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Abstract 
 

Grape powdery mildew is an important disease that afflicts grapes and vineyards 
worldwide, and poses a significant disease management task for grape growers in 
California.  We develop and estimate a dynamic structural econometric model of 
growers’ decisions of whether and when to spray pesticides in response to the 
Powdery Mildew Index (PMI), a forecasting model to help growers anticipate 
outbreaks of powdery mildew and time their treatments accordingly.  The model is 
used to determine the factors that affect growers’ decisions, including the effect of 
powdery mildew pressure and the use of the PMI disease forecast information; to 
examine how the heterogeneity of grower responses to the PMI is affected by 
production system differences among different groups of growers; and to evaluate 
the degree of risk aversion of growers in our sample.  Our dynamic structural 
econometric model allows for unobserved heterogeneity in the susceptibility of the 
variety of grapes grown to powdery mildew.  Results show that raisin grape growers 
have lower relative risk aversion than wine grape growers, and also less variation 
in the coefficient of relative risk aversion among growers in different counties. We 
find that growers in Napa perceive that a large share of their varieties are susceptible 
to a powdery mildew infection. Fresno is the only county where having the PMI 
disease forecast information increases average welfare for wine grape growers.  On 
the other hand, having the PMI disease forecast information increases average 
welfare for raisin grape growers in all counties.   
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1. Introduction 

Grape powdery mildew is an important disease that afflicts grapes and vineyards 

worldwide, and poses a significant disease management task for grape growers in California. 

Powdery mildew outbreaks happen quickly and can cause significant losses in quality and yield, 

so the focus of powdery mildew management is its prevention rather than the control of its 

outbreaks.   Growers use pesticides as a tool to manage production risk, and pesticides can decrease 

the costs of production and increase welfare for both producers and consumers. Growers may use 

pesticides as a form of insurance and are likely to choose more potent chemicals and over-apply 

when pest or disease outbreaks are difficult to predict and crop insurance is not easily accessible 

(Mumford and Norton, 1984).  

The Powdery Mildew Index (PMI) is a forecasting model to help growers anticipate 

outbreaks of powdery mildew and time their treatments accordingly (Thomas, Gubler and Leavitt, 

1994; Gubler et al., 1999).   The analysis in this paper aims to understand how different types of 

growers adjust the protocols used to control powdery mildew in response to the PMI disease 

forecast information and how the heterogeneity of these responses is affected by production system 

differences among different groups of growers.  

We develop and estimate a dynamic structural econometric model of growers’ decisions to 

spray pesticides in response to the PMI disease forecast information.  Our model is used to 

determine the factors that affect growers’ decisions, including the effect of powdery mildew 

pressure and the use of the PMI; to examine how the heterogeneity of grower responses to the PMI 

is affected by production system differences among different groups of growers; and to evaluate 

the degree of risk aversion of growers in our sample.  We allow the parameters to vary by county; 

region; years of low, medium, and high disease pressure; and years of low, medium, and high per 

acre revenue.  We also allow for unobserved heterogeneity in the susceptibility of the variety of 

grapes grown to powdery mildew. 

The California grape industry includes three main production sectors: wine, raisin, and 

table grapes.  Each sector has a distinct production process and market mechanisms, and the 

behavior of the growers during the production process varies according to the end-use of grapes.  

We apply our dynamic structural econometric model to data on wine grape growers and raisin 

grape growers in California.  While the value per acre of raisin grapes is comparable to the value 
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of lower-end wine grapes, the production systems, varieties, and regional disease pressure are 

different.   

There are several advantages to using a dynamic structural model to model the spraying 

decisions of grape growers. First, unlike reduced-form models, a structural approach explicitly 

models the dynamics of spraying decisions.  The spraying of pesticides is an investment that 

requires incurring costs for future gain.  Moreover the spraying decision takes place under 

uncertainty.  Since the spraying decision is irreversible, there is uncertainty over the payoffs from 

spraying, and growers have leeway over the timing of investments, there is an option value to 

waiting which requires a dynamic model (Dixit and Pindyck, 1994). 

A second advantage of our structural model is that it allows us to estimate the effect of 

each state variable on the expected payoffs from the decisions to spray or not to spray, and, 

therefore, to estimate parameters that have direct economic interpretations.  The dynamic model 

accounts for the continuation value, which is the expected value of the value function next period.  

With the structural model it is possible to estimate parameters in the payoffs from the decisions to 

spray or not to spray, since we can structurally model how the continuation values relate to the 

payoffs from the decisions to spray or not to spray.  

A third advantage of our structural model is that it allows us to estimate the degree of risk 

aversion exhibited by the growers.  In particular, we use a constant relative risk aversion (CRRA) 

utility function to estimate a grower’s coefficient of relative risk aversion. 

A fourth advantage of our structural model is that it incorporates unobserved heterogeneity, 

which in this model represents the susceptibility of the variety of grapes grown to powdery mildew. 

Our structrural model enables us to estimate the distribution of unobserved susceptibility as well 

as the effects of varietal susceptibility on payoffs. 

A fifth advantage of a structural model is that the parameter estimates from the structural 

model can be used to simulate counterfactual scenarios.  We use the parameter estimates to 

simulate what would happen if all growers received the PMI disease forecast information, and also 

to simulate what would happen if no growers received the PMI disease forecast information, and 

then compare the average grower welfare under the two counterfactual scenarios as a measure of 

the value to the growers of the PMI disease forecast information. 

Our paper contributes to the literature on risk aversion for agricultural producers in several 

ways.  First, we examine the degree of risk aversion of agricultural producers using daily real life 
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production decisions. The structure of the data allows us to evaluate the daily actions of the 

growers when faced with real life risk to their crop.  In addition, due to the richness of the data, 

we are able to distinguish among various levels of risk to the crop, since we can observe periods 

of high disease risk. In addition, we estimate the models separately for different groups of growers 

(wine and raisin), for different counties, and for years grouped by disease pressure or levels of per 

acre revenue, which allows us to examine the degree of risk aversion exhibited by agricultural 

producers in various production environments under various magnitudes of expected loss. 

 The coefficients of relative risk aversion estimated for agricultural producers in previous 

literature ranges from 0.15 to 1.95, with mean estimates around 0.7 (Cardenas and Carpenter, 2008; 

Chetty, 2006; Bombardini and Trebbi, 2012; Lins, Gabriel and Sonka, 1981).  We estimate the 

CRRA coefficient to range from 0.4 to 1.4, with most estimated coefficients between 0.4 and 0.7.   

Our results show that raisin grape growers have lower relative risk aversion than wine 

grape growers, and also less variation in the coefficient of relative risk aversion among growers in 

different counties. We find that growers in Napa perceive that a large share of their varieties are 

susceptible to a powdery mildew infection.  Fresno is the only county where having the PMI 

disease forecast information increases average welfare for wine grape growers.  On the other hand, 

having the PMI disease forecast information increases average welfare for raisin grape growers in 

all counties.    

The balance of this paper proceeds as follows.   We review the previous literature in Section 

2.  We describe our dynamic structural econometric model in Section 3.  Section 4 describes our 

data.  Section 5 presents our results. We use our estimated parameters to run counterfactul 

simulations in Section 6.  Section 7 concludes.  

 

2.  Literature Review 

Economic threshold models form a basis of much of the Integrated Pest Management 

literature.  In theoretical models of optimal pest management, the economic threshold is defined 

as the pest population density at which control measures should be implemented to prevent crop 

injury (Headley, 1971; Mumford and Norton, 1984).  The precise definition of an economic 

threshold in the context of pest management is the pest population density that prevents the pest 

levels from reaching the economic injury level taking into account grower reaction times and pest 

population response to control measures (Pedigo, Hutchins and Higley, 1986). Another definition 
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used for modeling optimal timing and quantity of pesticide application is the pest density where 

the marginal value product of damage control equals the marginal cost of control (Hall and 

Norgaard, 1973).   

Other models have extended the dynamic pesticide application framework to incorporate 

the need for multiple treatments (Bor, 1995; Harper et al., 1994). Bioeconomic models that 

combine knowledge of plant development and pest population dynamics at every stage of the 

season allow for more precise modeling of optimal pest management including the evaluation of 

spatial externalities from grower decisions (Harper et al., 1994; Musser, Nyrop and Shelton, 2006; 

Olson and Badibanga, 2005; Atallah et al., 2015).  Bioeconomic models also consider multiple 

pest control options such as broad spectrum pesticide application versus using populations of 

natural enemies. 

Fungal disease, such as powdery mildew, is not subject to some of the variables relevant 

to insect pest control since there are no natural enemies and since the fungal population develops 

differently from an insect pest population.  However, the disease management decisions made by 

the grower are subject to a similar decision process. The grower makes discrete investment 

decisions each period when a threat of a disease is present and this decision-making process affects 

the final outcome. The discrete investment process is especially relevant for powdery mildew 

control because each spraying decision has no effect beyond the pesticide effectiveness window 

(usually 7 to 21 days).  A regenerative optimal stopping model (Rust, 1987) provides a convenient 

framework for this type of decision process. 

This paper builds on previous work by Lybbert, Magnan and Gubler (2016), who examine 

the changes in powdery mildew treatment strategies of wine grape growers in response to the PMI 

disease forecast information.  The authors use a reduced-form econometric analysis to examine 

the response of the growers along three dimensions of pesticide applications: timing of sprays, 

chemical choice, and dosage. They find significant heterogeneity in response among growers along 

all three dimensions of adjustment. The results of their analysis suggest that wine grape growers 

with high-value crops are more likely to increase the dosage and choose more potent pesticides in 

response to forecasts of high infection risk, while wine grape growers with crops of lower value 

are more likely to extend the intervals between treatments during periods when the disease pressure 

is forecast to be low. The authors suggest several sources of heterogeneity that could be affecting 
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grower behavior but were not explicitly addressed in the study: differences in production systems, 

crop value, and varietal susceptibility to powdery mildew infections.  

This paper builds on the previous reduced-form analysis by Lybbert, Magnan and Gubler 

(2016) developing and estimating a dynamic structural econometric model of growers’ decisions 

to spray pesticides in response to the PMI disease forecast information.  Our model addresses some 

sources of observed and unobserved heterogeneity mentioned in Lybbert, Magnan and Gubler 

(2016), such as differences in harvest value of crops, differences between raisin and wine grape 

production systems, and susceptibility of grape varieties to powdery mildew.  In addition to the 

existing dataset of wine grape growers used in Lybbert, Magnan and Gubler (2016), the analysis 

in this paper also includes additional data from a survey of growers of raisin grapes.  These data 

are used to examine the heterogeneity in responses by grape growers based on differences in end-

use of grapes grown and regional disease pressure. The value per acre of raisin grapes is 

comparable to the value of lower-end wine grapes, but the production systems, varieties, and 

regional disease pressure are different. Including raisin growers allows for the analysis of another 

source of heterogeneity in pesticide applications of grape growers: production heterogeneity of 

wine versus raisin grape growers in the same county. 

 The dynamic structural econometric model used in this paper applies the nested fixed-

point maximum likelihood estimation approach developed by Rust (1987, 1988). Dynamic 

structural econometric models have been adapted for many applications, including bus engine 

replacement (Rust, 1987), optimal replacement of dairy livestock (Miranda and Schnitkey, 1995), 

nuclear power plant shutdown (Rothwell and Rust, 1997), water management (Timmins, 2002), 

insecticide treated nets (Mahajan and Tarozzi, 2011), rural labor supply (Duflo, Hanna and Ryan, 

2012), land use in agriculture (Scott, 2013), air conditioner purchases (Rapson, 2014), wind turbine 

shutdowns and upgrades (Cook and Lin Lawell, 2019), copper mining decisions (Aguirregabiria 

and Luengo, 2016), crop disease control (Carroll et al., 2019b), vehicle scrappage programs (Li 

and Wei, 2013), supply chain externalities (Carroll et al., 2019a), organ transplant decisions 

(Agarwal et al., 2018), agricultural productivity (Carroll et al., forthcoming), consumer stockpiling 

(Ching and Osborne, 2018), the adoption of rooftop solar photovoltaics (Feger et al., 2017; Langer 

and Lemoine, 2018), and vehicle ownership and usage (Gillingham et al., 2016).  Connault (2016) 

studies the econometrics of dynamic discrete choice models with unobserved states.  In this paper, 
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we use a dynamic structural econometric model with unobserved heterogeneity based on a model 

developed by Arcidiacono and Miller (2011). 

 

3.  Dynamic Structural Econometric Model 

In our model, each grower makes discrete investment decisions each period that a threat of 

a disease is present, and it is this decision-making process that affects the final outcome. The 

discrete investment process is especially relevant for powdery mildew control because each 

spraying decision has no effect beyond the pesticide effectiveness window (usually between 7 and 

21 days). A regenerative optimal stopping model (Rust 1987) provides a convenient framework 

for this type of decision process. 

The grower decision to spray or not to spray against powdery mildew follows a decision 

process similar to that described by Rust (1987).  Each day the grower assesses the probability of 

a powdery mildew infection based on the maximum value of the PMI over the past 7 days, which 

measures disease pressure risk; the interval since the last pesticide application relative to the 

protective strength of the chemical last applied, which describes the degree of current crop 

protection; and the susceptibility of the variety of grapes grown to powdery mildew.  The grower 

then makes the decision of whether to spray the pesticide, and how much and which pesticide to 

spray.  

Unlike a durable good that depreciates over time, the grape crop has an expected value that 

must be maintained (or increased) by proper input use and disease management.  We assume that 

the grower starts the season knowing the approximate expected value of the crop at harvest time. 

Because of the nature of the grape crop, the replacement decision in the optimal stopping model is 

actually a maintenance decision by the grower. Maintenance in this case is preventive spraying 

against powdery mildew. If the grower decides not to spray, there are no maintenance costs, but 

the grower then risks a powdery mildew outbreak. 

The grower makes the spraying decisions with a definite time horizon in mind. The natural 

finite time horizon in this case ends at harvest time and the grower usually knows the harvest and 

sale period to within a few weeks. This is different from most dynamic optimal stopping models 
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since many of them deal with maintenance and replacement of durable goods or -- in the case of 

agriculture -- livestock, where the time horizon is infinite.2  

A typical grower possesses one or more plots. A grape vineyard operation may contain a 

single plot, or multiple plots, and a grower may also have multiple vineyards.3 We assume that the 

grower makes separate and independent application decisions for each plot. The plots are often 

adjacent to each other, but they can also be apart.  Spatial spillovers between plots are not a concern 

because powdery mildew outbreaks are generally localized.  For example, there may be powdery 

mildew present in one corner of the plot, not another.  Powdery mildew does not spread the way a 

pest would, as powdery mildew spores are always present in pretty much all grape vineyards and 

activated by weather (Gubler et al., 2008). 

Because raisin and table grape production are geographically clustered, the weather 

information that serves as a basis for calculating the PMI is unlikely to vary significantly between 

growers in the same region. However, this is not the case for wine grape growers in the coastal 

counties, which are subject to microclimates.  The structure of the data allows us to model grower 

spraying decisions for each plot, so it is possible to explore the possibility that unobservable plot-

level heterogeneity is relevant to grower decisions. 

We begin with a simple model that explains spraying decisions of a single grape grower in 

response to the risk of powdery mildew infection indicated by the Powdery Mildew Index (PMI). 

Each day t  the grower decides whether to apply pesticides to prevent a powdery mildew outbreak. 

The grower has a choice of which type z  of pesticide to apply. The grower has to make this 

decision for  each of T  periods, starting with t0 , the first day of possible powdery mildew 

infection, and ending with T , the day of the harvest.  

Since some chemicals have similar protective power, as well as similar costs, we can group 

the spray choice into three categories based on the degree of protection they provide for each level 

of PMI.  In this model, at = 0  if the grower does not spray at time t ; at = 1 if the grower sprays 

                                                 
2 The time horizon of the production process can be modeled as infinite when the production process is ongoing and 
does not have a definitive growing season (e.g., dairy production) and when the inputs can be replaced during the 
production process (e.g., a bus engine or a dairy cow). For crops such as grapes, however, the production process ends 
with harvest each season and the value of the harvest depends on the maintenance of the crop throughout the entire 
growing season.  Thus, the time horizon is finite for daily grape growing decisions. 
3 A vineyard operation is a business entity, which may contain one or more distinct plots. we use the term ‘plot’ to 
define a plot with grapes, which is described as a separate unit in the application for a permit to apply pesticides. Each 
plot has a unique physical description and a unique identifier, including a location identifier using the Public Land 
Survey System of coordinates (PLSS), in the Pesticide Use Report database.  
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with sulfur or contact materials at time t ; at = 2  if the grower sprays with synthetic fungicides 

(sterol inhibitors, strobilurins, or cell-signaling inhibitors) at time t ; and at = 3  if the grower 

sprays with other powdery mildew treatment products at time t .  

