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Abstract 
Innovation can play a role in the economic development of developing 
countries, and can also impact income inequality. This paper examines the 
impact of innovation on income inequality in China.  We use an instrumental 
variables model and apply it to panel data over the period 1995 to 2011.  
Results show that there is a U-shaped relationship between the innovation 
level and the ratio between urban and rural income, which means that while 
small amounts of innovation can decrease income inequality and contribute to 
income equality, large amounts of innovation may increase income inequality. 
We find that both industrialization and urbanization increase income 
inequality.  Our results also show that there is an inverse U-shaped 
relationship between innovation and the proportion of the population that is 
high-skilled. 
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1.  Introduction 

Innovation can play a role in economic development, particularly for developing 

countries.  According to endogenous growth theory, a major driving force for economic 

growth is technological progress. In recent years the Chinese government has regarded 

technological progress and innovation as important for accelerating economic development.  

As a consequence, China has invested heavily in innovation and technology, which has led to 

increases in innovation and the potential for increases in economic growth in China.  

However, China has also become one of the countries in the world with the greatest income 

inequality, and the inequality of income between urban and rural residents is the main source 

of its income inequality (Lu and Chen, 2005).    

Innovation not only plays a role in the economic development of developing countries, 

but can also impact income inequality.  While there is ample literature studying income 

inequality in China, there is less concern about the impact of the innovation level on income 

inequality. However, high skilled workers working in innovative regions or cities tend to 

benefit more from innovations than low skilled workers do; as a consequence, innovation 

might cause an increase in income inequality.  In China, policymakers see investing in 

innovation processes as essential to maintaining a competitive advantage, increasing 

productivity and creating new jobs, but whether these processes result in the decrease of 

income inequality may depend on the particular socio-economic and institutional context. 

Much of the theoretical literature on innovation and income inequality has focused on 

skill premia rather than the distribution of skill in the population (Lee and Rodriguez-Pose, 

2013). Nevertheless, the four mechanisms by which innovation can impact skill premia 
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explored in this literature are also relevant for the effects of innovation on income inequality. 

The first mechanism by which innovation can impact skill premia and therefore income 

inequality is that higher skilled workers tend to earn higher returns in higher innovation 

regions, which is supported by several papers that find that people working at the innovative 

city often command a higher wage (Van Reenen, 1996; Faggio, Salvanes and Van Reenen, 

2007; Echeverri-Carrol and Ayala, 2009).  

The second mechanism by which innovation can impact skill premia and therefore 

income inequality is through knowledge spillovers. Knowledge spillovers may allow those 

workers with fewer skills to learn from the highly skilled and increase their productivity 

(Glaeser, 1999), which is conducive to technological innovation, and also to decreasing 

income inequality.  Some researchers believe that in innovative, knowledge-rich 

environments, those with lower skill levels may learn more and gain from innovation, but 

others believe that it is not clear that the knowledge from innovation is of sufficiently wide 

use to raise productivity for low-skilled groups, and therefore that low-skilled workers will 

not be in occupations in which they can benefit from this new knowledge. 

The third mechanism by which innovation can impact skill premia and therefore 

income inequality is through the spatial agglomeration effects of innovation. Innovation can 

produce great gains which are likely to attractive to those with complementary skills or those 

working in innovative sectors (Van Reenen, 1996; Faggio et al., 2007; Echeverri-Carroll and 

Ayala, 2009), resulting in labor migration. But the impact of migration on overall inequality 

is ambiguous.  For cities which have few highly skilled residents but experience high-skilled 

in-migration, innovation may first increase inequality, but after a certain threshold level it 
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may begin to reduce inequality. Traditional models of labor markets imply that this process 

of migration will reduce wages for the highly skilled. In contrast, more recent models based 

on increasing returns suggest that there will be increasing returns to scale when the highly 

skilled migrants cluster, with more highly skilled migrants leading to even greater increases 

in innovation (Puga, 2002). The cluster of affluent innovators in the labor market will alter 

both the occupational structure and wages for those with low skill levels, because affluence 

for one group may skew the labor market for others, creating jobs in personal service 

employment with low wages (Manning, 2004; Kaplanis, 2010), and ultimately changing the 

overall level of income inequality.  

The fourth mechanism by which innovation can impact skill premia and therefore 

income inequality is that technological advances may change the employment shares and 

wages for the different skill groups. The theory of skill-biased technological change posits 

that technology will substitute for low-skilled labor, reducing employment shares for the low 

skilled and also their wages, while increasing wages and employment shares for the highly 

skilled. Autor, Levy and Murnane (2003) believes that technology will replace some of the 

routine work in semi-skilled employment, but since routine non-skilled employment, such as 

cleaning, is difficult to automate, technological change will lead to a polarization of the labor 

market into high-skilled and low-skilled employment.  Autor and Dorn (2013) find that in 

the United States, local labor markets that specialized in routine tasks adopted information 

technology that displaced low-skilled labor, which was reallocated into service occupations.  

