2160∗∗∗ −1.3313∗∗∗

Total average e�ects on per-period payo� of:

Lettuce dummy 1.2961∗∗∗ 1.3447∗∗∗ 1.2545∗∗∗

Spinach dummy −1.0928∗∗∗ −0.8360∗∗∗ −1.3954∗∗∗
Broccoli history 0.2133∗∗∗ 0.2124∗∗∗ 0.2194∗∗∗

Methyl bromide history −0.1242 −0.1641 −0.1004∗

Likelihood ratio test to compare with model that does not constrain owners and renters to have same parameters and same in�nite horizon:

HO: Owners and renters have the same parameters and same owner in�nite horizon

LR Test statistic D for owners 384.0∗∗∗ 115.6∗∗∗ 310.4∗∗∗

LR Test statistic D for renters 597.0∗∗∗ 188.2∗∗∗ 468.2∗∗∗

Likelihood ratio test to compare with model that constrains owners and renters to have the same parameters but not the same in�nite horizon:

HO: Owners and renters have the same parameters and same owner in�nite horizon

LR Test statistic D for owners −160.0 −55.0 −92.8
LR Test statistic D for renters −126.4 −27.0 −123.8

Number of observations 9,306 4,144 5,162

Notes: Table presents parameter estimates for the speci�cation in which we allow owners and renters to not only have the same parameters θ in their per-period payo� functions,
but also have the same in�nite time horizon for their dynamic decision-making. Standard errors are in parentheses. Signi�cance codes: ∗∗∗ 0.1% level, ∗∗ 1% level, ∗ 5% level.
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Table B.12
Same in�nite horizon for owners and renters, di�erent last crop dummy for susceptible crops and all other crops speci�cation

All Early Late

Coe�cients in the per-period payo� function on:

Lettuce dummy 1.2847∗∗∗ 1.3333∗∗∗ 1.2426∗∗∗

Spinach dummy −1.0990∗∗∗ −0.8410∗∗∗ −1.4039∗∗∗
Broccoli dummy −0.4290∗∗∗ −0.5788∗∗∗ −0.2970∗∗∗
Methyl bromide dummy −5.0985∗∗∗ −5.1813∗∗∗ −5.0449∗∗∗
Lettuce dummy*Broccoli history 0.3709∗∗∗ 0.3624∗∗∗ 0.3861∗∗∗

Spinach dummy*Broccoli history 0.2229∗∗∗ 0.1832∗∗∗ 0.2888∗∗∗

Lettuce dummy*Methyl bromide history −0.2042∗∗∗ −0.2673∗∗∗ −0.1486∗∗∗
Spinach dummy*Methyl bromide history −0.3638∗∗∗ −0.3662∗∗∗ −0.7844∗∗∗
Last crop dummy*Susceptible 21.2161∗∗∗ 24.2249∗∗∗ 25.4309∗∗∗

Last crop dummy*(1-Susceptible) 21.2161∗∗∗ 24.2249∗∗∗ 25.4309∗∗∗

Price*Harvest month dummy −0.0255∗ −0.0366∗ −0.0078
Constant −1.2613∗∗∗ −1.216∗∗∗ −1.3314∗∗∗

Total average e�ects on per-period payo� of:

Lettuce dummy 1.2962∗∗∗ 1.3446∗∗∗ 1.2545∗∗∗

Spinach dummy −1.0924∗∗∗ −0.8359∗∗∗ −1.3954∗∗∗
Broccoli history 0.2133∗∗∗ 0.2124∗∗∗ 0.2193∗∗∗

Methyl bromide history −0.1242∗∗∗ −0.1644∗∗∗ −0.1004∗∗∗

Likelihood ratio test to compare with model that does not constrain owners and renters to have same parameters and same in�nite horizon:

HO: Owners and renters have the same parameters and same owner in�nite horizon

LR Test statistic D for owners 384.0∗∗∗ 115.8∗∗∗ 669.4∗∗∗

LR Test statistic D for renters 27.4∗∗ −15.2 111.4∗∗∗

Likelihood ratio test to compare with model that constrains owners and renters to have the same parameters but not the same in�nite horizon:

HO: Owners and renters have the same parameters and same owner in�nite horizon

LR Test statistic D for owners −158.0 −55.0 267.0∗∗∗

LR Test statistic D for renters −135.8 −16.8 −128.2

Number of observations 34,570 14,855 19,715

Notes: Table presents parameter estimates for the speci�cation in which we allow owners and renters to not only have the same parameters θ in their per-period payo� functions,
but also have the same in�nite time horizon for their dynamic decision-making; and in which the last crop dummy is allowed to di�er for susceptible crops (which include
strawberries, artichoke, and cabbage) and for all other crops (including lettuce, spinach, broccoli, and resistant crops). Standard errors are in parentheses. Signi�cance codes:
∗∗∗ 0.1% level, ∗∗ 1% level, ∗ 5% level.
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Table B.13
Some of the same parameters for owners and renters speci�cation

Di�erent last crop dummy for:
susceptible crops owners

and and
all other crops renters

Coe�cients in the per-period payo� function on:

Lettuce dummy 1.3293∗∗∗ 1.3298∗∗∗

Spinach dummy*Early −0.9160∗∗∗ −0.9161∗∗∗
Spinach dummy*Late −1.2743∗∗∗ −1.2744∗∗∗
Broccoli dummy*Owner −0.3483 −0.3482
Broccoli dummy*Renter −1.7879∗ −1.7831∗
Methyl bromide dummy*Owner −5.9354∗∗∗ −5.9388∗∗∗
Methyl bromide dummy*Renter −3.6051∗∗∗ −3.6057∗∗∗
Lettuce dummy*Broccoli history 0.3691∗∗∗ 0.3688∗∗∗

Spinach dummy*Broccoli history 0.2469∗∗∗ 0.2467∗∗∗

Lettuce dummy*Methyl bromide history −0.3830∗∗∗ −0.3835∗∗∗
Spinach dummy*Methyl bromide history −0.5793∗∗∗ −0.5687∗∗∗
Last crop dummy*Susceptible 9.2901∗∗∗

Last crop dummy*(1-Susceptible) 13.3803∗∗∗

Last crop dummy*Owner 15.6340∗∗∗

Last crop dummy*Renter 9.0505∗∗∗

Price*Harvest month dummy*Owner −0.1206∗∗∗ −0.1207∗∗∗
Price*Harvest month dummy*Renter 0.1379∗∗∗ 0.1380∗∗∗

Constant −1.2390∗∗∗ −1.2390∗∗∗

Total average e�ects on per-period payo� of:

Lettuce dummy 1.3405∗∗∗ 1.3410∗∗∗

Spinach dummy*Early −0.9093∗∗∗ −0.9093∗∗∗
Spinach dummy*Late −1.2670∗∗∗ −1.2671∗∗∗
Broccoli history 0.2130∗∗∗ 0.2128∗∗∗

Methyl bromide history −0.2300∗∗∗ −0.2300∗∗∗

Likelihood ratio test to compare with model that does not constrain owners and renters to have some of the same parameters:

HO: Owners and renters have some of the same parameters

LR Test statistic D for owners 154.0∗∗∗ 152.0∗∗∗

LR Test statistic D for renters 1, 298.0∗∗∗ 1, 293.2∗∗∗

Number of observations 34,570 34,570

Notes: Table presents the parameter estimates for the speci�cations in which owners and renters have some of the same parameters θ in their per-period payo� functions, but
di�er in their time horizons: owners have an in�nite horizon and renters have a �nite horizon. Standard errors are in parentheses. Signi�cance codes: ∗∗∗ 0.1% level, ∗∗ 1%
level, ∗ 5% level.
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Table B.14
Some of the same parameters and same in�nite horizon for owners and renters speci�cation

Di�erent last crop dummy for:
susceptible crops owners

and and
all other crops renters

Coe�cients in the per-period payo� function on:

Lettuce dummy 1.3077∗∗∗ 1.3073∗∗∗

Spinach dummy*Early −0.9320∗∗∗ −0.9339∗∗∗
Spinach dummy*Late −1.2923∗∗∗ −1.2950∗∗∗
Broccoli dummy*Owner −0.3409∗∗∗ −0.3412∗∗∗
Broccoli dummy*Renter −0.5931∗∗∗ −0.5926∗∗∗
Methyl bromide dummy*Owner −5.9393∗∗∗ −5.9465∗∗∗
Methyl bromide dummy*Renter −4.1643∗∗∗ −4.1661∗∗∗
Lettuce dummy*Broccoli history 0.3902∗∗∗ 0.3903∗∗∗