Powdery mildew outbreaks happen as a result of spore procreation during favorable 

weather so weather on the day of and several days preceding the spraying decision is the primary 

source of a grower’s expectation about the probability of an outbreak. The weather state is 

summarized in the daily value of the Powdery Mildew Index.  

The grower chooses a sequence of spraying decisions 
  

a
0
,a

1
,a

2
,a

3
,...,a

T{ }  to maximize the 

discounted present value of the entire stream of per-period utility ( )u  , yielding the following 

dynamic optimization problem: 

    
  
max

{at }
E b tu(x

t
,n ,e

t
,a

t
;q )

t=0

T

å , (1) 

where xt  is a vector of state variables that influence the probability of powdery mildew infection 

on a given day; n  is an unobserved time-invariant state variable measuring susceptibility of the 

variety of grapes grown to powdery mildew; e t  is vector of random shocks e t (at )  to per-period 

utility, one for each possible action at  in the action set, that is observed by the grower, but not by 

the econometrician; and q  is the vector of parameters to be estimated. 

 One exogenous state variable in xt  is PMIt , the maximum value of the Powdery Mildew 

Index over the past 7 days.  The daily PMI measures the risk of an outbreak if no treatment were 

administered (i.e., if the crop were completely unprotected). PMIt  is assumed to evolve as a finite 

state first-order Markov process, where  1 ~ |
iid

t x tx F x  . The values xt1  of the exogenous state 

variable PMIt  are assumed to be independently and identically distributed and the probability 

distribution depends only on the realization of in time  and not on anything that happened 

before time  (Dixit and Pindyck, 1994).   

 A second exogenous state variable in xt  is the duration rz  of pesticide protection in days 

given the current disease pressure, for each pesticide z .  Starting with the day after application, 

the protective power of the chemical decreases each day as the interval since application 

xt t

t
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approaches the maximum days of protection. For some chemicals, the duration of protection rz  

also changes with current PMI values.   

 A third exogenous state variable in xt  is the spraying cost S(at )  for each pesticide choice 

at .  A fourth exogenous state variable in xt  is the per acre crop value PYt . The exogenous crop 

value state variable PYt  does not change within a single year, but may change from year to year. 

The value of the crop is based on the grape varieties grown, their annual price per ton, and per acre 

yields.  

 The endogenous state variable in xt  is the interval it  since last spray. The interval since 

last spray, measured in days, evolves as follows: 

 

  

i
t1
=

i
t
1    if a

t
= 0

1          if a
t
³1

ì
í
ï

îï
. (2)  

In addition to the observed state variables xt , the probability of powdery mildew infection 

and therefore growers’ pesticide use decisions are also affected by n , an unobserved time-

invariant state variable measuring susceptibility of the variety of grapes grown to powdery mildew. 

Expected monetary losses resulting from a powdery mildew infection are given by the 

expected crop loss function   c(x
t
,n ,q ) , which incorporates the probability of an outbreak as well 

as the net loss (salvage value minus crop loss) in the case of an outbreak.  

Spraying against powdery mildew allows the grower to avoid crop losses that will result 

from the infection.  If the grower chooses to spray (  at
³1) on day t , then the expected loss from 

powdery mildew on day t is equal to zero, and the grower instead incurs spraying costs S(at ) . 

We assume that the expected per acre crop value PYt  stays constant throughout the year 

for each grower, and therefore that growers have perfect foresight regarding the expected revenue 

per acre for a particular year.  We also assume that growers are able to borrow in order to smooth 

out their annual revenue each day of the growing season.  Since the annual revenue per acre is 

PY , we assume that the grower earns (or can borrow) an average daily revenue of approximately 

PY T  each day of the T-day long growing the season.  Given that many wine and raisin grape 

growers sell their grapes under pre-determined contracts (Fuller, Alston and Sambucci, 2014), our 

assumptions on annual revenue are not unrealistic. 
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The per-period utility ( , , ; )t t tu x ae q  a grower receives on any given day t from making a 

particular decision at  is the average daily revenue minus the expected losses and costs faced by 

the grower from that decision, and is given by: 

 
 
 

( , , ; )
/ ( ,     if 0

/ ( )         if

; ) (0)

) (  1

t t t

t t

t

t

t

t

ttt

u x a
f PY T c x a

P aaf Y T S a

q
e q

en
e




= ìï  =í
ï  ³î

. (3) 

We estimate several different utility functions which allow for varying degrees of risk 

aversion: linear utility, logarithmic utility, square root utility, utility with PMI squared, and CRRA 

utility. Linear utility assumes risk neutrality, logarithmic and square root utilities assume some 

degree of risk aversion, and CRRA utility allows variation in the degree of risk aversion among 

the different groups of growers in the sample.  Characterizing the risk preferences of growers can 

help one understand some of the decisions growers make when faced with potential losses from a 

disease outbreak. 

In particular, we examine, compare, and test between different functional forms for the per-

period utility, including linear utility 
  

f ( X ) = X  , linear utility with an additional term for PMIt  

squared, log utility 
  

f ( X ) = log( X ) , and square root utility 
  

f ( X ) = X  .  We also consider a 

constant relative risk aversion (CRRA) utility, in which the per-period utility would be given by: 

1 1
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  ,       (4) 

where   is the coefficient of relative risk aversion.   

We use likelihood ratio tests to determine which utility function best fit the spraying 

behavior of the growers.  Because the results of likelihood ratio tests explained below and 

presented in Appendix B show that CRRA utility provides the best fit to the data, we use the CRRA 

utility function to examine the variation in the degree of risk aversion among different groups of 

growers, under various degrees of disease risk, and for years of different revenue levels.  
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We use the following simple specification for the expected loss of crop value   c(x
t
,n ,q )  

from powdery mildew, which incorporates the probability of an outbreak as well as the net loss 

(salvage value minus crop loss) in the case of an outbreak:4 

 31 2( , ; ) t Zt tc x PMI in q q q r q n=   . (5) 

Since the probability of an outbreak depends on the value of the PMIt , the maximum PMI 

observation over the past 7 days, and is higher the higher the PMIt , we expect that  q1
 0 , unless 

a grower relies heavily on a calendar schedule for pesticide sprays, in which case the coefficient 

on the PMIt  may be negative. This possibility is discussed in more detail below.  The probability 

of an outbreak is an increasing function of the interval  it  since last spray because the larger the 

interval, the less protected a crop is from the outbreak given the PMI, and because once the interval 

 it  since last spray increases past the recommended maximum days of protection  rZ
, the crop is 

completely unprotected.  We therefore expect that  q2
 0 .  Since the unobserved time-invariant 

state variable n  measures susceptibility of the variety of grapes grown to powdery mildew, we 

expect  q3
 0 , since susceptibility would increase the probability and damage from infection. 

The specification of the cost function above places equal weight on intervals throughout 

the entire season included in the data.  The data are standardized so that all seasons have the same 

number of days (  days). The beginning of the season is March 1st (day 60 of the year or 

day 1 of the growing season).  However, growers do not start spraying on March 1st and instead 

start spraying on some day in the first two or three weeks of March, usually at budbreak.  We 

assume that the season for powdery mildew control follows suggested calendar of disease 

treatment timing for six different regions within California in Bettiga (2013). The first spray of 

each season is applied based on the timing of a growing season for that particular year and is not 

affected by the PMI.  Therefore, the probability of an outbreak restarts at the beginning of each 

season once the first spray has been made.  

In addition to variations in timing of the first spray of the season, the growers also stop 

spraying at different times during the growing season. Depending on the grape variety, the harvest 

                                                 
4 For the specification using linear utility with an additional term for PMIt  squared, the expected loss of crop value 

is given by: 2
32 41( , ; ) t t Z ttc x PMI i PMIn q q q r q n q=    . 

245T =
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can start as early as the end of August and as late as November. Therefore, growers who harvest 

grapes early show very large intervals since last spray towards the end of the season (100 days or 

more), while the weather data still indicate high probability of infection.  Therefore, the model 

only includes the intervals made between the first and the last sprays of the growing season and 

does not include any intervals after the last spray of the season was observed. 

We model the growers as being able to borrow in order to smooth out their annual revenue 

each day of the growing season for several reasons.  First, if we do not assume that grape growers 

receive any daily revenue on days before the harvest, then they will only incur costs (either the 

expected loss from a powdery mildew outbreak if they do not spray, or the spraying costs if they 

do spray) on each day before the harvest.  Since CRRA, log, and square root utility functions 

( )f X   are undefined when X is negative, we would not be able to use CRRA, log, and square root 

utility functions to model per-period utility if growers only incur costs on all days before the 

harvest.  As analyzing the risk aversion of growers is among the objectives of our paper, we 

therefore model growers as being able to borrow in order to smooth out their annual revenue each 

day of the growing season.  A second reason we assume that growers are able to borrow in order 

to smooth out their annual revenue each day of the growing season is that when we ran the model 

with unobserved heterogeneity and linear utility assuming instead that the crop revenue PY was 

not received until the last day of the season (the harvest date T), we were unable to identify the 

coefficient on unobserved heterogeneity, which did not vary much from the initial guess.  Thus, 

since analyzing unobserved heterogeneity and analyzing the risk aversion of growers are both 

among the objectives of our paper, we model growers as being able to borrow in order to smooth 

out their annual revenue each day of the growing season.  Given that many wine and raisin grape 

growers sell their grapes under pre-determined contracts (Fuller, Alston and Sambucci, 2014), our 

assumption that growers have perfect foresight of the expected revenue per acre for a particular 

year is not unrealistic.     

The spraying decision at  in each period depends only on the current values of the state 

variables xt , n , and e t .   The decision process can be described as a decision rule ( , , )t tx n e ;  a 

sequence pT = (0,1,...,t )  of decision rules is a spraying policy. The optimal policy is the one 

that maximizes the grower’s discounted present value of the entire stream of per-period utility, as 

given by the following dynamic optimization problem: 
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The value function for each time t is given by the following Bellman equation: 

       
  
V

t
(x,n ,e ) = max

a
u(x,n ,e ,a;q ) bE V

t1
(x ' ,n ,e ' ) | x,e { } , (7) 

where x  and e  are the current values, and ¢x  and ¢e  are the future values, of the state variables 

and shocks.  Producers observing the current state of (x,e )  will choose a  to maximize the current 

utility plus the discounted value of the expected future utility.  The dynamic programming problem 

can be solved via backwards iteration starting from the harvest period T  to calculate the value 

function ( , , )tV x n e  for each period t.  The terminal value VT 1 at the end of the growing season is 

set to 0 to reflect that growers do not benefit from the crop past the harvest date T , and therefore 

would not spray on day T . 

The vector of parameters to be estimated is q = (q1,q2,q3, ).  The discount factor b  is set 

to two different values. We use a daily discount factor of b = 0.9  to examine a model that implies 

an annual discount factor that is close to zero.  In this model, only payoffs received up to a month 

in the future factor into the decision making process by the grower. This version of the model 

(Model 1) represents a scenario in which the decision-making process of the grower is more 

myopic.  

Since management of powdery mildew relies on prevention, a completely myopic model 

may be an oversimplification.  We therefore also examine a model with a large daily discount 

factor, as it allows the decision process to incorporate future payoffs from current decisions. In 

this more dynamic model, we estimate the model with a discount factor set to b  = 0.9996, which 

is equal to an annual discount factor of approximately 0.9.  This version of the model (Model 2) 

represents a more dynamic scenario.  

Both Model 1 and Model 2 model the decision-making process as dynamic and vary only 

in the degree to which the future payoffs factor into the present decision-making. As the discount 

factor is not identified in this model, we do not estimate a discount factor for growers. Instead, we 

conduct a likelihood ratio test between these two scenarios to determine which type of process is 

a better fit for the decisions observed in the data.  
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We assume that errors e t  follow an extreme value distribution conditional on the spraying 

decision at .  We also assume conditional independence: 

                 Pr(x
t1

,e
t1

|n ,a
t
;q ) = Pr(x

t1
| x

t
,a

t
;q ) Pr(e

t1
|q ) . (8) 

A standard assumption in many dynamic structural models, our conditional independence 

assumption implies that the evolution of the observed state variables xt  does not depend on the 

particular realization of the idiosyncratic shocks e t  to the utility of individual growers from each 

possible action choice regarding spraying.  For the exogenous state variables PMIt , the duration 

rz  of pesticide protection, the spraying costs S(at )  for each pesticide choice at , and per acre crop 

value PYt , the conditional independence assumption makes sense since the evolution of these 

exogenous variables is independent of any unobservable idiosyncratic shock to the individual 

grower.  For the endogenous state variable, the interval it  since last spray, the conditional 

independence assumption makes sense since since the interval it  since last spray will evolve 

deterministically depending on the action choice of the grower, and its evoluation does not 

additionally depend on any unobservable idiosyncratic shock to the individual grower. 

Letting  0 ( , , ; )u x an q  denote the deterministic component of the per-period utility, which 

is assumed to be linearly separable from the stochastic component ( )ae , the Bellman equation can 

then be rewritten as: 

' '
0 1( , , ) max ( , , ; ) ( ) ( , , ) | ,t t

a
V x u x a a E V x x an e n q e b n e =     .                   (9) 

The continuation value ' '
1( , , ) | ,tE V x x an e    is the expectation of the value function next 

period conditional on this period’s state ( , , )x n e  and decision a.  The continuation value is denoted 

with ( , , )tU x an . Substituting this expression into the Bellman equation, we obtain: 

            0( , , ) max ( , , ; ) ( ) ( , , )t t
a

V x u x a a U x an e n q e b n=   .  (10) 

Given the assumed distribution of e , the probability of the grower making a spraying 

decision 𝑎  conditional on observed state x, unobserved state n , and parameter vector q  is a 

conditional choice probability given by the following multinomial logit formula: 

              .          (11) 
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The likelihood function for the entire sample is: 

                               .                             (12) 

From the extreme value distributional assumption for e , ( , , )tU x an is given by: 

            
  
Ut (x,n ,a) = E ln exp u0 (x ',n ,a ';q ) bUt1(x ',n ,a ') 

a '
åæèç
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







 .   (13) 

Since this is a finite time horizon problem, we solve for ( , , )tU x an  via backwards 

induction from last period. The growing season in this case ends with the harvest, which gives the 

continuation value of zero at time T  ( ( , , ) 0TU x an = ). Therefore, 

  
UT1(x,n ,a) = E ln exp u0(x ',n ,a ';q ) 

a '
åæèç

ö
ø÷

| x,n ,a








 . (14) 

One of the potential sources of unobserved heterogeneity in this model is the variety grown 

by the grower on a particular plot. Grapevines vary in how susceptible they are to powdery mildew 

infection and this susceptibility can influence the growers’ spraying decisions, especially if the 

grapes are high value.   

Variety-specific susceptibility can also be conditional on the intended use of the crop. The 

effect of powdery mildew on the sugar content and the appearance of the berries is much more 

important if the grapes are to be sold fresh as table grapes and so the decrease in crop value is 

greater if we are looking at the table grape crop.  

We apply the expectation maximization (EM) algorithm to the model to determine how 

heterogeneity in disease susceptibility may influence the growers’ decision to treat, following 

Arcidiacono and Miller (2011).  In the model below, Pz  denotes the conditional choice 

probabilities of spraying for each pesticide z . We define 𝑃௩ as the probability of the grape variety 

being susceptible to powdery mildew:  

          Pv = Pr(v) .                                                  (15) 

Given that an and xn denote the entire vector of observations of actions and states, 

respectively, over all days for plot n Î 1,...N{ } , qnv is defined as the conditional probability that 

plot n  is in unobserved state n : 

  qn = Pr(v | an , xn ,in ) .                                                       (16) 
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The Expectation-Maximization (EM) Algorithm is then used to estimate (q ,Pv ,Pz )  by 

iterating over the following Expectation Step (E step) and Maximization Step (M step) over 

multiple iterations m  until convergence. 

For each iteration m , in the Expectation Step (E step), we calculate the conditional 

probability qnv that plot n  is in state n .  To do this, we first form the likelihood l(ant | xnt ,v;q )  for 

each observation as follows: 

.                             (17) 

We then use the likelihood l(ant | xnt ,v;q )  for each observation to update the conditional 

probability qnv that plot n  is in unobserved state n  using Bayes’ rule: 

         qnv
(m1) =

Pv(m ) l(ant | xnt ,v;q
t=1

TÕ
(m )

)

P ¢v (m ) l(ant | xnt , ¢v ;q (m ) )
t=1

TÕ
¢v =0

1

å
.  (18) 

We update the population probability Pv  of being in unobserved state n  as follows: 

    Pv
(m1) =

1

N
qnv

(m1)

n=1

Nå .                              (19) 

Finally, we update Pz (x,v) using weighted average of the data: 

 Pz
(m1)(x,v) = l(ant = z | xnt ,v;q (m) ) . (20) 

In the Maximization Step (M Step), we solve for q m1  using maximum likelihood 

estimation, taking qnv
(m1)  as given: 

 q (m1) = argmax
q

qnv
(m1)

v=0

1åt=1

Tån=1

Nå ln l(ant | xnt ,v;q ). (21) 

 We estimate (q ,Pv ,Pz )  by iterating the E step and the M step until convergence. 