Machin and Van Reenen (1998) find that technical change is closely linked to the growth in 

the importance of more highly skilled workers in seven OECD countries. Acemoglu, Gancia 
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and Zilibotti (2012) develop a model in which innovation takes the form of the introduction 

of new goods whose production requires skilled workers, and is followed by standardization, 

whereby these new goods are adapted to be produced using unskilled labor. 

Based on the above four mechanisms, it is possible for innovation to either increase or 

decrease the overall inequality, as the impact of innovation on income inequality depends on 

labor skill structure, the scale of the labor market and other factors.  In this paper we analyze 

the effects of innovation on income inequality in China.  We use an instrumental variables 

model and apply it to panel data on Chinese provinces over the period 1995 to 2011.   

For our measure of income inequality, we focus on the inequality of income between 

urban and rural residents, the main source of China’s income inequality (Lu and Chen, 2005).  

In 2014, the ratio between urban and rural income was 2.03. In China, rural residents tend to 

have lower skill and education levels than urban residents do, and thus the income levels of 

urban and rural residents may be differentially impacted by innovation.  In addition to the 

ratio between urban and rural income, we also analyze the effects of innovation on another 

possible measure of inequality: the skill composition of the workforce.      

Our results show that there is a U-shaped relationship between the innovation level 

and the ratio between urban and rural income, which means that while small amounts of 

innovation can decrease income inequality and contribute to income equality, large amounts 

of innovation may increase income inequality. We find that high-skilled labor can decrease 

income inequality, while both the industrialization rate and the urbanization rate increase 

income inequality.  Our results also show that there is an inverse U-shaped relationship 

between innovation and the proportion of the population that is high-skilled. 
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The remainder of this paper is organized as follows. Section 2 summarizes the spatial 

and temporal characteristics of innovation and income inequality in China over the period 

1995 to 2011.  We present our empirical model in Section 3 and describe our data in Section 

4.  Section 5 presents our results.  Section 6 concludes. 

 

 

2.  Innovation and Income Inequality in China  

2.1.  Spatial and temporal characteristics of income inequality 

Since income inequality in China is largely due to the gap between urban and rural 

income, we use the ratio between urban and rural income as our measure of income 

inequality.  Figure 1 plots the trends in urban income, rural income and income inequality in 

China over the period 1995 to 2011.  Both urban and rural incomes exhibit an increasing 

trend, with urban income growing faster than rural income.  Income inequality reaches a 

peak of 3.5 in 1995.  The lowest value of income inequality, 2.092, appeared in 1998 and 

was caused by the financial crisis.  Since then, income inequality has exhibited an upward 

trend until 2007, after which income inequality was decreased by regional coordination of 

economic policies and the global financial crisis of 2007-2008. 
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Figure 1.  Urban income, rural income, and income inequality in China, 1995-2011 
 

  

 

Note: Income inequality is measured by the ratio between urban and rural income. 
Source: China Statistical Yearbook (1996-2012) 

 

 

 

 

    Figures 2 and 3 plot the spatial distribution of income inequality in China in 1995 and 

2011, the first and last years of our data set, respectively.  Income inequality ranged from 

2.092 to 5.087 in 1995, with the higher values above 3.23 mainly concentrated in the central 

and western provinces of China, and also in some eastern provinces, including Shandong, 

Hebei and Guangdong provinces.  In 2000, income inequality ranged from 1.891 to 5.579, 

the spatial distribution of income inequality changed little compared to 1995, and the 

maximum value of 5.579 appeared in Tibet.  In 2011, the income gap ranged from 2.067 to 

3.979.   The values of income inequality in the western provinces are still high in 2011.  

Income inequality in the Shandong, Guangdong and Fujian provinces have values that are 

higher than 3.38. 
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Figure 2.  Spatial distribution of income inequality in China, 1995 
 
 

 
Notes:  Income inequality is measured by the ratio between urban and rural income.  
There is no official data for Tibet in 1995. 
Source:  China Statistical Yearbook (1996-2012) 
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Figure 3.  Spatial distribution of income inequality in China, 2011 
 

 

Note:  Income inequality is measured by the ratio between urban and rural income.   
Source:  China Statistical Yearbook (1996-2012) 

 

 

 

 

 

 

2.2.  Spatial and temporal characteristics of innovation 

We use the number of patent applications and the number of patents approved as our 

measure of innovation.  The number of patent applications and the number of patents 

approved in each province reflect the output of the regional research and development, and 

therefore reflect innovation. 
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Figure 4 shows the exponential growth of the total number of patents applications and 

patents approved in China from 1995 to 2011.  Particularly after 2001, both measures of 

patenting activity increased rapidly.  