Spinach dummy*Broccoli history 0.2673∗∗∗ 0.2677∗∗∗

Lettuce dummy*Methyl bromide history −0.2284∗∗∗ −0.2260∗∗∗
Spinach dummy*Methyl bromide history −0.4682∗∗∗ −0.4539∗∗∗
Last crop dummy*Susceptible 21.2161∗∗∗

Last crop dummy*(1-Susceptible) 21.2161∗∗∗

Last crop dummy*Owner 21.2161∗∗∗

Last crop dummy*Renter 21.2161∗∗∗

Price*Harvest month dummy*Owner −0.1214∗∗∗ −0.1214∗∗∗
Price*Harvest month dummy*Renter 0.1420∗∗∗ 0.1420∗∗∗

Constant −1.2442∗∗∗ −1.2439∗∗∗

Total average e�ects on per-period payo� of:

Lettuce dummy 1.3200∗∗∗ 1.3196∗∗∗

Spinach dummy*Early −0.9243∗∗∗ −0.9262∗∗∗
Spinach dummy*Late −1.2843∗∗∗ −1.2869∗∗∗
Broccoli history 0.2253∗∗∗ 0.2254∗∗∗

Methyl bromide history −0.1406∗∗∗ −0.1389∗∗∗

Likelihood ratio test to compare with model that does not constrain owners and renters to have some of the same parameters and same in�nite horizon:

HO: Owners and renters have some of the same parameters and same owner in�nite horizon

LR Test statistic D for owners 130.0∗∗∗ 130.0∗∗∗

LR Test statistic D for renters 1, 234.2∗∗∗ 1, 235.6∗∗∗

Number of observations 34,570 34,570

Notes: Table presents the parameter estimates for the speci�cations in which owners and renters to not only have some of the same parameters θ in their per-period payo�
functions, but also have the same in�nite time horizon for their dynamic decision-making. Standard errors are in parentheses. Signi�cance codes: ∗∗∗ 0.1% level, ∗∗ 1% level, ∗
5% level.
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Appendix C.