We estimate standard errors using a non-parametric bootstrap.  Grower-years are randomly 

drawn from the data set with replacement to generate 100 independent panels each with the same 

number of grower-years as in the original data set.  The structural model is run on each of the  

panels.  The standard errors are then formed by taking the standard deviation of the estimates from 

each of the random samples. 
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Identification of the parameters q   comes from the differences between per-period payoffs 

across different action choices, which in finite horizon dynamic discrete choice models are 

identified when the discount factor b , the distribution of the choice-specific shocks e t , and the 

final period continuation value ( )TU   are fixed (Abbring, 2010; Magnac and Thesmar, 2002; Rust, 

1994).  In particular, the parameters in our model are identified because each term in the per-period 

utility ( , , ; )t t tu x ae q  given in Equations (3) and (4) depends on the action ta  being taken at time 

t, and therefore varies based on the action taken; as a consequence, the parameters do not cancel 

out in the differences between per-period utilities across different action choices and are therefore 

identified.  For example, the parameters q  in the expected loss of crop value   c(x
t
,n ,q )  from 

powdery mildew only appear in the per-period utility from not spraying, and are therefore 

identified in the difference in the per-period utility from not spraying and the per-period utility 

from spraying.  

 

4.  Data  

We apply our dynamic structural model to a daily panel set on wine grape growers and 

raisin grape growers in California that includes all pesticide applications made on a specific plot 

over the course of 12 to 15 years, as well as corresponding powdery mildew pressure observations 

from nearby stations. The starting point of this dataset consists of two surveys administered to a 

sample of wine grape growers (2008) and raisin grape growers (2010). The survey covers the 

period 1997-2007 for wine grapes and the period 1997-2010 for raisin grapes. The survey data 

include information on whether a particular grower has received the Powdery Mildew Index for 

her vineyard in the preceding 12 to 15 years, and demographic information about the vineyard 

owner or operator. The dataset constructed using the survey of wine grape growers was previously 

used by Lybbert, Magnan and Gubler (2016). The same methodology and data sources were used 

to assemble the dataset for raisin grape growers: pesticide application data were assembled from 

the Pesticide User Reports (PUR) using individual operator identification numbers (grower IDs) 

provided by the growers. Daily observations of the PMI from the California Irrigation 
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Management Information System (CIMIS) weather station network were matched to each plot 

using plot location identifiers contained in the PUR reports.5   

The growers in the final sample fall into three of the five major grape growing regions in 

California: North Coast region (Napa, Sonoma, and Mendocino counties), Central Coast region 

(San Luis Obispo county) and Central Valley region (San Joaquin, Fresno, Madera, and Tulare 

counties).  Raisin grape growers are located in the Central Valley region only. A detailed 

discussion of the differences in climate and crop value among the major growing regions is 

presented in Sambucci (2015).  The dimensions of the resulting dataset are presented in Table A.1 

in Appendix A.  

Previous reduced-form analysis of powdery mildew management programs of the surveyed 

wine grape growers by Lybbert, Magnan and Gubler (2016) has established a wide heterogeneity 

of responses among growers in the three regions as well as differences in powdery mildew 

management with and without the use of the PMI. To account for heterogeneity of growers within 

each region, we allow the model parameters to vary by county. PMI provides an indicator of 

powdery mildew outbreak risk based on the current weather (mostly, temperature), so we expect 

the PMI observations to be relevant for modeling decisions even for growers who do not receive 

PMI, since all growers still observe weather and know the type of weather favorable to powdery 

mildew outbreaks. In fact, prior to the development of PMI, the conventional wisdom the growers 

followed was “if you like the weather, so does powdery mildew” (Lybbert, Magnan and Gubler, 

2016). We therefore include observations of the PMI as a proxy for weather in the model for 

growers who do not use the official PMI index and the combined dataset of users and non-users, 

although we expect the coefficient on the PMI to be of smaller magnitude for growers who do not 

use the PMI.  

We consider five observed state variables that affect grower decisions: PMIt , the 

maximum value of the Powdery Mildew Index over the past 7 days; the duration rz  of pesticide 

protection in days given the current disease pressure for each pesticide z ; the interval it  since last 

spray; the per acre crop value PYt ; and the spraying costs S(at )  for each pesticide choice at .  

                                                 
5 PUR reports include PLSS (Public Land Survey System) coordinates for each plot. PLSS coordinates were converted 
to GPS coordinates and matched to daily PMI data from the nearest available weather station for each year. For a 
detailed explanation of the PLSS system of coordinates, please see 
http://geology.isu.edu/geostac/Field_Exercise/topomaps/plss.htm. Additional information on matching plot 
coordinates with weather station data can be found in Sambucci (2015). 
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The exogenous state variable PMIt , the maximum value of the Powdery Mildew Index 

over the past 7 days, ranges in value from 0 to 100 and is discretized into three bins: 1 = low (

PMIt  values between 0 and 30), 2 = moderate ( PMIt  values of 31–59) and 3 = high ( PMIt  values 

of 60 or greater). The data on PMIt  comes from weather stations near the plots of the surveyed 

growers.  

Figure 1 shows the distribution of high, medium, and low powdery mildew pressure days 

by county and year, as well as average values for all counties. To account for years of varying 

powdery mildew pressure, the model is estimated separately for years of low, medium, or high 

powdery mildew pressure, ranked relative to the average distribution of categories of the PMI 

observed for a specific county. Alternatively, the years of low, medium, or high powdery mildew 

pressure can be ranked according to the average observed powdery mildew pressure for all counties 

together, with similar results. 

Another exogenous state variable in xt  is the duration rz  of pesticide protection in days 

given the current disease pressure for each pesticide z .  Starting with the day after application, the 

protective power of the chemical decreases each day as the interval since application approaches 

the maximum days of protection. For some chemicals, the duration of protection rz  also changes 

with current PMI values. For example, when PMI is low, sulfur can be applied as infrequently as 

21 days. When PMI is high, sulfur can only protect the field for up to 7 days.  Table A.2 in 

Appendix A summarizes recommended application schedules for each chemical category. 

Since some chemicals have similar protective power, as well as similar costs, we can group 

the spray choice into three categories based on the degree of protection they provide for each level 

of PMI: at = 1 if chemical categories are sulfur or contact chemicals; at = 2  if chemical categories 

are synthetic fungicides (sterol inhibitors, strobilurins, or cell-signaling inhibitors); and at = 3  for 

other chemical categories. Thus, the duration rzof pesticide protection in days given the current 

disease pressure for each pesticide z can be either 0, 7, 14, or 21 days, depending on the pesticide 

applied during the last spray and current weather conditions (PMI).  

Table A.3 in Appendix A summarizes evolution of protective power measured in maximum 

days of protection rz  for each PMI-spray combination.  Since the duration of protection depends 

on the chemical sprayed last and PMIt , we specify the value of rz  for each combination of the 
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chemical category of the last spray and PMIt  in the matrix based on Table A.3 in Appendix A. 

The value of the PMI is the maximum observed value of PMI over the last seven days. 

Figure 2 shows the distribution of the interval (in number of days) since the last spray at 

the time of spray in the data.  According to Tables A.2 and A.3 in Appendix A, the recommended 

spraying intervals based on the chemical last applied and the current level of disease pressure are 

7, 14, and 21 days.  These recommended intervals are represented by red lines in the figures. The 

fourth red line is at the 28 day mark. The recommended intervals are generally consistent with 

what we see in the data, although some growers spray more frequently than 7 days, and others less 

frequently than 21 days.  Fewer than 1% of the growers spray beyond 28 days in any county, and 

these observations are treated as missing data since they likely represent data errors. For example, 

a grower may forget to record a spray, or make a mistake when recording the name of the field, 

and the spray may get assigned incorrectly in the PUR data.  

Our data suggests that growers sometimes stretch intervals beyond the recommended 

reapplication date rz . This can be due to approaching harvest, type of grapes (raisin and wine 

grape growers can stop powdery mildew management once the berries reach a particular sugar 

content), and negligible disease pressure.   Nevertheless, only 2–4% of total sprays occur at 

intervals over 21 days, which is the maximum duration of protection of any chemical under the 

lowest degree of disease pressure according to the University of California Integrated Pest 

Management (UC IPM) guidelines (see Table A.2 in Appendix A for more details).  

We assume that the expected per acre crop value PYt  stays constant throughout the year 

for each grower, and therefore that growers have perfect foresight regarding the expected revenue 

per acre for a particular year. Given that many wine and raisin grape growers sell their grapes 

under pre-determined contracts (Fuller, Alston and Sambucci, 2014), this assumption is not 

unrealistic.  The value of the crop is based on the grape varieties grown, their annual price per ton 

and per acre yields. Since only limited data on the acreage of specific varieties grown by each 

grower is available, this variable is set to equal the average revenue per acre for each county for a 

specific year, based on the data from NASS/USDA Crush Reports (USDA/NASS 2008–2011).  

The value of PYt  for each grower is calculated using the region-specific average yield and 

price for that year. There are six major grape growing regions in California, and the data used in 

this paper include growers from four of those regions. Sambucci (2015) details the bearing acreage 

by category of grapes grown, average price per ton of grapes, and total value of production for 
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each of the regions. The North Coast region, which in our sample includes growers from Napa, 

Sonoma and Mendocino counties, is the region of highest value grapes, but the value of the crop 

varies among the counties within the region, with Napa being by far the highest value county. The 

Central Coast region is an area of medium-value grapes, known for its Chardonnay. Chardonnay 

is a variety that is quite susceptible to powdery mildew infections.  

Growers in the Northern Central Valley region grow medium to low value wine grapes, 

and growers in the Southern Central Valley region grower low value wine grapes, but mostly raisin 

or table grapes. Of the two counties in the data in the Southern Central Valley region, Fresno has 

the most raisin growers. 

Figure A.1 in Appendix A describes the ten top most popular wine grape varieties by region 

(share of bearing acreage).  These ten varieties account for between 76 and 95 percent of total 

winegrape acreage in each region. The top varieties are similar among the wine regions, except for 

the Southern Central Valley region (Fresno and Madera counties in our sample). The most popular 

wine grape variety in the Southern Central Valley region is French Colombard, which is grown 

mainly for juice or low cost wine blends. In addition, raisin and table grape acreage in the South 

Central Valley region is about one and a half times larger than wine grape acreage, so the wine 

grape industry is not the dominant grape production category.  Of the varieties listed, Chardonnay 

is frequently regarded as the most susceptible to powdery mildew, with Merlot, French Colombard, 

Petite Sirah, and Rubired having low susceptibility. The rest of the varieties are considered to be 

moderately susceptible to powdery mildew infections.  

From Figure A.1 in Appendix A, it is evident that while most varieties are considered to 

be moderately susceptible, Chardonnay, a highly susceptible variety, constitutes at least twenty 

percent of bearing acreage in all regions except the Southern Central Valley.  In the Southern 

Central Valley region, the top two winegrape varieties are considered to have low susceptibility to 

powdery mildew.  However, Chardonnay is still the third most common wine grape variety in this 

region. Acreage by variety is not observed in the data, and the structural model includes a measure 

of susceptibility to a powdery mildew outbreak as a source of unobserved heterogeneity. Growers 

with varieties that are more susceptible to a powdery mildew outbreak are expected to treat 

powdery mildew more aggressively (using more frequent sprays or spraying with more potent 

fungicides) than growers with varieties that are less susceptible.  
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Figure A.2 in Appendix A shows the average annual revenue per acre for each county. We 

assume that growers have perfect foresight as to what their per acre revenue going to be in a 

particular year. Many wine growers, especially in high and medium value growing regions, sell 

their grapes under contract, so the assumption that they have a very good idea of what their 

revenues will be for the current year is not unrealistic. The same is the case for raisin grape 

growers. 

For spraying costs, we use the average spraying cost for each chemical category.  Costs are 

based on recent UCCE Cost and Return Studies (UCCE 2003-2013) and discussed in more detail 

in Sambucci (2015). Table A.4 in Appendix A shows the average per acre spraying costs for major 

chemical categories. Table A.5 in Appendix A shows the variation in spraying costs by region.   

Annual variation in pesticide or application costs, especially unexpected years of high or low prices 

would potentially be of interest, but reliable data on application costs by year is not available. 

Instead, we simply discount the present costs using index of prices paid by growers, but this 

procedure does not allow enough precision to examine years of unusually high or low pesticide 

application costs. 

Table 1 presents a summary of all action and state variables in the dataset. 

 

5.  Results 

5.1.  Model Selection and Results by County 

We estimate several different utility functions which allow for varying degrees of risk 

aversion: linear utility, logarithmic utility, square root utility, utility with PMI squared, and CRRA 

utility. Linear utility assumes risk neutrality, logarithmic and square root utilities assume some 

degree of risk aversion, and CRRA utility allows variation in the degree of risk aversion among 

the different groups of growers in the sample.  Characterizing the risk preferences of growers can 

help one understand some of the decisions growers make when faced with potential losses from a 

disease outbreak. 

In order to determine the utility function that has the best fit for the data, five different 

utility functions with and without unobserved heterogeneity were estimated and tested for 

goodness of fit: linear utility, logarithmic utility, square root utility, utility with PMI squared, and 
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CRRA utility.6  Likelihood ratio tests were used to compare CRRA and logarithmic utility, and 

linear utility with utility with PMI squared to determine which utility functions fits data the best. 

Likelihood ratio tests were also used for each utility function to test between the model with and 

without unobserved heterogeneity.  Based on the results of the likelihood ratio tests, the CRRA 

utility function with unobserved heterogeneity was selected as the best fit.  Results of the likelihood 

ratio tests are included in Appendix B.  

We use our dynamic structural model to examine the role of the PMI disease pressure 

forecast in the spraying decisions of the growers. The coefficient on the category of the PMI is 

therefore a primary parameter of interest. Growers who use powdery mildew pressure forecasting 

and spray at more flexible intervals are expected to have a larger coefficient on the PMI, while 

growers who spray at fixed calendar schedules and do not adjust their intervals based on the values 

of the PMI may have a smaller or insignificant coefficient. Given the structure of the data, the sign 

of the coefficient on the PMI may be either negative or positive. Many growers adhere to a calendar 

schedule for applying pesticides to control powdery mildew. Since the value of the PMI varies 

daily and the sprays may be scheduled in advance, we can observe sprays both during periods of 

low values of the PMI and during periods of high values of the PMI. If scheduled sprays happen 

to fall mostly during periods with low values of the PMI, we would observe a negative coefficient 

on the PMI. On the other hand, if the scheduled sprays fall mostly during periods with high values 

of the PMI, we would observe a positive coefficient on the PMI. At the other extreme, if a grower 

did not use a calendar spraying schedule at all and instead sprayed only in response to the PMI, 

the coefficient on the PMI would also be positive. We expect that even with the use of the PMI, 

most growers would still retain a calendar spraying schedule, but also use the PMI to adjust the 

timing of their sprays. Therefore, the sign of the coefficient on the value of the PMI depends to 

some extent on the degree to which a particular grower follows a calendar spraying schedule. In 

addition, we expect the coefficient on the value of the PMI to increase with the use of the PMI, 

assuming that the growers become more responsive to the forecasted powdery mildew pressure. 

We expect the coefficient on susceptibility and the value of the susceptible proportion Pv  

to vary by region. If the sample of growers is representative of grape growers in each region, we 

would expect to see higher values of coefficient on susceptibility and the values of susceptible 

                                                 
6 We estimate and test the different utility functions using Model 1, as likelihood ratio tests show that Model 2 does 
not provide significant improvement over Model 1 in the ability of the model to fit the data. 
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proportion Pv  in the Central and North Coast regions. Chardonnay is the most popular variety in 

the Central Coast region and this is also the region that usually experiences high powdery mildew 

pressure because of its mild climate and proximity to the coast. Growers in North Coast grow 

especially high value grapes, including white grape varieties that are more susceptible to powdery 

mildew infections.  

We first estimate the CRRA utility with and without unobserved heterogeneity for wine 

and raisin grape growers by county. Table 2 presents the parameter estimates for CRRA utility 

with and without unobserved heterogeneity for Model 1 ( b = 0.9 ). These estimates include data 

for all available years, and use average values of per acre revenue and application costs for each 

chemical category for all years.  The estimates are listed for each county separately and grouped 

by grape growing region, since regions are similar in grape value, categories of grapes grown, and 

market conditions.   