Table 1 presents the number of patents approved and the number patents per 10,000 

people for each province for the years 1995, 2000, 2005, and 2011.  Innovation varies 

spatially.  In 2011, the top six provinces in patents approved are located in the economically 

developed eastern coastal regions, and comprise about 65% of total patent applications and 

patents approved.  The provinces in the central and western regions account for only about a 

quarter of number of patents approved in the whole country.  There is a large gap between 

the innovation levels in the central and western regions and the innovation levels in the 

eastern region. In 2011, Jiangsu, Zhejiang and Guangdong are the top three provinces in 

innovation level, and the bottom three are Ningxia, Qinghai and Tibet. The quotient of 

maximum over minimum number of patents approved is 196.25 in 2011, but in 1995 it is 

2305.5, so the quotient has decreased over time. In terms of patents approved per 10,000 

people, the top three provinces are Jiangsu, Zhejiang and Shanghai, and the bottom three 

provinces are Tibet, Hainan and Yunnan. 
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Figure 4.  Number of patents approved and patent applications in China, 1995-2011 
  

 
 

     Source: China Energy Statistical Yearbook, 1996 to 2011. 
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Table 1.  Numbers of patents approved by province in China 
 

 Number of patents approved  Number of patents approved per 10,000 people 

Province 1995 2000 2005 2011 1995 2000 2005 2011 

Anhui 574 1482 1939 32681 0.095 0.236 0.317 5.476 

Beijing 4025 5905 10100 40888 3.217 4.352 6.567 20.252 

Chongqing 4041 1158 3591 15525  0.375 1.283 5.319 

Fujian 933 3003 5147 21857 0.288 0.881 1.456 5.876 

Gansu 257 493 547 2383 0.105 0.193 0.211 0.929 

Guangdong 4611 15799 36894 128413 0.671 2.050 4.013 12.224 

Guangxi 665 1191 1225 4402 0.146 0.251 0.263 0.948 

Guizhou 274 710 925 3386 0.078 0.189 0.248 0.976 

Hainan 108 320 200 765 0.149 0.406 0.242 0.872 

Hebei 1580 2812 3585 11119 0.245 0.421 0.523 1.536 

Henan 1145 2766 3748 19259 0.126 0.292 0.400 2.051 

Heilongjiang 1403 2252 2906 12236 0.379 0.592 0.761 3.191 

Hubei 1017 2198 3860 19035 0.176 0.369 0.676 3.306 

Hunan 1515 2555 3659 16064 0.237 0.389 0.578 2.435 

Jilin 824 1650 2023 4920 0.318 0.615 0.745 1.790 

Jiangsu 2413 6432 13580 199814 0.341 0.878 1.817 25.296 

Jiangxi 509 1072 1361 5550 0.125 0.258 0.316 1.237 

Liaoning 2745 4842 6195 19176 0.671 1.157 1.468 4.375 

Neimenggu 415 775 845 2262 0.182 0.327 0.354 0.911 

Ningxia 111 224 214 613 0.216 0.404 0.359 0.959 

Qinghai 65 117 79 538 0.135 0.226 0.145 0.947 

Shandong 2861 6962 10743 58844 0.329 0.774 1.162 6.106 

Shanxi 569 968 1220 4974 0.185 0.298 0.364 1.384 

Shannxi 1085 1462 1894 11662 0.309 0.401 0.509 3.116 

Shanghai 1436 4050 12603 47960 1.015 2.468 7.088 20.435 

Sichuan 2019 3218 4606 28446 0.178 0.374 0.561 3.534 

Tianjin 1034 1611 3045 13982 1.098 1.609 2.919 10.319 

Tibet 2 17 44 142 0.008 0.066 0.159 0.469 

Xinjiang 312 717 921 2642 0.188 0.388 0.458 1.196 

Yunnan 569 1217 1381 4199 0.143 0.287 0.310 0.907 

Zhejiang 2131 7495 19056 130190 0.493 1.631 3.891 23.831 

Mean 1330.6 2757.2 5101.2 27868.6 0.395 0.747 1.296 5.555 

Source: China Energy Statistical Yearbook, 1996 to 2011. 
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2.3.  Scatter plot of innovation and income inequality 

To examine the relationship between innovation and income inequality, Figure 5 

presents a scatter plot of innovation (measured by the log of the patents approved per 10,000 

people) and income inequality (measured by the log of the ratio between urban and rural 

income) using panel data and the results from fitting a curve between these two variables.  

We find that there is a U-shaped relationship between these two variables: income inequality 

decreases as innovation increases for low levels of innovation, but after the number patents 

approved per 10,000 people reaches 11.744, increases in innovation are associated with 

increases in income inequality.   

However, income inequality is caused by a variety of factors not accounted for in the 

scatterplot in Figure 5.  We now proceed to our empirical analysis, which examines the 

impact of innovation on income inequality while controlling for these other factors. 
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Figure 5. Scatter plot of log income inequality and log patents approved per 10,000 
people in China, 1995-2011 

 
Note: Income inequality is measured by the ratio between urban and rural income.   

 
 
 
 
 

3.  Empirical Model 

In order to empirically analyze the impact of innovation on income inequality in China, 

we use a model based on Lee and Rodriguez-Pose (2013), who model income inequality as a 

function of innovation, labor education, labor density, and the regional development level.  