Supplementary Counterfactual Simulation Results
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Figure C.1
Counterfactual fraction of grower-months in each action:
Simulations using owner data and owner horizon
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Notes: Figures present the counterfactual results for the mean fraction of grower-months
in each action from 9 di�erent counterfactual scenarios using parameter estimates from our
base-case speci�cation in Table 1 applied to owner data and an owner in�nite horizon. In
our base-case speci�cation, owners and renters have the same parameters θ in their per-
period payo� functions, but di�er in their time horizons: owners have an in�nite horizon
and renters have a �nite horizon. Each of the 9 �gures presents the results from a di�erent
counterfactual scenario using owner data from one of 3 time periods (all, early, or late) and
using parameter estimates from one of 3 time periods (all, early, or late). For each of the
9 counterfactual scenarios, the fraction of grower-months in each action is averaged over 25
simulations. Error bars represent the 95% con�dence interval, which is calculated using a
nonparametric bootstrap.
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Figure C.2
Counterfactual fraction of grower-months in each action:
Simulations using owner parameters, owner data, and owner horizon
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Notes: Figures present the counterfactual results for mean fraction of grower-months in each
action from 9 di�erent counterfactual scenarios using the structural parameters for owners
from the best-�t speci�cation, wherein owners and renters are allowed to have di�erent
parameters, in Table 2 (standard errors in Table B.7 in Appendix B) applied to owner data
and an owner in�nite horizon. Each of the 9 �gures presents the results from a di�erent
counterfactual scenario using owner data from one of 3 time periods (all, early, or late) and
using owner parameter estimates from one of 3 time periods (all, early, or late). For each of
the 9 counterfactual scenarios, the fraction of grower-months in each action is averaged over
25 simulations. Error bars represent the 95% con�dence interval, which is calculated using
a nonparametric bootstrap.
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Figure C.3
Counterfactual fraction of grower-months in each action by year:
Simulations using owner all parameters, owner all data, and owner horizon
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Notes: Figure presents the counterfactual results for fraction of grower-months in each action
from the counterfactual scenario using the structural parameters for owners over the entire
time period (`all') from the best-�t speci�cation, wherein owners and renters are allowed to
have di�erent parameters, in Table 2 (standard errors in Table B.7 in Appendix B) applied
to owner data over the entire period (`all') and an owner in�nite horizon. The fraction of
grower-months in each action by year is averaged over 25 simulations. Error bars represent
the 95% con�dence interval, which is calculated using a nonparametric bootstrap.
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Figure C.4
Counterfactual fraction of grower-months in each action by year:
Simulations using owner early parameters, owner all data, and owner horizon
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Notes: Figure presents the counterfactual results for fraction of grower-months in each action
from the counterfactual scenario using the structural parameters for owners in the early
period (`early') from the best-�t speci�cation, wherein owners and renters are allowed to
have di�erent parameters, in Table 2 (standard errors in Table B.7 in Appendix B) applied
to owner data over the entire period (`all') and an owner in�nite horizon. The fraction of
grower-months in each action by year is averaged over 25 simulations. Error bars represent
the 95% con�dence interval, which is calculated using a nonparametric bootstrap.
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Figure C.5
Counterfactual fraction of grower-months in each action by year:
Simulations using owner late parameters, owner all data, and owner horizon
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Notes: Figure presents the counterfactual results for fraction of grower-months in each action
from the counterfactual scenario using the structural parameters for owners in the late time
period (`late') from the best-�t speci�cation, wherein owners and renters are allowed to have
di�erent parameters, in Table 2 (standard errors in Table B.7 in Appendix B) applied to
owner data over the entire period (`all') and an owner in�nite horizon.The fraction of grower-
months in each action by year is averaged over 25 simulations. Error bars represent the 95%
con�dence interval, which is calculated using a nonparametric bootstrap.
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Figure C.6
Counterfactual fraction of grower-months in each action:
Simulations using owner parameters, renter data, and owner horizon
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Notes: Figures present the counterfactual results for mean fraction of grower-months in each
action from 9 di�erent counterfactual scenarios using the structural parameters for owners
from the best-�t speci�cation, wherein owners and renters are allowed to have di�erent
parameters, in Table 2 (standard errors in Table B.7 in Appendix B) applied to renter data
and an owner in�nite horizon. Each of the 9 �gures presents the results from a di�erent
counterfactual scenario using renter data from one of 3 time periods (all, early, or late) and
using owner parameter estimates from one of 3 time periods (all, early, or late). For each of
the 9 counterfactual scenarios, the fraction of grower-months in each action is averaged over
25 simulations. Error bars represent the 95% con�dence interval, which is calculated using
a nonparametric bootstrap.
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Figure C.7
Counterfactual fraction of grower-months in each action by year:
Simulations using renter all parameters, owner all data, and owner horizon
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Notes: Figure presents the counterfactual results for fraction of grower-months in each action
from the counterfactual scenario using the structural parameters for renters over the entire
time period (`all') from the best-�t speci�cation, wherein owners and renters are allowed to
have di�erent parameters, in Table 3 (standard errors in Table B.8 in Appendix B) applied
to owner data over the entire period (`all') and an owner in�nite horizon. The fraction of
grower-months in each action by year is averaged over 25 simulations. Error bars represent
the 95% con�dence interval, which is calculated using a nonparametric bootstrap.
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Figure C.8
Counterfactual fraction of grower-months in each action by year:
Simulations using renter early parameters, owner all data, and owner horizon

Susceptible

Sus. w/fum

Resistant

Broccoli

Broccoli w/fum

Lettuce

Lettuce w/fum

Spinach

Other

Year

Notes: Figure presents the counterfactual results for fraction of grower-months in each action
from the counterfactual scenario using the structural parameters for renters in the early time
period (`early') from the best-�t speci�cation, wherein owners and renters are allowed to have
di�erent parameters, in Table 3 (standard errors in Table B.8 in Appendix B) applied to
owner data over the entire period (`all') and an owner in�nite horizon. The fraction of
grower-months in each action by year is averaged over 25 simulations. Error bars represent
the 95% con�dence interval, which is calculated using a nonparametric bootstrap.
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Figure C.9
Counterfactual fraction of grower-months in each action by year:
Simulations using renter late parameters, owner all data, and owner horizon
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Notes: Figure presents the counterfactual results for fraction of grower-months in each action
from the counterfactual scenario using the structural parameters for renters in the late time
period (`late') from the best-�t speci�cation, wherein owners and renters are allowed to have
di�erent parameters, in Table 3 (standard errors in Table B.8 in Appendix B) applied to
owner data over the entire period (`all') and an owner in�nite horizon. The fraction of
grower-months in each action by year is averaged over 25 simulations. Error bars represent
the 95% con�dence interval, which is calculated using a nonparametric bootstrap.
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