We also conduct a likelihood ratio test between the model with unobserved heterogeneity 

and the model without unobserved heterogeneity. The model without unobserved heterogeneity is 

a special case of (and therefore a constrained version with fewer parameters than) the model with 

unobserved heterogeneity.  The test statistic D is given by: 

2 2a oD L L=  ,                                                           (22) 

where aL  is the log likelihood of the model with unobserved heterogeneity and oL  is the log 

likelihood of the model without unobserved heterogeneity.  The test statistic D is distributed chi-

squared with 1 degree of freedom (since the number of parameters in the model with unobserved 

heterogeneity minus the number of parameters in the model without unobserved heterogeneity = 

1 degree of freedom).  If the test statistic D is greater than the critical value 0.0039, then the 

coefficient on unobserved heterogeneity is statistically significant at a 5% level and the model with 

unobserved heterogeneity produces a statistically significant improvement in the ability of the 

model to fit data. 

According to the likelihood ratio tests in the last column of Table 2, CRRA utility with 

unobserved heterogeneity produces a significant improvement in the value of the log likelihood.   

We therefore focus our discussion on the results of the CRRA utility with unobserved 

heterogeneity. 

The coefficients on the PMI are positive and significant in Table 2 for all counties except 

Napa and Madera. The magnitude of the coefficients varies between about 0.7 and 27, which 
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means that an increase in the maximum value of the Powdery Mildew Index over the past 7 days 

from low to medium or from medium to high increases the expected crop value loss ( , , )tc x n q  

from powdery mildew by $0.70 in Madera county to $4.82 in Mendocino County (in 2008 US 

dollars) per acre per day (or, by $171 to $1,180 per acre per year). The expected loss of crop value 

( , , )tc x n q  incorporates the probability of an outbreak as well as the net loss (salvage value minus 

crop loss) in the case of an outbreak. Differences in the magnitude of coefficients are due to large 

differences in revenue per acre, as shown in Figure A.2 in Appendix A.  

The coefficient on it rtz  ranges from 0.23 to 0.93, which means that an increase in the 

ratio of the interval  it  since last spray over the recommended maximum days of pesticide 

protection  rZ
 from 0 (the grower just sprayed) to 1 (the grower has reached the maximum days 

of protection) increases the expected crop value loss ( , , )tc x n q  from powdery mildew in the case 

of an outbreak by $0.23 to $0.93 (in 2008 US dollars) per acre per day, or between $56 and $228 

per acre per year.  

The coefficient on unobserved susceptibility to powdery mildew ranges between about 1 

and 24, which means that being susceptible to powdery mildew increases the expected crop value 

loss ( , , )tc x n q  from powdery mildew in the case of an outbreak, by $1 to $24 (in 2008 US dollars) 

per acre per day ($245 to $5,880 per acre per year). The estimated share of plots with varieties 

susceptible to powdery mildew is very low for most counties (below 1%), but is very high in Napa 

and Sonoma (97%).  

The value of  , the coefficient of relative risk aversion, is estimated to be between 0.4 

(raisin grape growers) and 1.4 (wine grape growers in San Joaquin). Estimates of   are lower for 

raisin grape growers than wine grape growers, and  also varies less among raisin grape growers 

in different counties. Estimates of the coefficient of relative risk aversion for raisin grape growers 

fall between 0.42 and 0.44 for raisin grape growers. The coefficient of relative risk aversion for 

wine grape growers falls between 0.67 and 1.40, with the highest value of the coefficient for 

growers in San Joaquin county. Wine grape growers in lower value counties of Madera and Fresno 

have a similar estimated coefficient of relative risk aversion as wine grape growers in Napa or 

Sonoma, which is where the grapes of the highest value are grown. On the other hand, estimates 

for growers in Mendocino, also a county with high-value grapes, have a similar estimated 
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coefficient of relative risk aversion as growers in San Joaquin or San Luis Obispo, which are 

counties with low- or medium-value grapes. 

Table 3 presents the parameter estimates for CRRA utility with unobserved heterogeneity 

for Model 2 (b = 0.9996 ).  Results from Model 2 in Table 3 show that the coefficient on the PMI 

is negative and significant for all counties. The coefficient on it rtz  varies between 0.26 for 

growers of raisin grapes in Fresno and 4.36 for growers of raisin grapes in Napa. The coefficient 

on the indicator of perceived susceptibility to powdery mildew varies between 0.08 and 4.521. The 

coefficient of relative risk aversion is around 0.7 for all counties. The main difference between 

estimates for Model 1 (Table 2) and Model 2 (Table 3) is the negative coefficient on the PMI in 

the latter. The possible reasons for the negative sign on the coefficient of the PMI are discussed 

above. Since a negative coefficient on the PMI represents both the effect of calendar schedule and 

the response to the disease pressure, the interpretation of the coefficient on the PMI is best done 

as a comparison between growers who use the PMI and those who do not, which we conduct 

below. In addition, while the coefficients on the PMI are negative for all counties, coefficients on 

it rtz  and unobserved susceptibility vary over a greater range of values than in Model 1.  

We conduct likelihood ratio tests between the more myopic Model 1 ( b = 0.9 ) and the 

more dynamic Model 2 (b = 0.9996 ).  The myopic model is a special case of the dynamic model.  

The test statistic D is given by Equation (22), where aL  is now the log likelihood of the more 

dynamic model and oL  is now the log likelihood of the more myopic model.  The test statistic D 

is distributed chi-squared with 1 degree of freedom.  If the test statistic D is greater than the critical 

value 0.0039, then the more dynamic model produces a statistically significant improvement in 

the ability of the model to fit data at a 5% level. 

Table 4 presents the results of the likelihood ratio tests that compare the goodness of fit 

between Model 1 ( b = 0.9 ) and Model 2 (b = 0.9996 ). The likelihood ratio tests in Table 4 

indicate that Model 2 provides significant improvement in the fit to the data for only two out of 

ten counties: growers of wine grapes in Napa and Fresno. For other counties, using the daily 

discount factor of b = 0.9996  instead of b = 0.9  does not provide significant improvement in the 

ability of the model to fit the data.  We therefore focus primarily on the results of Model 1 ( b = 0.9

) for all counties, while also discussing the results of Model 2 ( b = 0.9996 ) for wine grape growers 
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in Napa and Fresno.  It is possible that a different daily discount factor that falls between these two 

values could result in a better fit.  

As a robustness check, Table A.6 in Appendix A presents results that only use data for 

plots with weather stations within a distance that can be considered ‘close’. 7  The estimates 

restricted to weather stations in the close range are likely to provide more precise coefficient 

estimates, but they also reduce the amount of usable data and the rest of the estimates continue 

using data from all weather stations, with the mean distance between the plot and the closest 

weather station of about 10 miles. The results suggest that growers in all counties make some 

adjustments to the timing of their sprays based on the PMI, except in Napa, where the coefficient 

on the PMI is negative and not significant. The coefficient on susceptibility and the value of 

susceptible proportion Pv  is low in Central Coast, where we would expect it to be higher due to 

the climate and large proportion of Chardonnay. However, since we do not observe the varieties 

planted by the growers in our sample, it is possible that growers in this dataset are not 

representative of the regional sample.  

Because the results of likelihood ratio tests show that CRRA utility provides the best fit to 

the data, we use the CRRA utility to examine the variation in the degree of risk aversion among 

different groups of growers, under various degrees of disease risk, and for years of different 

revenue levels.  

 

5.2.  PMI Users vs. Non-Users 

In the next set of results, we estimate and compare parameters for users and non-users of 

the PMI separately to determine if there is a difference in how these growers respond to disease 

pressure risk.  The availability of the PMI serves a proxy for the use of the PMI (which is 

endogenous). The survey data include information on when PMI first became available to the 

growers, which is exogenous, rather than when the grower started using the PMI (endogenous). 

Table 5 presents the results of CRRA utility estimates for growers pre- and post- PMI receipt. If 

                                                 
7  North Coast counties Napa and Sonoma are especially subject to microclimates and require strictest range 
limitations: ‘too far’ is >5 miles (8 km) and ‘close’ is <3 miles (5 km). Mendocino: ‘too far’ is >10 miles (15 km) and 
‘close’ is <5 miles (8 km). San Luis Obispo is where most of our Central Coast observations are: ‘too far’ is >15 miles 
(23 km) and ‘close’ is <8 miles (13 km). Valley counties are generally flat and more uniform in climate. In Fresno 
and Madera, ‘too far’ is >37 miles (60 km) and ‘close’ is <23 miles (38 km). In San Joaquin, ‘too far’ is >18 miles 
(30 km) and ‘close’ is <7.5 miles (12 km). Distance ranges are from Lybbert, Magnan and Gubler (2016). Conversions 
from kilometers to miles are rounded to the closest half-mile. 
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the growers rely on the PMI more post-receipt, we would expect to see a larger coefficient on the 

PMI post-receipt than prior to the receipt of the PMI.  

In addition, we would expect an increase in the magnitude and significance of coefficient 

on the indicator of current field protection ( it rtz ) post-receipt. This is because the values of rtz

(days of protection from the chemical applied during the previous spray) are based on the current 

values of the PMI: as the value of the PMI increases, the days of protection allowed by the last 

spray chemical fall, as described in Table A.3 in Appendix A. So, growers would be more likely 

to spray in response to changes in value of it rtz  if they monitor the PMI than they would be from 

assuming rtz  to be an average fixed number for each chemical category, since in the latter case 

the grower would not realize that it rtz  had changed. 

According to the results in Table 5 (Model 1), the coefficients on the PMI increase for wine 

grape growers in Madera, Mendocino, and Sonoma after the PMI becomes available. The 

coefficient on the value of the PMI increases from 0.32 to 0.75 in Madera, 4.79 to 4.81 in 

Mendocino, and from -0.26 to 1.75 in Sonoma. The coefficients can be interpreted as the change 

in the expected crop value loss ( , , )tc x n q  from powdery mildew, which incorporates the 

probability of an outbreak as well as the net loss (salvage value minus crop loss) in the case of an 

outbreak, in 2008 US dollars per acre per day. This means that for growers in Madera an increase 

in the maximum value of the Powdery Mildew Index over the past 7 days from low to medium or 

from medium to high increases the expected loss from powdery mildew from $0.32 to $0.75 per 

acre per day after they begin using the PMI.  Similarly, prior to the receipt of the PMI, an increase 

in the maximum value of the PMI over the preceding 7 days from low to medium or from medium 

to high, did not increase the expected loss from powdery mildew (the coefficient on the PMI was 

negative and not significant). After the growers began using the PMI, the expected loss from 

powdery mildew from increase in the PMI changed to $1.75 per acre. Estimates for growers in 

other counties show slightly smaller coefficients on PMI post-receipt. In the case of Napa, the 

coefficient on the PMI becomes negative and insignificant.  

At the same time, wine grape growers in Fresno, Madera, Napa and Sonoma also have 

larger coefficients on the value of it rtz  after receiving the PMI.  In Fresno, the coefficient on 

it rtz  changed from 0.24 to 1.27, in Madera—from 0.28 to 0.44, in Napa—from 0.03 to 0.93 and 

in Sonoma—from 0.93 to 4.46. As discussed above, this result can be interpreted as an increase in 
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the expected loss of crop value from powdery mildew (in 2008 US dollars) per acre per day, as the 

ratio of the interval  it  since last spray over the recommended maximum days of protection  rZ
 

increases from 0 to 1.  

In addition, the coefficient on the perceived susceptibility of the variety grown decreases 

for growers in Napa and Sonoma with receipt of the PMI.  For growers in Napa, the coefficient on 

varietal susceptibility decreases from 14.73 to 9.52 and for Sonoma—from 23.42 to 4.96. The 

coefficient on varietal susceptibility also decreases for raisin grape growers in Tulare (from 4.99 

to 2.23). The coefficient on varietal susceptibility increases for wine grape growers in Fresno in 

Madera, and stays the same for growers in all other counties. These changes suggest that, in most 

counties, growers become more responsive to the values of the PMI post-receipt (since an increase 

in the PMI increases the expected loss from powdery mildew if the grower does not spray, and, 

therefore, increases the probability of spraying for each category of spray), either by spraying more 

frequently in response to large values of PMI, or by timing their sprays according to the protection 

provided by the last sprayed chemical, which also changes based on the values of the PMI. 

However, this result does not hold for all counties – there are almost no changes in coefficients 

between the users and non-users of the PMI for wine grape growers in San Joaquin and San Luis 

Obispo, and raisin grape growers in Madera. The expected crop loss from powdery mildew 

decreases with increase in the PMI or it rtz for raisin grape growers in Tulare.  

Estimates of coefficient of relative risk aversion are similar for the two groups of growers 

(users and non-users of the PMI) for all counties except Sonoma, where users of the PMI exhibit 

much higher relative risk aversion than non-users (1.47 for users compared to 0.49 for non-users).  

This finding suggests that the group of growers who use the PMI in Sonoma includes growers with 

higher levels of relative risk aversion than non-users, but this trend is not present in any of the 

other counties. 

Results from Model 2 are presented in Table A.7 in Appendix A. While the coefficients on 

the PMI are still negative, they increase with the use of the PMI for all counties except Fresno and 

Napa, which is consistent with the results for Model 1 in Table 5. The coefficients on it rtz  

increase or stay the same for all counties except raisin growers in Fresno and Tulare. The 

coefficient on the susceptibility to powdery mildew outbreaks varies between 0.1 and 3.7 for users 

of the PMI and between 0.1 and 4.5 for non-users. The coefficient of relative risk aversion is still 

about 0.7 for all growers. 
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5.3.  Years of Low, Medium, and High Powdery Mildew Pressure  

It may be possible that the decrease in the coefficient on susceptibility may indicate that 

growers are more confident in their powdery mildew management strategy and time their sprays 

according to the forecasted disease pressure more than the perceived susceptibility of a particular 

plot.  To examine the response of the growers to various levels of disease pressure risk, we estimate 

the model for years of low/medium or high powdery mildew pressure. The results for Model 1 (

b = 0.9 ) are reported in Table A.8 in Appendix A. 8   The years are grouped by average 

observations of the PMI index for all three categories (low, medium, and high) for each year, by 

county. Figure 1 presents the details on the distribution of the PMI observed in the data. 

Among wine grape growers, the largest changes in the coefficients on the PMI and it rtz

between years of low and high powdery mildew pressure are in Fresno, Napa and Sonoma 

counties. In Fresno, the coefficient on the value of the PMI is 0.93 in years of low powdery mildew 

pressure and 1.46 in years of high powdery mildew pressure. This implies that the expected loss 

from powdery mildew with an increase in the observed category of the PMI by 1 (from low to 

medium, or from medium to high) differs by $0.53 per acre per day between years of low and high 

powdery mildew pressure. Similarly, the coefficient on it rtz  increases from 0.12 to 0.19. For 

growers in Napa, the coefficient on the PMI is negative or not significant in years of low and 

medium powdery mildew pressure, and increases to 2.05 in years of high powdery mildew 

pressure. The coefficient on it rtz , on the other hand, decreases from 2.57 in years of low powdery 

mildew pressure to 0.45 in years of high powdery mildew pressure. The coefficient on varietal 

susceptibility also decreases from about 15 in years of low and medium powdery mildew pressure 

to 5.5 in years of high powdery mildew pressure. In Sonoma, the coefficient on the category of the 

PMI is large in years of low powdery mildew pressure, small and not significant in years of 

medium powdery mildew pressure and increases again to 7.6 in years of high powdery mildew 

pressure. The coefficient on it rtz increases from 0.41 in years of medium powdery mildew 

pressure to 9.27 in years of high powdery mildew pressure.   Estimates for growers in Sonoma also 

show a larger coefficient of risk aversion in years with higher disease pressure. The differences in 

                                                 
8 These and subsequent results are reported for Model 1 only, as Model 2 generally does not provide significant 
improvement over Model 1 in the ability of the model to fit the data. 
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the estimated coefficient of relative risk aversion are likely due to the slight differences in the plots 

observed in the data among the low, medium, and high-pressure years. Given the findings in Table 

A.8 in Appendix A, it is possible that the sample of plots active in the years with relatively high 

powdery mildew pressure include a large share of PMI users. Estimates for grape growers in San 

Joaquin, San Luis Obispo, and Mendocino vary very little among the three groups of years. For 

wine grape growers in Madera, the coefficient on the PMI becomes positive and significant in 

years of high powdery mildew pressure, while the coefficient on it rtz  decreases in value. Among 

raisin grape growers, the coefficients for both PMI and it rtz  increase for growers in Madera and 

Tulare, and growers in Fresno show a decrease in coefficient on the PMI, but a large increase in 

the coefficient on it rtz .   