Other factors influencing the income inequality include the urbanization level and 

industrialization level. In China, rapid urbanization and industrialization have given many 

farmers more opportunities to work in urban cities, thus affecting the income gap between 

rural and urban regions.  

We use the following econometric model: 
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where itinequality  is the ratio of per capita disposable income of residents in urban areas to 

per capita net income of farms in rural areas in province i in year t; itpatent  is the number of 

patents approved per 10,000 people in province i in year t; itx  are covariates, i  is a 

province fixed effect, t  is a year effect, it  is a region-year effect, and it  is an error 

term.    

We include a number of covariates itx  for each province i for each year t in our 

model.  The first covariate we include is the high-skilled population proportion, which we 

define as number of people with a higher education degree or above per 100,000 people in 

the province.  The proportion of the population with a higher education degree or above is a 

measure of human capital and reflects the workforce skill structure of the province.  The 

greater the proportion of the population with a higher education degree or above, the greater 

the proportion of high-skilled labor in the province.    

The second covariate we include is population density, which we define as the 

number of people per square kilometer.  Population density is a measure of urban scale and 

represents the size of the region's labor force.  Population density also reflects the intensity 

of regional economic activity. 

The third covariate we include is GDP per capita, which measures the state of the 

economy and reflects the economic development of the region. 

The fourth covariate we use is an urbanization index, which we calculate as the ratio 

between the employed population in urban areas and the total employed population.  The 

urbanization index can reflect the mobility of agricultural labor to urban areas. 
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The fifth covariate we use is an industrialization index, which we calculate as the ratio 

between the industrial sector value added and total GDP, and which measures the degree of 

industrialization. 

In a regression of log income inequality on log number of patents approved per 

10,000 people, log high-skilled population proportion, log population density, log GDP per 

capita, log industrialization, and log urbanization, one may worry that some of the regressors 

may be endogenous to income inequality. For example, the high-skilled population 

proportion may be endogenous if areas with high income inequality are also areas with a poor 

and/or unequal educational system, so that high income inequality may lead to lower 

high-skilled population proportion levels.  

To address any potential endogeneity of the regressors, we use lagged values of the 

regressors as instruments for each respective regressor.  We assume that the lagged value of 

each of our regressors is correlated with the endogenous regressor but uncorrelated with 

income inequality except through its correlation with the endogenous regressor.  In one set 

of specifications, we use the 1-year lagged values of the regressors as instruments for each 

respective regressor.  In order to address the possible concern that the 1-year lagged values 

of the regressors may affect income inequality directly, and therefore do no serve as good 

instruments since they do not satisfy the exclusion restriction, we also run a set of 

specifications using the 3-year lagged values of the regressors as instruments instead.   

To test for the endogeneity of the regressors, we run an IV regression of equation (1) 

using 3-year lagged values of the regressors as instruments.  Under the null hypothesis that 

the specified endogenous regressors can actually be treated as exogenous, the test statistic in 
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our endogeneity test is distributed as chi-squared with degrees of freedom equal to the 

number of regressors tested.  The test statistic is based on the difference of two 

Sargan-Hansen statistics: one for the equation with the smaller set of instruments, where the 

suspect regressor(s) are treated as endogenous, and one for the equation with the larger set of 

instruments, where the suspect regressors are treated as exogenous.  Under conditional 

homoskedasticity, this endogeneity test statistic is numerically equal to a Hausman test 

statistic (Hayashi, 2000; Baum, Schaffer and Stillman, 2007). Unlike the 

Durbin-Wu-Hausman tests the test statistics we use are robust to various violations of 

conditional homoscedasticity (Baum, Schaffer and Stillman, 2007).  

According to the results of our endogeneity test, the p-values for the log patents 

approved per 10,000 people (p-value = 0.5436), log patents approved per 10,000 people 

squared (p-value = 0.3627), log population density (p-value = 0.1212), log GDP per capita 

(p-value = 0.1685), log industrialization (p-value = 0.1320), and log urbanization (p-value = 

0.7470) are all greater than 0.05, so we do not reject the null hypothesis that these varaibles 

are exogenous.  However, we reject the null hypothesis that the log high skill population 

proportion is exogenous at a 0.1% level (p-value = 0.0000).  Since we reject the null 

hypothesis that the log high skill population proportion is exogenous and since it is likely that 

the other regressors are endogenous to income inequality, we use either the 1-year or 3-year 

lagged values of the regressors as instruments. 

In addition to using instruments for each regressor, we also address potential 

endogeneity by including province fixed effects, year effects, and region-year effects to 
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control for time-invariant province-level unobservables, nation-wide shocks that vary year by 

year, and region-wide shocks that vary year by year, respectively.  

To find where log income inequality reaches its maximum or minimum, we set the 

partial derivative of log inequality in equation (1) with respect to log patent equal to 0, and 

then solve for the turning point level of number of patents approved per 10,000 people: 

1 2

1 2

1 2

ln
2 ln =0

ln

ln / (2 )

* exp(( ) / 2 ) .                            (2)

inequality
patent

patent

patent

patent

 

 
 


 


  
                       

 

 

4.  Data 

We use annual province-level panel data over the years 1995 to 2011. The data in this 

study are from the China Statistical Yearbook, the China Energy Statistical Yearbook and the 

China Labor and Population Statistics Yearbook.   Table 1 presents summary statistics of 

the variables in our data set.  Over the period 1995 to 2011, China's income gap ranges from 

1.599 to 5.60, with an average of 2.99. The number of patents approved per 10,000 people 

varies greatly by region; its average value is 1.689.  There is also great spatial disparity in 

the proportion of the population with a higher education degree or above: the maximum value 

is 31,499, but the minimum is only 80.05. The average values for the level of urbanization 

and the level of industrialization are 0.343 and 0.601, respectively. For the population density, 

there is a large gap between the maximum value and the minimum value: the minimum value 

of 1.953 appeared in Tibet in 1995, and the highest value of 3701.893 occurred in Shanghai 

in 2011. 
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Although GDP per capita, industrialization, and urbanization are correlated, they are 

not highly correlated.  The correlation between log GDP per capita and log industrialization 

is 0.3862.  The correlation between log GDP per capita and log urbanization is 0.5514.  

The correlation between log industrialization and log urbanization is 0.1034.  Thus, because 

GDP per capita, industrialization, and urbanization may each potentially affect income 

inequality, and because they are not highly correlated with each other, it makes sense to 

include all three variables as potential determinants of income inequality in our regressions.   

For the region-year effects in our model, we classify the provinces in China into 3 

regions: the eastern region, the central region and the western region.  The regions are 

mapped in Figure 6.  The eastern region includes the following 11 provinces: Beijing, 

Tianjin, Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong, and 

Hainan.  The central region includes the following 8 provinces: Shanxi, Heilongjiang, Jilin, 

Anhui, Jiangxi, Henan, Hunan, and Hubei.  The western region includes the following 12 

provinces: Sichuan, Guizhou, Shaanxi, Inner Monglia, Yunnan, Qinghai, Ningxia and 

Xinjiang, Guangxi, Sichuan, Chongqing, and Tibet.  Owing to limits on data availability, 

and because they are separate from mainland China, Macao, Taiwan and Hong Kong are not 

included in any region nor in any regression. 
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Table 2.  Summary statistics  
      # Obs Mean Std. Dev. Min Max 

Income inequality (ratio between urban and rural income) 522 2.994 0.714 1.599 5.605 

Number of patents approved per 10,000 people 525 1.689 3.321 0.008 25.296 

High-skilled population proportion (number with higher education degree or above per 100,000 people) 525 5460.07 4492.06 80.046 31499 

Population density (people/km2) 525 378.446 501.340 1.954 3701.89

GDP per capita (yuan) 525 1.599 1.481 0.181 8.345 

Urbanization index (ratio between employed population in urban areas and total employed population) 527 0.344 0.151 0.119 0.833 

Industrialization index (ratio between the industrial sector value added and total GDP) 527 0.601 0.074 0.239 0.723 
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Figure 6. Regions in China 
 

 

 

Notes:  The eastern region includes the following 11 provinces: Beijing, Tianjin, Hebei, 
Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong, and Hainan.  The 
central region includes the following 8 provinces: Shanxi, Heilongjiang, Jilin, Anhui, Jiangxi, 
Henan, Hunan, and Hubei.  The western region includes the following 12 provinces: 
Sichuan, Guizhou, Shaanxi, Inner Monglia, Yunnan, Qinghai, Ningxia and Xinjiang, 
Guangxi, Sichuan, Chongqing, and Tibet.  Macao, Taiwan and Hong Kong are not included 
in any region. 
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5.  Results 

The results of our instrumental variables model with province fixed effects and year 

effects are reported in Table 3; specification (8), our preferred specification, includes 

region-year effects as well.  As reported in Table 3, all the first-stage F-statistics are greater 

than 10.  We also conduct an under-identification test and a weak-instrument-robust 

inference test and their results are also presented in Table 3.  In all our regressions, we reject 

under-identification and pass the weak-instrument-robust inference test.   

According to the results in Table 3, the coefficient on the log of the number of patents 

approved per 10,000 people is negative and significant in specifications (1),(6) and (8), which 

means that innovation can decrease income inequality. Moreover, the coefficient on the log 

of the number of patents approved per 10,000 people squared is significant and positive in all 

specifications, which means that the relationship between the innovation level and income 

inequality is not linear but U-shaped.  While small amounts of innovation can decrease 

income inequality and contribute to income equality, large amounts of innovation may 

increase income inequality.  

Table 3 also reports the turning point levels of number of patents approved per 10,000 

people.  Income inequality decreases with the number of patents approved per 10,000 

people when the number of patents approved per 10,000 people is lower than these turning 

point levels, but decreases with the number of patents approved per 10,000 people once the 

number of patents approved per 10,000 people exceeds these turning point levels.  The 

turning point level of the number of patents approved per 10,000 people in specification (8), 
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which includes region-year effects in addition to province fixed effects and year effects, is 

4.819.    