Tables A.9 and A.10 in Appendix A provide the comparison between growers who use and 

do not use the PMI, respectively, for years of varying powdery mildew pressure. In most cases, 

growers who use the PMI become more responsive to disease pressure risk (as indicated by the 

increase in the expected crop loss from increase in the value of the PMI). Differences between 

growers who receive the PMI and those who do not receive the PMI vary by county. Coefficients 

on the PMI for growers of wine grapes in Madera are negative and significant in some cases, which 

may indicate that they tend to spray based on calendar schedule, which does not always correspond 

to disease risk based on weather. However, the coefficients on on it rtz  are larger for growers in 

Madera with the use of the PMI, which indicates that while they do not necessarily spray in 

response to high levels of PMI (since an increase in the value of the PMI does not increase the 

expected crop loss from powdery mildew), the increase in the expected loss of crop value from an 

increase in the PMI results from changes in the degree of protection due to changes in disease 

pressure. In other parts of the Central Valley and in the North Coast counties, the response to PMI 

between users and non-users appears to be very similar, suggesting that the variation in weather 

(which drives powdery mildew risk) increases the perceived probability of the expected loss from 

powdery mildew regardless whether or not the growers use the official index. Among raisin grape 

growers, the value of the expected loss function is higher among the users of the PMI in years of 

low and high disease pressure, but the coefficients on the value of the PMI and it rtz  are very 

similar in years of medium disease pressure. 
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5.4.  Years of Low, Medium, and High Revenue Per Acre  

Next we examine the response of growers to disease risk during years of different per acre 

revenue. We group the years of revenue by low, medium, and high per acre revenue, using a 20 

percent deviation from the mean per acre revenue to define the categories. Table A.11 in Appendix 

A includes the results. The coefficients on the PMI and it rtz  increase for wine grape growers in 

Madera, Napa, Sonoma, and San Luis Obispo in years of high revenue per acre. Coefficients on 

these variables do not change, or change in the opposite direction for wine grape growers in Fresno 

and Mendocino. The value of the expected loss of crop value increases between low and high 

revenue loss for raisin grape growers in Madera, Fresno and Tulare.  

Tables A.12 and A.13 in Appendix A present results for users and non-users of the PMI 

separately. The years of low, medium, and high revenue per acre are not distributed evenly among 

the counties in each region, so the estimates in Tables A.12 and A.13 in Appendix A report results 

by region rather than county. Since prior tables demonstrate the differences among counties within 

the region as well as among the regions, the results by region offer less precision. The main and 

obvious difference between users and non-users of the PMI grouped by year of high, medium and 

low revenue is that growers who do not report receiving the PMI in several cases show negative 

and significant coefficients on the PMI. Growers who report receiving the PMI show insignificant 

or positive coefficients on the PMI, which, in all cases, increase for years of high revenue per acre.  

 

6.  Counterfactual Simulations 

We use the results of our dynamic structural econometric model to run counterfactual 

simulations to calculate the value to growers of the PMI.  In particular, we use the parameter 

estimates to simulate what would happen if all growers received the PMI, and also to simulate 

what would happen if no growers received the PMI, and then compare the average grower welfare 

under the two counterfactual scenarios as a measure of the value to the growers of the PMI. 

To calculate and compare the welfare of receiving versus not receiving the PMI, we 

simulate what would happen if all growers (PMI users and non-users alike) received the PMI, and 

compare that to what would happen if no growers received the PMI.  Because those who received 

the PMI may be a select sample, we cannot simply compare the welfare of the users of the PMI 

with those of non-users, but instead simulate the counterfactual of all growers receiving the PMI 

versus the counterfactual of no growers receiving the PMI.  



33 

For each county, grape type, and year combination in the data set, we simulate 100 possible 

trajectories for spraying decisions at  for each grower over 245T =  days, using the actual values 

for PMIt  and PYt  and the parameter values that are significant at a 5% level from our results for 

PMI users for that respective county in Table 5.  We then simulate 100 possible trajectories for 

spraying decisions at  for each grower over 245T =  days using the actual values for PMIt  and 

PYt  and the parameter values that are significant at a 5% level from our results for PMI non-users 

for that respective county in Table 5. We compare the average grower welfare if everyone used 

PMI (averaged over 100 simulations) with the average grower welfare if no one used PMI 

(averaged over 100 simulations), for each county and category of grapes combination. The results 

for Model 1 are presented in Table 6; the results for Model 2 (which are based on parameter 

estimates from Table A.7 in Appendix A) are presented in Table 7.  

According to the results for Model 1 in Table 6, average welfare is lower with the PMI 

disease forecast information for growers of wine grapes in Madera and Sonoma counties and is 

the same with and without the PMI disease forecast information for growers of wine grapes in all 

other counties except Fresno. Average welfare is higher with the use of the PMI disease forecast 

information for wine grape growers in Fresno. Also, welfare is higher with the use of PMI for 

growers of raisin grapes in all counties.  According to the results for Model 2, which produces a 

statistically significant improvement in the ability of the model to fit data for growers of wine 

grapes in Fresno and Napa, in Table 7, average welfare is higher with the use of the PMI disease 

forecast information for wine grape growers in Fresno but lower with the use of PMI disease 

forecast information for wine grape growers in Napa. 

 

7.  Conclusion 

This paper estimates a dynamic structural econometric model of the decision of grape 

growers of whether and when to spray their crop. We compare the parameters among different 

counties; between users and non-users of PMI disease forecast information; for years of low, 

medium, and high powdery mildew pressure; and for years of high, medium or high value of per 

acre revenue.  In addition, we estimate the distribution and effects of unobserved varietal 

susceptibility, which is hypothesized to contribute to the spraying decisions by the growers.  
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We estimate two versions of the model.  Model 1 is a more myopic scenario, which uses a 

daily discount factor of 0.9.  Model 2 is a more dynamic scenario and uses a daily discount factor 

of 0.9996.  Likelihood ratio tests between the two models suggest that, with the exception of wine 

grape growers in Napa and Freso, Model 2 does not provide significant improvement over Model 

1 in the ability of the model to fit the data.  We therefore focus primarily on Model 1 for all 

counties, while also discussing the results of Model 2 for wine grape growers in Napa and Fresno. 

Both models model the decision-making process as dynamic and vary only in the degree to which 

the future payoffs factor into the present decision-making. It is possible that a discount factor 

between the two values tested in this paper would provide a better fit. 

The results suggest that, while all growers use weather for guidance when planning the 

applications of pesticides to manage powdery mildew, growers who use the PMI are more 

responsive to current disease pressure than growers who do not, but these results vary among 

counties. Increases in the value of the PMI increase the expected crop loss for each level of disease 

pressure and for each level of protection provided by the pesticide product currently on the field.  

When the data are grouped by years of low, medium, or high powdery mildew pressure, 

the function of expected loss in crop value due from an outbreak of powdery mildew increases for 

growers in several counties in years of high powdery mildew pressure. The value of the expected 

loss function increases in years of high powdery milder pressure for growers of wine grapes in 

Fresno, Madera, Napa, and Sonoma. Estimates for growers of wine grapes in San Joaquin, 

Mendocino, and San Luis Obispo are very similar among the three groups of years grouped by 

powdery mildew pressure. The value of the expected loss function increases for raisin grape 

growers in Fresno and Tulare, and decreases for raisin grape growers in Madera.  

When growers are grouped based on the use of the PMI, the results are similar: in San 

Joaquin, Mendocino, and San Luis Obispo the results for users and non-users of the PMI are very 

similar and do not vary based on powdery mildew pressure for the group of years. Wine grape 

growers in Sonoma show the largest differences both between users and non-users of PMI and 

among years of low, medium, or high powdery mildew pressure. The expected loss of crop value 

for users of the PMI in Sonoma is higher compared to the non-users for each group of years. Wine 

grape growers in Madera and Napa show responses similar to wine grape growers in Sonoma, but 

with fewer differences among groups of years with low, medium, or high powdery mildew 

pressure. Among raisin grape growers, the value of the expected loss function is higher for users 
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of the PMI are among all counties, and higher for all growers in years with high powdery mildew 

pressure. 

Coefficients on the PMI and on it rtz  (the ratio of the days since last spray to the 

maximum days of protection provided by the chemical applied on the plot during the last spray) 

increase for wine grape growers in Madera, Napa, and Sonoma and raisin growers in Tulare in 

years where the revenue per acre is higher than average. Coefficients on the PMI and it rtz  

decrease or stay the same for growers of wine grapes in Fresno or Mendocino between years of 

high and low revenue per acre. 

Differences between users and non-users of the PMI in the results grouped by years of low, 

medium, or high revenue per acre are less clear. The main and obvious difference between users 

and non-users of PMI grouped by year of high, medium, and low revenue is that the coefficient on 

the PMI in the expected loss function is negative and significant for several groups of growers who 

do not report receiving the PMI. Growers who report receiving the PMI show insignificant or 

positive coefficients on PMI, which, in all cases, are higher in years of high per acre revenue. 

The value of the coefficient of relative risk aversion   is between 0.4 (raisin grape 

growers) and 1.4 (wine grape growers in San Joaquin and Sonoma). Raisin grape growers in this 

sample have lower relative risk aversion than wine grape growers, and also less variation in the 

coefficient of relative risk aversion among growers in different counties. Estimates of the 

coefficient of relative risk aversion for raisin grape growers fall between 0.42 and 0.44. The 

coefficient of relative risk aversion for wine grape growers falls between 0.49 and 1.47, with the 

highest value of the coefficient for growers in Sonoma county. So far it is unclear whether 

coefficient of relative risk aversion for wine grape growers varies with any particular location or 

crop value. Wine grape growers in lower value counties of Madera and Fresno have a similar 

estimated coefficient of relative risk aversion as wine grape growers in Napa, which is where the 

grapes of the highest value are grown. On the other hand, estimates for growers in Sonoma, also a 

county with very high-value grapes, have a similar estimated coefficient of relative risk aversion 

as growers in San Joaquin or San Luis Obispo, which are counties with low- or medium-value 

grapes.  Estimates of coefficient of relative risk aversion are similar for users and non-users of 

PMI for all counties except Sonoma, where users of PMI exhibit much higher relative risk aversion 

than non-users (1.47 for users compared to 0.49 for non-users). This finding suggests that the group 

of PMI users in Sonoma includes growers with higher levels of relative risk aversion than non-
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users, but this trend is not present in any of the other counties. The coefficient of relative risk 

aversion varies very little among the counties in Model 2 and is around 0.7 for all growers.  

The coefficient on unobserved susceptibility to powdery mildew ranges between about 

0.033 and 23.41 in Model 1, and between 0.23 and 4.52 in Model 2, which means that being 

susceptible to powdery mildew increases the expected crop value loss ( , , )tc x n q  from powdery 

mildew, which incorporates the probability of an outbreak as well as the net loss (salvage value 

minus crop loss) in the case of an outbreak, by $0.03 to $23.41 (in 2008 US dollars) per acre per 

day (Model 1), or by $0.23 to $4.52 (Model 2). The estimated share of plots with susceptible 

varieties ranges from below 1% to as high as 99% (in Napa, using Model 1).  The large share of 

varieties that growers perceive as susceptible to a powdery mildew infection in Napa is not 

surprising – wine grapes in Napa are some of the most valuable in the world (both in value per ton 

and in revenue per acre), and Chardonnay is the second most planted variety in that region.   

Finally, the effects of having the PMI disease forecast information on the average welfare 

of the growers also vary by region.  Fresno is the only county where having the PMI disease 

forecast information increases average welfare for wine grape growers.  Having the PMI disease 

forecast information decreases average welfare for wine grape growers in Sonoma, Madera, and 

Napa, and has no effect on average welfare for wine grape growers in the other counties.  On the 

other hand, having the PMI disease forecast information increases average welfare for raisin grape 

growers in all counties.   

Wine grapes in Fresno, as well as raisin grapes in Fresno, Madera and Tulare, are of lower 

value than grapes in all other counties, except wine grapes in Madera. Because the costs of spraying 

are larger relative to potential crop revenue for the growers in these counties, growers in these 

counties would be more likely to care about using the PMI disease forecast information to avoid 

unnecessary sprays. In contrast, for growers in counties with grapes of higher value, the costs of 

spraying are a smaller share of revenue per acre. In this case, growers would care more about 

eliminating any damage to the crop from a potential outbreak of powdery mildew, and would be 

willing to apply extra sprays to provide a higher level of protection. Consequently, having the PMI 

disease forecast information may not increase the average welfare of these growers. These results 

are consistent with reduced form econometric results from Lybbert, Magnan and Gubler (2016), 

who find that growers of grapes of higher value are more likely to over-apply pesticides in response 

to high levels of forecasted disease pressure. Results for growers of wine grapes in Madera are the 
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only ones that do not fit this scenario: wine grapes in Madera are of low value, and yet the welfare 

of the growers declines with the use of the PMI disease forecast information.  Since the estimates 

in this paper use a fairly small sample of growers, it is possible that these results are due to the 

growers in the sample not being familiar with the use of the PMI disease forecast information. In 

future work, we hope to expand the sample to provide results that are more representative.  

The primary advantage of reduced-form models such as those in Lybbert, Magnan and 

Gubler (2016) are that one can use continuous variables without having to discretize them and, 

because state-space constraints are less of a concern, one can include many covariates. However, 

the reduced-form models only estimate the per-period probability of spraying, and therefore do 

not have a clear structural interpretation. Because the payoffs from spraying depend on the risk of 

powdery mildew infection, which varies stochastically over time, a grower who hopes to make a 

dynamically optimal decision would need to account for the option value to waiting before making 

an irreversible decision to spray (Dixit and Pindyck 1994). The parameters in reduced-form models 

are therefore confounded by continuation values.   

The dynamic structural model developed in this paper provides several advantages to 

modeling the spraying decisions of grape growers. Unlike reduced-form models, a structural 

approach explicitly models the dynamics of spraying decisions and allows the estimation of 

additional parameters such as the degree of risk aversion exhibited by the growers and the 

distribution and effects of unobserved susceptibility of varieties to powdery mildew infections.  

One main advantage of the structural model is that is that it allows us to estimate the effect 

of each state variable on the expected payoffs from the decisions to spray or not to spray, while 

accounting for the continuation value, which is the expected value of the value function next 

period.  Therefore, the estimated parameters have direct economic interpretations.  

A second main advantage of the structural model is that the parameter estimates from our 

structural model can be used simulate counterfactual scenarios. In this paper, we use the parameter 

estimates to simulate what would happen if all growers received the PMI, and also to simulate 

what would happen if no growers received the PMI, and then compare the average grower welfare 

under the two counterfactual scenarios as a measure of the value to the growers of the PMI.   

In future work we hope to obtain more data to enable us to allow the parameters to vary 

among grower groups with different individual characteristics, such as by gender and the level of 

experience with vineyard management, and also to capture changes over multiple seasons of time.  
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The parameter estimates can then be used to evaluate how the welfare of growers change over time 

with the use of the PMI disease forecast information. 

In addition, it is worth exploring whether data limitations may be affecting estimates of 

unobserved varietal susceptibility to powdery mildew infections. It is possible that the varieties 

grown by the current grower sample are not representative of the general distribution of varietal 

acreage each county, and estimating this model for a larger dataset may provide more precise 

estimates of varietal susceptibility. Using data for a larger sample of grape growers would serve 

to confirm the validity of our results for the larger subset of the grape growing industry.  

Our results have important implications for grape powdery mildew management and the 

provision of disease forecasting information.  In addition, the dynamic structural econometric 

modeling approach we use in our research to analyze the pesticide spraying decisions of grape 

growers in response to disease forecasting information innovates upon previous methodological 

approaches to analyzing pest management, and can be applied in many other settings, including to 

other pests and crop diseases in other areas of the world.  
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Figure 1: Distribution of Powdery Mildew Pressure by Year and County 
 
 
Wine Grape Growers: Central Valley Region 
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Figure 2: Distribution of Interval Since Last Spray at the Time of Spray 
 
Wine Grape Growers: Central Valley Region 

 
 

Wine Grape Growers: North and Central Coast Regions 

 
 
Raisin Grape Growers: Central Valley Region 

 
 
Notes: Graphs plot the distribution of of the interval (in number of days) since the last spray at the time of spray.  
According to Tables A.2 and A.3 in Appendix A, the recommended spraying inervals based on the chemical last 
applied and the current level of disease pressure are 7, 14, and 21 days.  These recommended intervals are represented 
by red lines in the figures. The fourth red line is at the 28 day mark.
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Table 1: Summary Statistics 

  Number of Sprays   
Interval Since  

Last spray   
Average Revenue 

Per Acre 
  Average Spraying Cost   

Share of PMI 
by Category 

  Sulfur Synthetics Other Total  Observations Mean    Sulfur Synthetic Other  Low Med High 

       days  2008 $ per acre  2008 $ per acre  percent 

Wine Grape Growers                  

Central Valley                  

Fresno 3,556 601 53 4,210  4,914 7.7  2,886  10 46 42  49 16 35 

Madera 2,218 119 2 2,339  2,427 11.4  2,886  10 46 42  54 17 29 

San Joaquin 3,974 600 16 4,590  4,923 10.8  5,651  10 46 42  49 18 33 

                  

North Coast                  

Napa 4,157 1,348 75 5,580  5,980 11.7  10,774  31 61 44  42 15 43 

Sonoma  8,193 2,163 57 10,413  12,767 9.1  8,852  31 61 44  48 19 33 

Mendocino 1,350 403 5 1,758  1,817 13.2  6,979  10 49 41  56 20 25 
                  

Central Coast                  

San Luis Obispo 5,654 235 62 5,951  7,573 7.0  7,253  10 49 41  58 19 24 
                  

                  

Raisin Grape Growers                  

Central Valley                  

Fresno 11,685 2,225 8 13,918  14,310 9.7  1,597  11 46 42  51 17 32 

Madera 1,101 306 - 1,407  1,443 11.6  1,597  11 46 42  54 16 30 

Tulare 1,260 798 6 2,064  2,085 11.8  1,597  11 46 42  48 17 34 

Note: Revenue per acre and costs of spraying are reported in 2008 US dollars, averaged over all years in the data. 
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Table 2: Results for CRRA Utility (Model 1: b=0.9) 

  With Unobserved Heterogeneity Without Unobserved Heterogeneity 
Likelihood 
Ratio Test 
Statistic 

  Coefficient on: Coefficient of 
Relative Risk 

Aversion 

 Coefficient on: Coefficient of 
Relative Risk 

Aversion   PMI 
it
rtz

 Susceptibility 
Susceptible 
Proportion PMI 

it
rtz

 

Wine Grape Growers         
Central Valley          
 Fresno 0.704* 0.268* 2.960* 0.590* 0.26 1.754* 0.136* 0.598* 15,380* 

  (0.179) (0.070) (0.285) (0.012)  (0.020) (0.019) (0.001)  
 Madera -0.874 0.923* 4.010* 0.679* 0.34 -0.532* 0.851* 0.685* 158* 

  (0.376) (0.181) (0.378) (0.014)  (0.010) (0.013) (0.001)  
 San Joaquin 4.181* 0.850* 0.980* 1.400* 0.00 4.177* 0.845* 1.400* 128,972* 

  (0.000) (0.000) (0.000) (0.000)  (0.000) (0.000) (0.000)  
North Coast          
 Mendocino 4.817* 0.928* 1.000* 1.100* 0.00 4.794* 0.906* 1.400* 49,957* 

  (0.000) (0.000) 0.000 (0.000)  (0.000) (0.000) (0.000)  
 Napa -0.482 0.921* 9.924* 0.626* 0.97 3.00* 1.00* 0.600* 2,476* 

  (0.571) (0.147) (1.059) (0.007)  (0.000) (0.000) (0.000)  
 Sonoma -0.432* 0.405* 24.155* 0.472* 0.97 4.863* 1.531* 0.672* 39,672* 

  (0.102) (0.053) (0.352) (0.015)  (0.058) (0.040) (0.000)  
Central Coast          
 San Luis Obispo 5.849* 0.925* 0.990* 1.100* 0.00 5.836* 0.937* 1.400* 19,162* 

  (0.000) (0.000) (0.000) (0.000)  (0.000) (0.000) (0.000)  
 
 

 
        

Raisin Grape Growers         
Central Valley          
 Fresno 0.782* 0.360* 5.500* 0.415* 0.00 3.000* 1.000* 0.600* 219,182* 

  (0.019) (0.019) 0.000 (0.002)  (0.998) (0.284) (0.084)  
 Madera 0.727* 0.228* 5.955* 0.439* 0.00 0.423* 0.063* 0.026* 1,891* 

  (0.050) (0.022) (0.000) (0.003)  (0.050) (0.022) (0.003)  
 Tulare 0.637* 0.259* 4.200* 0.432* 0.00 0.641* 0.252* 0.434* 4,592* 

  (0.033) (0.026) 0.000 (0.003)  (0.000) (0.000) (0.000)  
Notes: Bootstrapped standard errors in parentheses.  A statistically significant result from the likelihood ratio test indicates that the model with 
unobserved heterogeneity produces a statistically significant improvement in the ability of the model to fit data.  Significance code: * p<0.05.   
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Table 3: Results for CRRA Utility (Model 2: b=0.9996) 

 With Unobserved Heterogeneity 
 Coefficient on: 

Coefficient of 
Relative Risk Aversion 

Susceptible 
Proportion   PMI it

rtz
 Susceptibility 

Wine Grape Growers     
Central Valley     
Fresno  -8.230*   0.099*   0.318*   0.698* 0.000 

 (0.163) (0.982) (0.000) (0.000)  
Madera  -0.666*   0.420*   0.335*   0.698* 0.021 

 (0.000) (0.000) (0.000) (0.000)  
San Joaquin -1.122*           -0.115   2.887*   0.693* 0.000 

 (0.009) (0.100) (0.000) (0.000)  
North Coast      
Mendocino -1.534*   2.883*   0.334*   0.600* 0.011 

 (0.000) (0.000) (0.000) (0.000)  
Napa -3.749* 4.356 0.363 0.600 0.047 

 (0.000) (0.000) (0.000) (0.000)  
Sonoma -1.204*   0.828*   4.521*   0.696* 0.001 

 (0.004) (0.000) (0.000) (0.000)  
Central Coast     
San Luis Obispo -0.239*   1.147*   3.706*   0.702* 0.000 

 (0.029) (0.000) (0.000) (0.000)  
      
      
Raisin Grape Growers     
Central Valley     
Fresno -0.229*   0.265*   1.000*   0.698* 0.000 

 (0.000) (0.000) (0.000) (0.000)  
Madera -0.447*   0.433*   0.195*   0.711* 0.008 

 (0.000) (0.000) (0.000) (0.000)  
Tulare -0.273*           -0.071   0.080*   0.668* 0.023 

  (0.009) (0.187) (0.000) (0.002)  

Notes: Bootstrapped standard errors in parentheses.  Significance code: * p<0.05. 
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Table 4: Likelihood Ratio Test: Model 2 (b = 0.9996 ) vs. Model 1 (b = 0.9 ) 

 Test Statistic 

Wine Grape Growers  

Central Valley  

 Fresno      5,274* 

 Madera   -4,681 

 San Joaquin -18,282 

North Coast  

 Mendocino   -2,778 

 Napa      6,654* 

 Sonoma -30,002 

Central Coast  

 San Luis Obispo -21,074 

   

   

Raisin Grape Growers 

Central Valley  

 Fresno  -4,208 

 Madera     -512 

 Tulare  -3,071 
Note: A statistically significant result from the likelihood ratio test indicates that Model 2 ( b = 0.9996 ) produces 

a statistically significant improvement in the ability of the model to fit data.  Significance code: * p<0.05. 
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Table 5: Results for Growers Pre- and Post- PMI Receipt (Model 1: b=0.9) 
 

  Receive PMI Do Not Receive PMI 
  Coefficient on: Coefficient of 

Relative Risk 
Aversion 

Susceptible 
Proportion 

Coefficient on: Coefficient of 
Relative Risk 

Aversion 
Susceptible 
Proportion   PMI 

it
rtz

 Susceptibility PMI 
it
rtz

 Susceptibility 
Wine Grape Growers          
Central Valley           
 Fresno   -2.042     1.266   6.501*   0.579* 0.334    0.753*   0.240*   2.833*   0.594* 0.247 

  (1519.000) (721.160) (2.828) (0.132)   (0.168) (0.059) (0.287) (0.012)  
 Madera       0.754*       0.438*   5.500*   0.506* 0.007    0.321*   0.283*   0.932*   0.693* 0.039 

      (0.198)     (0.083) (0.000) (0.020)   (0.512) (0.233) (0.152) (0.017)  
 San Joaquin       5.731*       0.891*   0.899*   1.600* 0.000    5.757*   0.894*    1.000*   1.500* 0.000 

      (0.000)     (0.000) (0.000) (0.000)   (0.000) (0.000) (0.000) (0.000)  
North Coast           

 Mendocino     4.816*      0.929*   1.000*   1.100* 0.000    4.792*   0.931*   1.000*   1.100* 0.019 

    (0.000)    (0.000) (0.000) (0.000)   (0.000) (0.000) (0.000) (0.000)  
 Napa -0.588      0.934*   9.516*   0.626* 0.987    0.817*   0.029* 14.734*   0.616* 0.999 

    (0.576)    (0.168) (0.991) (0.006)   (0.360) (0.162) (1.383) (0.005)  
 Sonoma     1.751*      4.962*   9.999*   1.469* 0.007 -0.257   0.433* 23.416*   0.485* 0.976 

    (0.000)    (0.000) (0.000) (0.000)    (0.144) (0.095) (0.554) (0.022)  
Central Coast           
 San Luis Obispo     5.846*     0.943*   0.980*   1.400* 0.002    6.878*   0.949*  1.000*   1.100* 0.006 

    (0.000)   (0.000) (0.000) (0.000)   (0.000) (0.000) (0.000) (0.000)  
            
            
Raisin Grape Growers          
Central Valley           
 Fresno     0.729*    0.444*   5.800*   0.412* 0.000   0.716*   0.692*   5.499*   0.525* 0.000 

    (0.024)  (0.027) (0.000) (0.003)   (0.096) (0.073) (0.156) (0.009)  
 Madera     0.585*   0.261*   6.000*   0.442* 0.000    0.725*   0.242*   6.000*   0.439* 0.000 

    (0.088)  (0.034) (0.000) (0.005)   (0.044) (0.024) (0.000) (0.003)  
 Tulare     0.070*   0.112*   2.231*   0.146* 0.897    0.606*   0.264*   4.994*   0.434* 0.000 

    (0.069)  (0.049) (0.645) (0.605)   (0.038) (0.019) (0.000) (0.003)  
Notes: Bootstrapped standard errors in parentheses. Significance code: * p<0.05. 
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Table 6: Difference in Average Annual Welfare With and Without the PMI 
(Model 1: b=0.9) 
 
 Average Annual Welfare  

 With PMI Without PMI Difference 
Wine Grape Growers   
Central Valley   
Fresno 100.00   99.71     0.29 

     (0.04)     (0.07)  
Madera   83.86   84.53    -0.67 

     (0.11)     (0.04)  
San Joaquin   57.77   57.77     0.00 

     (0.25)    (0.25)  
North Coast    
Mendocino   67.29   67.29     0.01 

     (0.47)     (0.47)  
Napa   83.68   83.68     0.00 

     (0.00)     (0.00)  
Sonoma     0.25 101.48 -101.23 

     (0.00)     (0.00)  
Central Coast   
San Luis Obispo   83.34   83.34     0.00 

     (0.31)    (0.31)  
 

   
    
Raisin Grape Growers   
Central Valley   
Fresno   76.24   73.64    2.06 

     (0.13)    (0.16)  

Madera   60.35   60.17    0.18 

    (0.20)    (0.22)  

Tulare   96.88   78.97   17.91 

    (0.22)    (0.52)  

Notes: Standard deviations in parentheses. Values standardized so that the value of welfare for growers in Fresno 
county with PMI use is equal to 100.  The difference in average annual grower welfare with and without the PMI is a 
measure of the value to the growers of the PMI disease forecast information. 
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Table 7: Difference in Average Annual Welfare With and Without the PMI 
(Model 2: b=0.9996) 
 
 Average Annual Welfare  

 With PMI Without PMI Difference 
Wine Grape Growers   
Central Valley   
Fresno 100.00     92.78    7.22 

     (0.05)       (0.21)  
Madera   63.40     78.70 -15.29 

     (0.29)       (0.21)  
San Joaquin   71.22      71.93  -0.71 

    (0.14)       (0.11)  
North Coast    
Mendocino   78.70      79.92  -1.22 

    (0.40)       (0.28)  
Napa   72.98      77.43   -4.45 

    (0.15)      (0.11)  
Central Coast   
San Luis Obispo  99.08  101.89   0.00 

   (0.23)      (0.19)  
 

   
    
Raisin Grape Growers   
Central Valley   
Fresno   73.48   75.22  -1.74 

     (0.09)     (0.07)  

Madera   60.13   59.34   0.79 

    (0.18)     (0.23)  

Tulare   94.72   93.99   0.73 

      (0.23)     (0.27)   
Notes: Standard deviations in parentheses. Values standardized so that the value of welfare for growers in Fresno 
county with PMI use is equal to 100.  The difference in average annual grower welfare with and without the PMI is a 
measure of the value to the growers of the PMI disease forecast information.   
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Appendix A.  Supplementary Tables and Figures 

Table A.1: Data Dimensions 

  Number of Growers  Number of Plots  Grower-Plot years  Grower-Plot Days  Number of Sprays 

 
PMI 
users 

PMI  
non-users Total 

 PMI 
users 

PMI  
non-users Total 

 no PMI 
use 

with PMI 
use 

 no PMI 
use 

with PMI 
use 

 no PMI 
use with PMI use 

Wine Grape Growers                

 Central Valley                 

 Fresno 1 4   5      4 51   55  398       8    97,510     1,960  5,395      39 

 Madera 2 3   5    44 35   79  152   171    37,240   41,895  1,242 1,546 

 San Joaquin 6 3   9    73 22   95  233   572    57,085 140,140  1,113 4,750 

                  

 North Coast                 

 Napa   5 3   8  218   3 221  116   792    28,420 194,040  1,404 5,643 

 Sonoma  16 3 19  110 70 180  679   424  166,355 103,880  7,979 6,124 

 Mendocino   1 3   4    40   3   43    69   219    16,905   53,655      616 1,521 

                 

Central Coast    
 

   
 

  
 

  
 

  

 San Luis Obispo 10 7 17    44 22   66  191   284    46,795   69,580  3,249 5,022 

                 

                  

 Raisin Grape Growers   
 

   
 

  
 

  
 

  
 Central Valley                 

 Fresno 29 9 38  202 51 253  809 1,208  393,357   24,776  6,225 10,361 

 Madera   4 1   5    20 10   30  150     143    31,951   28,598  1,006     773 

 Tulare   6 2   8    12 37   49  293       67    57,705   11,934  1,917     406 
Sources: Survey data; PUR records. 
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Table A.2: Spray Intervals Based on Disease Pressure Using the Powdery Mildew Index 

Index 
Disease 

pressure 
Pathogen 

status 
 Suggested spray schedule 

    at = 1 at = 2  at = 3  

    
Sulfur Contact 

Sterol 
inhibitors 

Strobilurins 
Cell-

signaling 
inhibitors 

Biologicals 
SARs 

Other 

0–30 Low present 
Spray 

interval 
14–21 days 10–18 days 21 days  21 days 14–21 days 7–14 days unknown 

   rz  21 21* 21 21 21 14 14 

           

30–59 Intermediate 
reproduces 
every 15 

days 

Spray 
interval 

10–17 days 10–14 days 21 days 21 days 14–21 days 7 days unknown 

   rz  14* 14 21 21 21 7 7 

           

60 and 
above 

High 
reproduces 

every 5 
days 

Spray 
interval 

7 days  7 days 10-14 days 14 days 14 days 
use not 

recommended 
unknown 

   rz  7 7 14 14 14 0 0 

Note: Value of rz  rounded to the nearest category value to keep the number of rz  categories equal to four ( rz =0,7,14,21) 

Source: UC IPM, UC Management Guidelines for Powdery Mildew on Grape, available at http://www.ipm.ucdavis.edu/PMG/r302100311.html 
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Table A.3: Evolution of Current Protection ( ) Based on Chemical Last 
Sprayed and the PMI 

 Last Spray=1 Last Spray=2 Last Spray=3 
PMI=1 21 21 14 
PMI=2 14 21 7 
PMI=3 7 14 0 

Source: Summarized from Table A.2. 
 

 

 rZ
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Figure A.1: Top Ten Varieties by Share of Bearing Acreage, 2011 

 
Source: USDA/NASS Acreage Reports, 2011. 
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Figure A.2: Average Revenue Per Acre 

 
Note: Raisins are reported as fresh equivalent of dried fruit. Prices are in 2008 US dollars, converted using 
the BEA GDP deflator. 
Source: USDA (2003–2012).  
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Table A.4: Average Spraying Costs Per Acre for Major Chemical Categories 

Chemical Category Application Costs ($) Material Costs ($) Total ($) 
Sterol Inhibitors 26 31 57 
Strobilurins 26 31 57 
Cell-Signaling Inhibitors 17 31 48 
Sulfur 11 2 13 
Biologicals 22 31 53 
Contact 17 31 48 
Other 22 31 53 
SARs 22 31 53 

Note: Costs are in 2011 US dollars. 
Sources: Derived from UCCE (2003-2013).   
 