The coefficient on log high-skilled population proportion is significant and negative, 

which means that increases in human capital can decrease income inequality. When 

high-skilled population proportion is dropped from the regression in specification (6), the 

coefficient on the number of patents approved per 10,000 people becomes more negative.  

Excluding high-skilled population proportion from the regression leads to omitted variable 

bias because human capital directly affects the ability of the labor force to absorb innovation 

and new technology (Durlauf and Quah, 1998). Moreover, through knowledge spillovers 

human capital can decrease income inequality.  

The coefficient on population density is negative and significant in most 

specifications, including our preferred specification (8) that includes region-year effects, 

which is evidence that a greater population density decreases income inequality.  The 

coefficient on the number of patents approved per 10,000 people is robust to whether or not 

population density is included in the regression, indicating that labor density and innovation 

might not be closely related.  

The coefficient on industrialization is positive and significant in most specifications 

including our preferred specification (8) that includes region-year effects; the greater the 

industrialization, the greater the income inequality. Since innovations in China are mainly in 

the production processes of the industrial sector, a high industrialization level could improve 

ability of innovation. However, for most of industrial enterprises, increases in 

industrialization level do not necessarily result in increases in the ability to adapt to new 
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innovation, thus limiting any increase in the wages of low-skilled labor and therefore 

resulting in greater income inequality.  

The coefficient on urbanization is positive and significant in most specifications 

including our preferred specification (8) that includes region-year effects; the greater the 

urbanization, the greater the income inequality. Urbanization provides job opportunities for 

low-skilled labor, but China’s household registration system restricts rural labor from flowing 

freely to the city, causing a separation between the urban and rural labor market and resulting 

in greater income inequality (Pan, 2010; Lu and Chen, 2004). 

The coefficient on per capita GDP is positive and significant. As income increases, 

income inequality increases as well. Comparing results in specification (5) and specification 

(2), we find that the turning point levels of number of patents approved per 10,000 people is 

higher when we control for per capita GDP.    

In order to address the possible concern that the 1-year lagged values of the regressors 

may affect income inequality directly, and therefore do no serve as good instruments since 

they do not satisfy the exclusion restriction, we also run a set of income inequality 

regressions using the 3-year lagged values of the regressors as instruments.  The results are 

shown in Table 4.  As reported in Table 4, all the first-stage F-statistics are greater than 10.  

In all our regressions, we reject under-identification and pass the weak-instrument-robust 

inference test.   

When using 3-year lags as instruments, the coefficients on log patents approved per 

10,000 people are significant and negative and more negative than they were when the 1-year 

lags were used as instruments, which means that innovation can more significantly decrease 
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income inequality. Moreover, the coefficient on the log of the number of patents approved 

per 10,000 people squared is significant and positive in all specifications except specification 

(7), which means that the relationship between the innovation level and income inequality is 

a robust U-shape.   

Most of the signs and significances of the other covariates are robust to whether 1-year 

lags or 3-year lags are used for the instruments.  The exception is the coefficient on the 

high-skilled population proportion, which is no longer significant when 3-lags are used as 

instruments.  The turning point level of the number of patents approved per 10,000 people in 

our preferred specification (8), which includes region-year effects in addition to province 

fixed effects and year effects, is 12.68. 

The provinces with the 4 primary cities in China -- Beijing, Shanghai, Tianjin, and 

Chongqing -- are likely to be outliers because they are more metropolitan and have a lower 

proportion of rural residents than the other provinces in China.  We therefore also run our 

preferred specification (8) using only those provinces with the 4 primary cities in China -- 

Beijing, Shanghai, Tianjin, and Chongqing -- as well as using all the provinces except the 

ones with these 4 cities.  The results are shown in Table 5.  According to the results for the 

provinces with Beijing, Shanghai, Tianjin, and Chongqing in specifications (9a) and (9b), 

neither log patents nor log patents squared is significant at a 5% level.  In contrast, 

according to the results for the remaining provinces in specifications (10a) and (10b), the 

relationship between the innovation level and income inequality is a robust U-shape.  Thus, 

our result that the relationship between the innovation level and income inequality is 
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U-shaped is robust to the removal of the outlier provinces with Beijing, Shanghai, Tianjin, 

and Chongqing.     

 In addition to the gap between urban and rural income, another possible measure of 

inequality is the skill composition of the workforce.  We therefore run a regression of our 

inequality equation (1) using the high-skilled population proportion as the dependent variable 

and 3-year lagged value as instruments for the regressors.  According to our results in Table 

6, the coefficient on log patents approved per 10,000 people is significant and negative, 

which suggests that there is an inverse U-shaped relationship between innovation and human 

capital.  As innovation increases, human capital increases initially but then decreases with 

innovation when innovation is high.  However, the turning point level of innovation after 

which human capital declines with innovation is high; in specification (2), which includes 

region-year effects in addition to province fixed effects and year effects, the turning point 

level of the number of patents approved per 10,000 people is approximately 14 times higher 

than the mean number of patents approved per 10,000 people, and only slightly lower than 

the maximum number of patents approved per 10,000 people.  Thus, for most provinces, the 

level of innovation has not yet reached the turning point level. 
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Table 3.  IV Results for income inequality using 1-year lags as instruments 
Dependent variable is log income inequality  

 (1) (2) (3) (4) (5) (6) (7) (8) 

log patents approved per 10,000 people -0.0383** -0.0268 -0.0307 -0.0214 -0.0218 -0.0563*** -0.0263 -0.04026** 

 (0.0129) (0.0174) (0.0164) (0.0163) (0.0173) (0.0138) (0.0173) (0.0161) 

(log patents approved per 10,000 people)2 0.0119*** 0.0189*** 0.0143*** 0.0186*** 0.0194*** 0.0190*** 0.0174*** 0.0128*** 

 (0.00176) (0.00273) (0.00230) (0.00256) (0.00277) (0.00232) (0.00260) (0.00291) 

log high skill population proportion  -0.199*** -0.161** -0.149** -0.203***  -0.188*** -0.1753*** 

  (0.0573) (0.0492) (0.0461) (0.0578)  (0.0566) (0.0526) 

log population density  -0.177* -0.206* -0.147 -0.256** -0.166*  -0.1854** 

  (0.0896) (0.0850) (0.0828) (0.0867) (0.0758)  (0.0886) 

log GDP per capita  0.111* 0.156*** 0.108*  0.154*** 0.142** 0.2106** 

  (0.0497) (0.0439) (0.0467)  (0.0413) (0.0469) (0.0483) 

log industrialization  0.225**  0.192** 0.270*** 0.0802 0.238** 0.1274** 

  (0.0763)  (0.0692) (0.0722) (0.0547) (0.0755) (0.0705) 

log urbanization  0.101* 0.0862*  0.0961* 0.0399 0.0919* 0.111** 

  (0.0439) (0.0407)  (0.0446) (0.0317) (0.0430) (0.0412) 

constant 1.062*** 3.858*** 3.459*** 3.128*** 4.478*** 1.851*** 2.792*** 3.598*** 

 (0.0175) (0.789) (0.708) (0.631) (0.728) (0.426) (0.566) (0.7776) 

         

province fixed effects Y Y Y Y Y Y Y Y 

year effects Y Y Y Y Y Y Y Y 

region*year effects N N N N N N N Y 

         

Number of observations 492 492 492 492 492 492 492 492 

Number of provinces 31 31 31 31 31 31 31 31 

         

First-stage F-statistics for:         
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    log patents approved per 10,000 people 5732 2760.93 3067.77 3156.21 2733.06 3139.83 2742.05 1050.69 

    (log patents approved per 10,000 people)2 722.4 392.81 431.37 446.97 328.64 446.59 441.64 222.46 

    log high skill population proportion  373.21 429.55 412.91 420.62  433.79  326.02 

    log population density  6.6e+05 7.4e+05   7.5e+05 8.6e+05 7.4e+05  2.3e+05 

    log GDP per capita  12950.04  14570.14  15094.92  13975.57 14955.36 5077.25 

    log industrialization  2683.46  3066.20 2462.28 3069.92 3109.19 2160.20 

    log urbanization  2875.67 3098.68  2786.07  2461.91 3190.43 1992.84 

         

p-value from under-identification test 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 

p-value from weak instrument-robust inference test 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 

         

Turning point level of number of patents approved per 10,000 people 4.999 2.032 2.925 1.778 1.754 4.400 2.129 4.819 

Notes: Standard errors in parentheses.  We use 1-year lagged values of the regressors as instruments for each respective regressor.  Significance codes: * p < 0.05, ** p < 

0.01, *** p < 0.001. 
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Table 4.  IV results for income inequality using 3-year lags as instruments 
Dependent variable is log income inequality 

 (1) (2) (3) (4) (5) (6) (7) (8) 

log patents approved per 10,000 people -0.266*** -0.249** -0.314** -0.129* -0.296* -0.260*** -0.545 -0.255* 

 (0.0701) (0.0947) (0.0965) (0.0531) (0.131) (0.0565) (0.387) (0.110) 

(log patents approved per 10,000 people)2 0.0384*** 0.0538*** 0.0575*** 0.0421*** 0.0622*** 0.0551*** 0.0840 0.0502** 