 

 

 

 

Table A.5: Average Per Acre Spraying Costs by Region, 2011 

  North Coast Central Coast North and South Valley 
 Cost per acre Cost per acre Cost per acre 
Chemical Category $ per acre $ per acre $ per acre 
Sulfur or Contact 18 13 13 
Synthetics 76 61 57 
Other 55 51 52 
Note: Costs are in 2011 US dollars. 
Sources: Derived from UCCE (2003-2013).   
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Table A.6: Robustness Check: Results for Close Stations Only (Model 1: b=0.9) 

  With Unobserved Heterogeneity 
  Coefficient on: Coefficient of 

Relative Risk 
Aversion 

Susceptible 
Proportion   PMI 

it
rtz

 Susceptibility 
Wine Grape Growers      
Central Valley      
 Fresno   0.811* 0.111   3.111*   0.574* 0.332 

  (0.211) (0.074) (0.386) (0.032)  
 Madera insufficient data  
    
i      
 San Joaquin   4.215*   0.887*    1.000*   1.100* 0.002 

  (0.000) (0.000)  (0.000) (0.000)  
North Coast      
 Mendocino    4.796*   0.926*    1.000*   1.100* 0.000 

    (0.000) (0.000)  (0.000) (0.000)  
 Napa -0.878   1.012*  10.400*   0.624* 0.969 

    (0.600) (0.157)  (1.123) (0.007)  
 Sonoma     4.722*   1.535*   39.980*   0.678* 0.000 

    (0.498) (0.360)   (0.000) (0.011)  
North Coast      
 San Luis Obispo     5.851*   0.923*    1.000*   1.100* 0.002 

   (0.000) (0.000)   (0.000) (0.000)  
      
      
Raisin Grape Growers      
Central Valley      
 Fresno    0.762*   0.419*   6.000*   0.412* 0.000 

   (0.026) (0.023) (0.000) (0.002)  
 Madera    0.753*   0.238*   6.000*   0.438* 0.000 

   (0.039) (0.020) (0.000) (0.003)  
 Tulare    0.632*   0.291*   4.500*   0.429* 0.000 

   (0.038) (0.038) (0.000) (0.004)  
Notes: Bootstrapped standard errors in parentheses. Significance code: * p<0.05.   
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Table A.7: Results for Growers Pre- and Post- PMI Receipt (Model 2: b=0.9996) 

  Receive PMI Do Not Receive PMI 
 Coefficient on: Coefficient of 

Relative 
Risk Aversion 

Susceptible 
Proportion 

Coefficient on: Coefficient of 
Relative 

Risk Aversion 
Susceptible 
Proportion   PMI 

it
rtz

 Susceptibility PMI 
it
rtz

 Susceptibility 
Wine Grape Growers           
Central Valley           
Fresno -0.999*     1.161   0.050   0.693 0.040 -5.974*   -0.250*   0.525*   0.576* 0.004 

 (0.050) (12.526) (7.220) (15.479)  (0.000)  (0.000) (0.000) (0.000)  
Madera -0.831*     1.078*   1.807*   0.705* 0.000 -1.196*    0.095*   0.523*   0.669* 0.017 

 (0.029)   (0.000) (0.001) (0.000)  (0.000)  (0.000) (0.000) (0.000)  
San Joaquin -0.743*     -0.194   0.236*   0.666* 0.015  -1.060*   -0.118*   2.900*   0.691* 0.000 

 (0.031)   (0.600) (0.001) (0.068)  (0.001)  (0.002) (0.000) (0.000)  
North Coast           
Mendocino -1.522*     2.901*   0.312*   0.696* 0.018  -1.720*   2.521*   0.145*   0.715* 0.167 

 (0.000)   (0.000) (0.000) (0.000)  (0.728) (1.066) (0.061) (1.321)  
Napa -16.085* -0.850       -1.067   0.488* 0.999  -1.292*   -0.059*   0.121*   0.671* 0.918 

 (1.426)   (3.841) (0.666) (0.037)  (0.000) (0.000) (0.000) (0.000)  
Central Coast          
San Luis Obispo   0.096*     1.640*   3.706*   0.699* 0.001 -0.409*   0.579*   3.705*   0.698* 0.001 

 (0.000)   (0.000) (0.000) (0.000)  (0.000) (0.000) (0.000) (0.000)  
          
          
Raisin Grape Growers          
Central Valley          
Fresno -0.110*     0.388*   1.000*   0.696* 0.000 -0.270*   0.197*   1.000*   0.694* 0.001 

 (0.001)   (0.000) (0.000) (0.000)  (0.001) (0.001) (0.000) (0.000)  
Madera -0.231*     0.049*   1.000*   0.714* 0.000 -0.496*   0.211*   0.046*   0.713* 0.157 

 (0.000)   (0.000) (0.000) (0.000)  (0.000) (0.000) (0.000) (0.000)  
Tulare -0.348*   -0.040*   1.000*   0.701* 0.002 -0.353*   0.049*   1.000*   0.697* 0.000 
  (0.000)   (0.002) (0.000) (0.000)  (0.000) (0.000) (0.000) (0.000)  

Notes: Bootstrapped standard errors in parentheses. Significance code: * p<0.05.   
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Table A.8: Results for Years of Low, Medium, and High Powdery Mildew Pressure 

  Low PM Pressure Medium PM Pressure High PM Pressure 
  Coefficient on: Coefficient 

of Relative 
Risk 

Aversion 
Suscept. 

Proportion 

Coefficient on: Coefficient 
of Relative 

Risk 
Aversion 

Suscept. 
Proportion 

Coefficient on: Coefficient 
of Relative 

Risk 
Aversion 

Suscept. 
Proportion   PMI 

it
rtz

 Suscept. PMI 
it
rtz

 Suscept. PMI 
it
rtz

 Suscept. 
Wine Grape Growers             
Central Valley               
 Fresno     0.931*    0.124*   3.660*   0.535* 0.463 insufficient data   1.646*  0.190*   4.900*   0.594* 0.000 

    (0.134)  (0.074) (0.305) (0.018)       (0.126) (0.078) (0.000) (0.009)  
 Madera  -1.654    1.084*   4.085*   0.650* 0.563 -2.291 2.141*  2.592*  0.682* 0.010 0.316 0.303   4.355*   0.696* 0.125 

    (0.982)  (0.127) (0.000) (0.016)  (1.131) (0.353) (0.490) (0.026)  (0.483) (0.239) (0.692) (0.010)  
 San Joaquin     4.226*    0.877*   1.000*   1.100* 0.007 4.208* 0.865*  1.000*   1.100* 0.036   4.213*  0.888*   1.000*   1.100* 0.002 

    (0.000)   (0.000) (0.000) (0.000)  (0.000) (0.000) (0.000) (0.000)  (0.000) (0.000) (0.000) (0.000)  
North Coast                
 Mendocino    4.811*    0.920*   1.000*   1.100* 0.012 4.812*  0.927*  1.000*   1.100* 0.045   4.816*  0.921*   1.000*   1.100* 0.016 

   (0.000)  (0.000) (0.000) (0.000)  (0.000) (0.000) (0.000) (0.000)  (0.000) (0.000) (0.000) (0.000)  
 Napa   -6.727*    2.573* 15.624*   0.632* 0.947 -1.135  0.849*  15.162*   0.633* 0.958   2.047*  0.452*   5.535*   0.630* 0.970 

    (0.950)  (0.405) (1.326) (0.004)  (0.937) (0.566) (1.550) (0.020)  (0.452) (0.214) (1.062) (0.004)  
 Sonoma   26.463* -0.112   0.033*   0.389* 0.158 -0.311  0.418*  23.571*   0.488* 1.000   7.587*  9.268*   0.993*   1.413* 0.027 

    (0.171)  (0.170) (0.017) (0.492)  (0.171) (0.138) (0.837) (0.035)  (0.000) (0.000) (0.000) (0.000)  
Central Coast                
 San Luis Obispo   5.844*  0.942*   1.000*   1.100* 0.023 5.854*  0.943*  1.000*   1.100* 0.004   5.865*  0.938*   1.000*   1.100* 0.013 

  (0.000)  (0.000) (0.000) (0.000)  (0.000) (0.000) (0.000) (0.000)  (0.000) (0.000) (0.000) (0.000)  
                 
                 
Raisin Grape Growers           
Central Valley               
 Fresno   3.711* -0.098   5.200*   0.480* 0.000 3.211*  2.033*  4.000*   0.455* 0.000   3.183*  3.200*   4.000*   0.550* 0.012 

  (0.626)  (0.062) (0.000) (0.095)  (0.000) (0.000) (0.000) (0.000)  (0.000) (0.000) (0.000) (0.000)  
 Madera   0.678*    0.245*   5.998*   0.439* 0.000 0.652*  0.212*  6.000*   0.442* 0.000   0.714*  0.265*   6.000*   0.445* 0.000 

  (0.077)  (0.031) (0.000) (0.003)  (0.087) (0.030) (0.000) (0.005)  (0.055) (0.031) 0.000 (0.003)  
 Tulare   0.211*    0.175*   1.887*   0.336* 0.522 0.510*  0.372* 10.787*   0.427* 0.000   0.669*  0.201*   5.869*   0.443* 0.000 

  (0.096)  (0.025) (0.212) (0.054)  (0.050) (0.029) (0.862) (0.006)  (0.033) (0.022) 0.000 (0.003)  
  Notes: Bootstrapped standard errors in parentheses. Significance code: * p<0.05.  
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Table A.9: Results for Years of Low, Medium, and High Powdery Mildew Pressure: Growers Who Receive 
the PMI 

  Low PM Pressure Medium PM Pressure High PM Pressure 
  Coefficient on: Coefficient 

of Relative 
Risk 

Aversion 
Suscept. 

Proportion 

Coefficient on: Coefficient 
of Relative 

Risk 
Aversion 

Suscept. 
Proportion 

Coefficient on: Coefficient 
of Relative 

Risk 
Aversion 

Suscept. 
Proportion   PMI 

it
rtz

 Suscept. PMI 
it
rtz

 Suscept. PMI 
it
rtz

 Suscept. 
Wine Grape Growers             
Central Valley               
 Fresno -5.792   3.133*   9.224*   0.630* 0.355 insufficient data -0.060  0.590*   5.000*   0.527* 0.000 

   (3.192) (0.177) (0.142) (0.017)        (0.051)  (0.088) (0.000) (0.008)  
 Madera -1.232*   1.494*   1.000*   0.717* 0.000 -3.919*  3.400*   1.000*   0.746* 0.000 -0.452  0.744*   1.000*   0.681* 0.000 

   (0.228) (0.147) (0.000) (0.015)  (0.729) (0.441) (0.000) (0.027)   (0.196)  (0.069) (0.000) (0.008)  
 San Joaquin   4.225*   0.883*   1.000*   1.100* 0.000   4.213*  0.859*   1.000*   1.100* 0.010    4.206*  0.892*   1.000*   1.100* 0.003 

  (0.000) (0.000) (0.000) (0.000)  (0.000) (0.000) (0.000) (0.000)   (0.000)  (0.000) (0.000) (0.000)  
North Coast                
 Mendocino   4.813*   0.915*   1.000*   1.100* 0.015   4.810*  0.929*   1.000*   1.100* 0.048    4.825*  0.922*   1.000*   1.100* 0.020 

  (0.000) (0.000) (0.000) (0.000)  (0.000) (0.000) (0.000) (0.000)   (0.000) (0.000) (0.000) (0.000)  
 Napa 11.731*   1.868*   0.998*   1.600* 0.017 insufficient data    1.199*  0.616*   6.332*   0.630* 0.985 

  (0.186) (0.321) (0.082) (0.598)        (0.537)  (0.213) (0.810) (0.005)  
 Sonoma 26.098* 0.152 0.012 0.389 0.152   7.994*  9.367*   0.996*   1.029* 4964    7.806*  9.357*   0.998*   1.249* 0.040 
  (0.217) (0.262) (0.016) (0.500)  (0.000) (0.000) (0.000) (0.000)   (0.000)  (0.000) (0.000) (0.000)  
Central Coast                
 San Luis Obispo   5.828*   0.948*   1.000*   1.100* 0.035   5.863*  0.932*   1.000*   1.100* 0.000    5.859*  0.962*   1.000*   1.100* 0.010 

  (0.000) (0.000) (0.000) (0.000)  (0.000) (0.000) (0.000) (0.000)   (0.000)  (0.000) (0.000) (0.000)  
                 
                 
Raisin Grape Growers           
Central Valley               
 Fresno   3.749* -0.045   5.200*   0.468* 0.000  0.703*  0.497*   7.000*   0.408* 0.000    2.131*  1.757*   4.000*   0.642* 0.000 

  (0.548) (0.089) (0.000) (0.088)  (0.024) (0.037) (0.000) (0.003)   (0.000)  (0.000) (0.000) (0.000)  
 Madera   0.639*   0.247*   6.000*   0.439* 0.000  0.531*  0.249*   6.000*   0.446* 0.000    0.492*  0.780*   6.000*   0.445* 0.000 

  (0.099) (0.042) (0.000) (0.005)  (0.077) (0.029) (0.000) (0.004)   (0.000)  (0.000) (0.000) (0.000)  
 Tulare   0.720*   0.393*   4.500* 0.413 0.000  3.259* -0.116*   4.500*   0.807* 0.000    3.544*  4.649*   4.500*   1.100* 0.415 

  (0.209) (0.167) (0.000) (0.016)  (0.000) (0.000) (0.000) (0.000)   (0.000) (0.000) (0.000) (0.000)  
 Notes: Bootstrapped standard errors in parentheses. Significance code: * p<0.05.  
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Table A.10: Results for Years of Low, Medium, and High Powdery Mildew Pressure: Growers Who Do Not 
Receive the PMI 

  Low PM Pressure Medium PM Pressure High PM Pressure 

  Coefficient on: 

Coefficient 
of Relative 

Risk 
Aversion 

Suscept. 
Proportion Coefficient on: 

Coefficient 
of Relative 

Risk 
Aversion 

Suscept. 
Proportion Coefficient on: 

Coefficient 
of Relative 

Risk 
Aversion 

Suscept. 
Proportion 

  PMI 
it
rtz

 Suscept.   PMI 
it
rtz

 Suscept.   PMI 
it
rtz

 Suscept.   
Wine Grape Growers             
Central Valley               

 Fresno   1.886*   0.078*   5.000*   0.604* 0.000 insufficient data 
  

1.655*   0.189*   5.000*   0.595* 0.000 

  (0.122)  (0.059) (0.000) (0.007)       (0.010) (0.088) (0.000) (0.008)  
 Madera  -1.002*   0.886*   1.001*   0.621* 0.002 -1.100 1.394*   1.295*   0.604* 0.006 0.482 0.166   0.696*   0.739* 0.035 

  (0.456)  (0.166) (0.239) (0.025)   (0.695) (0.383) (0.368) (0.037)  (0.573) (0.262) (0.177) (0.020)  

 San Joaquin   4.237*   0.831*   1.000*   1.100* 0.059   4.191* 
  

0.890*   1.000*   1.100* 0.089 
  

4.217*   0.884*   1.000*   1.100* 0.000 

  (0.000)  (0.000) (0.000) (0.000)   (0.000) (0.000) (0.000) (0.000)  (0.000) (0.000) (0.000) (0.000)  
North Coast                
 Mendocino   4.796*   0.926*   1.000*   1.100* 0.000   4.816* 0.924*  1.000*   1.100* 0.000 4.800*   0.918*   1.000*   1.100* 0.029 

  (0.000)  (0.000) (0.000) (0.000)   (0.000) (0.000) (0.000) (0.000)  (0.000) (0.000) (0.000) (0.000)  
 Napa   5.836*   0.665*   0.315*   0.628* 0.248   -1.135  0.849* 15.162*    0.633* 0.958 4.801* 0.107   3.577*   0.617* 0.631 

  (0.000)  (0.000) (0.000) (0.000)  (0.937) (0.566)  (1.550) (0.020)  (0.564) (0.244) (0.947) (0.010)  
 Sonoma 27.185* -0.644   0.201* 0.389 0.175   -0.241 0.054 26.451*   0.389* 0.998 0.720*   0.393*   4.500*   0.413* 0.027 

  (0.283)  (0.341) (0.041) (0.498)  (0.360) (0.171) (0.592) (0.025)  (0.209) (0.167) (0.000) (0.016)  
Central Coast                
 San Luis Obispo   5.857*   0.938*   1.000*   1.100* 0.000   5.852* 0.945*   1.000*   1.100* 0.008 5.859*   0.947*   1.000*   1.100* 0.013 

  (0.000) (0.000) (0.000) (0.000)  (0.000) (0.000) (0.000) (0.000)  (0.000) (0.000) (0.000) (0.000)  
                 
                 
Raisin Grape Growers           
Central Valley               
 Fresno   0.728*   0.329*   4.999*   0.414* 0.000   0.747* 0.259*   5.988*   0.414* 0.000 0.728*   0.329*   4.999*   0.414* 0.000 

  (0.030) (0.002) (0.000) (0.003)  (0.084) (0.044)  (0.000) (0.000)  (0.095) (0.002) (0.000) (0.001)  
 Madera   0.727*   0.243*   5.974*   0.438* 0.000   0.889* 0.176* -2.143   0.434* 0.286 0.713*   0.259*   6.000*   0.446* 0.000 

  (0.060) (0.037) (0.000) (0.004)  (0.075) (0.034)  (1.748) (0.008)  (0.058) (0.029) (0.000) (0.004)  
 Tulare   0.340*   0.146*   1.491*   0.276* 0.451   3.235* -0.290   4.500*   0.526* 0.000 0.673* 0.204* 4.496*   0.442* 0.000 

  (0.094) (0.020) (0.199) (0.057)  (0.000) (0.180)   (0.000) (0.000)  (0.034) (0.019) (0.000) (0.002)  
Notes: Bootstrapped standard errors in parentheses. Significance code: * p<0.05. 
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Table A.11: Results for Years of Low, Medium, and High Revenue Per Acre 

  Low Per Acre Revenue Medium Per Acre Revenue High Per Acre Revenue 
  Coefficient on: Coefficient 

of Relative 
Risk 

Aversion 
Suscept. 

Proportion 

Coefficient on: Coefficient 
of Relative 

Risk 
Aversion 

Suscept. 
Proportion 

Coefficient on: Coefficient 
of Relative 

Risk 
Aversion 

Suscept. 
Proportion   PMI 

it
rtz

 Suscept. PMI 
it
rtz

 Suscept PMI 
it
rtz

 Suscept. 
Wine Grape Growers               
Central Valley                
 Fresno insufficient data    0.499*   0.238*  4.237*   0.484* 0.820 -0.047   0.165*   4.866*   0.401* 0.910 

        (0.156) (0.049) (0.456) (0.039)   (0.078) (0.023) (0.263) (0.011)  
 Madera insufficient data -0.030   0.413*  1.946*   0.522* 0.817   2.751*   0.094*   0.996*   2.088* 0.024 

        (0.325) (0.098) (0.414) (0.026)   (0.000) (0.000) (0.000) (0.000)  
 San Joaquin insufficient data insufficient data   4.268*   0.903*   1.000*   1.100* 0.006 

             (0.000) (0.000) (0.000) (0.000)  
North Coast                
 Mendocino insufficient data   4.807*   0.922*  1.000*   1.100* 0.221 -0.690 0.065   0.998*   0.464* 2E-06 

       (0.000) (0.000) (0.000) (0.000)   (0.736) (0.297) (0.010) (0.032)  
 Napa -0.263   0.072* 30.001*   0.802* 0.951 0.648   0.615*  6.355*   0.639* 0.940 insufficient data 

   (0.238) (0.302) (0.295) (0.015)  (0.735) (0.252) (0.872) (0.005)       

 Sonoma   6.944*   1.383* 19.834*   0.628* 0.975   3.551*   3.232* -9.460   0.670* 0.173 
 

29.997*  9.998* 20.000*   1.600* 0.171 

   (0.130) (0.193) (0.613) (0.238)  (0.642) (0.519) (5.447) (0.012)   (0.000) (0.000) (0.000) (0.000)  
Central Coast                
 San Luis Obispo insufficient data   5.792*   0.952*  1.000*   1.100* 0.286   5.875*  0.967*   1.000*   1.100* 0.032 

       (0.000) (0.000) (0.000) (0.000)  (0.000) (0.000) (0.000) (0.000)  
                 
Raisin Grape Growers               
Central Valley                
 Fresno    1.311   1.072*   0.896*   0.743* 0.000   2.189*   4.319*  3.653*   0.469* 0.056   1.824*   0.562*   6.595*   0.494* 3E-09 

    (0.048) (0.035) (0.000) (0.049)  (0.000) (0.000) (0.000) (0.002)  (0.047) (0.050) (0.000) (0.002)  
 Madera    1.962*   1.765*   0.974*   0.671* 0.164   0.851*   0.244*  6.000*   0.451* 0.000   1.742*   0.385*   8.000*   0.512* 0.000 

    (0.000) (0.000) (0.000) (0.000)  (0.042) (0.020) (0.000) (0.002)  (0.089)  (0.055) (0.000) (0.005)  
 Tulare -0.251  0.199*   1.421*   0.587* 0.533   0.779*   0.248*  4.499*   0.447* 0.000   6.946* -0.433   5.000* 0.277 0.000 

   (0.132) (0.042) (0.232) (0.032)  (0.040) (0.025) (0.000) (0.003)  (1.469)  (0.213) (0.000) (0.384)  
Notes: Bootstrapped standard errors in parentheses. Significance code: * p<0.05. 
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Table A.12: Results for Years of Low, Medium, and High Revenue Per Acre: Growers Who Receive the PMI 

  Low Per Acre Revenue Medium Per Acre Revenue High Per Acre Revenue 
  Coefficient on: Coefficient 

of Relative 
Risk 

Aversion 
Susceptible 
Proportion 

Coefficient on: Coefficient 
of Relative 

Risk 
Aversion 

Susceptible 
Proportion 

Coefficient on: Coefficient 
of Relative 

Risk 
Aversion 

Susceptible 
Proportion   PMI 

it
rtz

 Suscept. PMI 
it
rtz

 Suscept. PMI 
it
rtz

 Suscept. 
Wine Grape Growers               
Central Valley insufficient data -0.189   0.343*   3.823*   0.413* 0.652 0.337 0.054   1.960*   0.493* 0.054 
       (0.295) (0.100) (0.345) (0.018)  (0.536) (0.296) (0.844) (0.026)  
North Coast -0.733   0.427* 25.530*   0.686* 0.614 -0.186   0.064* 23.684*   0.475* 0.997  4.400* -0.001   1.994*   0.708* 0.497 
   (0.952) (0.100) (2.900) (0.023)   (0.166) (0.131) (0.928) (0.021)  (0.738) (0.533) (0.615) (0.017)  
Central Coast insufficient data   5.834*   0.946*   1.000*   1.100* 0.086  5.878*  0.970*   1.000*   1.100* 0.014 
      (0.000) (0.000) (0.000) (0.000)  (0.000) (0.000) (0.000) (0.000)  
                

Raisin Grape Growers               

Central Valley 1.304* 1.367*   1.000*   0.664* 0.000   0.970* 0.535* -1.722   0.430* 0.380  3.241* 2.627  4.965*   0.656* 0.019 

 (0.000) (0.000) (0.000) (0.000)  (0.024) (0.030) (0.965) (0.004)  (0.000) (0.000) (0.000) (0.000)  
Notes: Bootstrapped standard errors in parentheses. Significance code: * p<0.05. 
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Table A.13: Results for Years of Low, Medium, and High Revenue Per Acre: Growers Who Do Not Receive 
the PMI 

  Low Per Acre Revenue Medium Per Acre Revenue High Per Acre Revenue 
  Coefficient on: Coefficient 

of Relative 
Risk 

Aversion 
Susceptible 
Proportion 

Coefficient on: Coefficient 
of Relative 

Risk 
Aversion 

Susceptible 
Proportion 

Coefficient on: Coefficient 
of Relative 

Risk 
Aversion 

Susceptible 
Proportion   PMI 

it
rtz

 Suscept. PMI 
it
rtz

 Suscept. PMI 
it
rtz

 Suscept. 
Wine Grape Growers                
Central Valley 0.286  0.881* -34.897   0.610* 0.044  0.654*  0.243*   3.565*   0.410* 0.495 -1.074* 0.423*  3.476*   0.483* 0.49 
 (0.263) (0.141) (26.863) (0.011)   (0.078) (0.028) (0.184) (0.012)  (0.172) (0.070) (0.301) (0.008)  
North Coast -0.217*  0.409*   24.143*   0.687* 0.986 -0.023  0.462* 20.935*   0.536* 0.980 -0.848* 1.240* 15.164*   0.577* 0.990 
 (0.085) (0.120)   (0.392) (0.192)   (0.222) (0.158)  (1.017) (0.021)  (0.360) (0.463) (2.299) (0.018)  
Central Coast insufficient data           

                

                

Raisin Grape Growers               
Central Valley   2.504* -0.250*   0.892*   0.654* 0.043  0.813*  0.319*  5.996*   0.438* 0.000  1.780* 0.489* 17.662*   0.499* 0.000 

 (0.000) (0.000) (0.000) (0.000)  (0.023) (0.023) (0.853) (0.002)  (0.048) (0.043) (0.509) (0.002)  
Notes: Bootstrapped standard errors in parentheses. Significance code: * p<0.05.  
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Appendix B. Likelihood Ratio Tests 

We conduct four types of likelihood ratio tests.9 The first likelihood ratio test tests between 

the model with unobserved heterogeneity and the model without unobserved heterogeneity, for 

each type of utility function. The model without unobserved heterogeneity is a special case of (and 

therefore a constrained version with fewer parameters than) the model with unobserved 

heterogeneity. 

The test statistic D is given by: 

2 2a oD L L=  ,                                                            (B.1) 

where aL  is the log likelihood of the model with unobserved heterogeneity and oL  is the log 

likelihood of the model without unobserved heterogeneity.  The test statistic D is distributed chi-

squared with 1 degree of freedom (since the number of parameters in the model with unobserved 

heterogeneity minus the number of parameters in the model without unobserved heterogeneity = 

1 degree of freedom).  If the test statistic D is greater than the critical value 0.0039, then the 

coefficient on unobserved heterogeneity is statistically significant at a 5% level and the model with 

unobserved heterogeneity produces a statistically significant improvement in the ability of the 

model to fit data. 

Table B.1 presents the results of the likelihood ratio tests between the model with 

unobserved heterogeneity and the model without unobserved heterogeneity for each of the 

following utility functions: the linear utility, log utility, and linear utility with PMI squared.10  In 

almost all cases, the model with unobserved heterogeneity produces a statistically significant 

improvement in the ability of the model to fit data.   

In the second likelihood ratio test, we test between log utility and CRRA utility since log 

utility is a special case of CRRA utility where 1 = .  The test statistic D is given by Equation 

(B.1), where aL  is now the log likelihood of the CRRA utility model and oL  is now the log 

likelihood of the log utility model.  The test statistic D is distributed chi-squared with 1 degree of 

freedom (since 4 parameters in the CRRA utility model minus 3 parameters in the log utility model 

= 1 degree of freedom).  If the test statistic D is greater than the critical value 0.0039, then the 

                                                 
9 The first three likelihood ratio tests use Model 1, as results of the fourth likelihood ratio test show that Model 2 does 
not provide significant improvement over Model 1 in the ability of the model to fit the data. 
10 Results of the likelihood ratio tests between the model with unobserved heterogeneity and the model without 
unobserved heterogeneity for CRRA utility are presented in Table 4 of the paper.   
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CRRA model produces a statistically significant improvement in the ability of the model to fit data 

at a 5% level. 

 Table B.2 presents the results of likelihood ratio tests between CRRA utility with 

unobserved heterogeneity and log utility with unobserved heterogeneity. CRRA utility produces 

improvement in the ability of the model to fit data in all cases except for raisin growers in Fresno 

and Madera. In addition, many of the coefficients using the logarithmic model are negative and 

significant, as seen in the estimates from the logarithmic utility with unobserved heterogeneity in 

Table B.3. The two models for which CRRA utility does not produce a statistically significant 

improvement over logarithmic utility in the ability of the model to fit the data do not have any 

significantly negative coefficients in the log utility model. For all models for which we have 

significant negative coefficients in the log model, the CRRA utility produces a statistically 

significant improvement over log utility in the ability of the model to fit the data. 

In the third likelihood ratio test, we test between utility with PMI squared and linear utility 

to see if farmers are risk averse.   The linear model is a special case of the PMI squared model.   

The test statistic D is given by Equation (B.1), where aL  is now the log likelihood of the PMI 

squared utility model and oL  is now the log likelihood of the linear utility model.  The test statistic 

D is distributed chi-squared with 1 degree of freedom (since 4 parameters in the PMI squared 

model minus 3 parameters in the linear model = 1 degree of freedom).  If the test statistic D is 

greater than the critical value 0.0039, then the coefficient on PMI squared is statistically significant 

at a 5% level and the PMI squared model produces a statistically significant improvement in the 

ability of the model to fit data. 

Table B.4 presents the results of likelihood ratio tests of linear utility versus utility with 

PMI squared, both with unobserved heterogeneity. Utility with PMI squared produces a 

statistically significant improvement in the ability of the model to fit data in most cases, but there 

are fewer differences in this case.  

Based on these results, the model with unobserved heterogeneity generally better fits the 

data, and CRRA utility and utility with PMI squared are better fits to the data than log utility and 

linear utility, although linear utility is close to utility with PMI squared. 

The fourth type of likelihood ratio test we conduct is between Model 1 ( b = 0.9 ) and 

Model 2 (b = 0.9996 ).  This test and its results are presented in Table 4 of the paper.  According 
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to the results, Model 2 generally does not provide significant improvement over Model 1 in the 

ability of the model to fit the data. 
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Table B.1: Likelihood Ratio Tests of Utility Functions With vs. Without 
Unobserved Heterogeneity 

  Test statistic 

  Linear Utility Log Utility Utility with PMI Squared 
Wine Grape Growers  
Central Valley    

 Fresno   68,427*   29,169*   60,679* 

 Madera          0   
 San Joaquin   18,398*     4,350*   13,176* 
     

North Coast   
 Mendocino   23,796*     4,038*   21,608* 

 Napa   59,652*   10,234*   37,828* 

 Sonoma 238,844*   71,440* 168,888* 
     
Central Coast    
 San Luis Obispo   42,998*     8,956*   28,146* 
     
     
Raisin Grape Growers   
Central Valley    
 Fresno 163,754* 247,590* 146,010* 

 Madera   16,655*   19,238*   14,825* 

 Tulare   50,396*   41,336*   47,378* 
Notes: A statistically significant result from the likelihood ratio test indicates that the model with unobserved 
heterogeneity produces a statistically significant improvement in the ability of the model to fit data.  Significance 
code: * p<0.05.  
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Table B.2: Likelihood Ratio Test: CRRA Utility With Unobserved 
Heterogeneity vs. Log Utility with Unobserved Heterogeneity 

 Test Statistic 

Wine Grape Growers   

Central Valley  

 Fresno     1,822* 

 Madera     2,340* 

 San Joaquin   22,074* 

   

North Coast  

 Mendocino     8,233* 

 Napa   19,218* 

 Sonoma     9,678* 

   

Central Coast  

 San Luis Obispo   13,270* 

   

   

Raisin Grape Growers 

Central Valley  

 Fresno -26,206 

 Madera   -2,511 

 Tulare   15,737* 
Notes: A statistically significant result from the likelihood ratio test indicates that the CRRA model produces a 
statistically significant improvement in the ability of the model to fit data.  Significance code: * p<0.05.  
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Table B.3: Logarithmic Utility With Unobserved Heterogeneity 

  Coefficient on:  

  PMI 
it
rtz

 Susceptibility 
Susceptible 
Proportion 

Wine Grape Growers    
Central Valley     

 Fresno      -4.651*   0.659       6.333* 0.144 

       (1.053)   (0.447)     (1.119)  
 Madera      -9.468*    3.279*  -67.206 0.020 

      (1.375)  (0.736) (225.450)  
 San Joaquin -122.050*  33.926*     57.693* 0.038 

      (6.580)  (1.975)     (7.991)  
North Coast     
 Mendocino -220.950* 61.158 -973.610 0.089 

   (84.013) (42.572) (748.980)  
 Napa   -77.860*   15.230*   125.650*  
     (7.700)   (4.184)     (0.000)  
 Sonoma     -9.283*     2.168*    -55.017* 0.120 

      (2.008)   (1.163)   (19.683)  
      
Central Coast     
 San Luis Obispo      6.813*     5.346* -153.170* 0.954 

     (0.947)   (2.354)    (6.795)  
      
      
Raisin Grape Growers    
Central Valley     
 Fresno      8.799*     7.128*     5.492* 0.010 

     (0.000)   (0.000)   (0.000)  
 Madera      2.169*     0.156*     5.200* 0.152 

     (0.000)   (0.000)   (0.000)  
 Tulare      2.173*     0.000*     4.515* 0.000 

      (0.000)   (0.000)   (0.000)  
Notes: Bootstrapped standard errors in parentheses. Significance code: * p<0.05.  
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Table B.4: Likelihood Ratio Test: Linear Utility vs. Utility with PMI Squared, 
With Unobserved Heterogeneity 

 Test Statistic 
Wine Grape Growers  
Central Valley  
 Fresno -256 

 Madera       0 

 San Joaquin       80* 
 
  

North Coast  
 Mendocino       48* 

 Napa  4,550* 

 Sonoma         4* 
 
  

Central Coast  
 San Luis Obispo       10* 
 
 
 
 
 

Raisin Grape Growers 
Central Valley  
 Fresno     -4 

 Madera        2* 

 Tulare   -62 
Notes: A statistically significant result from the likelihood ratio test indicates that the PMI squared model produces a 
statistically significant improvement in the ability of the model to fit data.  Significance code: * p<0.05.  

 
 