 (0.00684) (0.0120) (0.0138) (0.00796) (0.0172) (0.00830) (0.0437) (0.0170) 

log high skill population proportion  -0.0180 0.0779 -0.139 0.0304  0.207 0.0119 

  (0.120) (0.115) (0.0910) (0.157)  (0.373) (0.140) 

log population density  -0.742** -0.925*** -0.392* -1.164* -0.767***  -0.656** 

  (0.251) (0.250) (0.156) (0.454) (0.201)  (0.237) 

log GDP per capita  0.288* 0.404*** 0.100  0.300** 0.758 0.357* 

  (0.133) (0.121) (0.0836)  (0.105) (0.536) (0.139) 

log industrialization  0.232  0.441** 0.357* 0.215 0.333 0.103 

  (0.166)  (0.135) (0.160) (0.141) (0.317) (0.183) 

log urbanization  0.309* 0.391*  0.380 0.315* 0.835 0.411* 

  (0.152) (0.164)  (0.204) (0.142) (0.637) (0.187) 

constant 1.241*** 5.407*** 5.366*** 4.589*** 7.780*** 5.371*** -0.233 4.631*** 

 (0.0634) (1.136) (1.331) (0.884) (1.801) (1.130) (3.199) (1.217) 

         

province fixed effects Y Y Y Y Y Y Y Y 

year effects Y Y Y Y Y Y Y Y 

region*year effects N N N N N N N Y 

         

Number of observations 433 431 431 431 431 431 431 431 

Number of provinces 31 31 31 31 31 31 31 31 

         

First-stage F-statistics for:         
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    log patents approved per 10,000 people 402.13 706.62 706.62 797.66 471.21 757.96 745.70 285.07 

    (log patents approved per 10,000 people)2 53.00 19.35 19.35 21.34 22.29 20.21 23.26 27.41 

    log high skill population proportion  281.36 281.36 325.86 252.93  315.86 210.94 

    log population density  1.7e+05 1.7e+05 2.1e+05 1.5e+05 1.8e+05  75062.96 

    log GDP per capita  2755.35 2755.35 2945.33  2783.29 3208.98 1031.62 

    log industrialization  576.81  674.34 665.74 657.41 653.98 486.33 

    log urbanization  618.80 618.8  597.41 695.96 667.90 430.76 

         

p-value from under-identification test 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 

p-value from weak instrument-robust inference test 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 

         

Turning point level of number of patents approved per 10,000 people 31.93 10.12 15.34 4.63 10.80 10.58 25.64 12.68 

Notes: Standard errors in parentheses.  We use 3-year lagged values of the regressors as instruments for each respective regressor.  Significance codes: * p < 0.05, ** p < 

0.01, *** p < 0.001. 
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Table 5.  IV Results for provinces with and without large cities  
 

Dependent variable is log income inequality 

 Provinces with  

Beijing, Shanghai, Tianjin, and Chongqing 

Provinces without  

Beijing, Shanghai,Tianjin, and Chongqing 

Instruments 1-year lags  3-year lags 1-year lag 3-year lags 

 (9a) (9b) (10a) (10b) 

log patents approved per 10,000 people 0.309 0.231 -0.0623*** -0.272* 

 (0.184) (0.461) (0.0172) (0.115) 

(log patents approved per 10,000 people)2 -0.0640 0.120 0.00957** 0.048* 

 (0.103) (0.475) (0.00295) (0.0189) 

log high skill population proportion -0.481 -0.439 -0.153** 0.0195 

 (0.554) (0.899) (0.0507) (0.136) 

log population density 1.086 -1.092 -0.126 -0.873* 

 (0.698) (7.935) (0.109) (0.358) 

log GDP per capita -0.330 0.748 0.338*** 0.479** 

 (0.723) (3.354) (0.0542) (0.153) 

log industrialization 0.231 -0.476 0.0317 0.130 

 (0.241) (4.063) (0.0869) (0.204) 

log urbanization -0.569 0.458 0.122** 0.428** 

 (1.031) (2.289) (0.0427) (0.197) 

constant -2.016 9.794 2.842*** 5.471** 

 (6.222) (51.22) (0.849) (1.664) 

     

province fixed effects Y Y Y Y 

year effects Y Y Y Y 

region*year effects N N Y Y 
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Number of observations 62 54 430 377 

Number of provinces 4 4 27 27 

     

First-stage F-statistics for:     

    log patents approved per 10,000 people 374.27 168.10 798.04 180.69 

    (log patents approved per 10,000 people)2 259.70 95.96 208.20 17.12 

    log high skill population proportion 196.74 242.28 99.80 70.11 

    log population density 7348.08 3804.77 2.9e+05 93451.44 

    log GDP per capita 2401.05 908.05 3500.21 547.33 

    log industrialization 697.78 249.54 1655.63 388.88 

    log urbanization 246.77 50.58 1293.56 271.28 

     

p-value from under-identification test 0.0305* 0.9636 0.000*** 0.0016** 

p-value from weak instrument-robust inference test 0.000*** 0.0000*** 0.000*** 0.000*** 

     

Turning point level of number of patents approved per 10,000 people NA NA 25.9186 17.002 

Notes: Standard errors in parentheses.  We use either the 1-year or 3-year lagged values of the regressors as instruments for each respective regressor.  Significance codes: * 

p < 0.05, ** p < 0.01, *** p < 0.001. 
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Table 6. IV results for high-skilled population proportion using 3-year lags as instruments 
 

Dependent variable is log high-skilled population proportion 
 (1) (2) 
log patents approved per 10,000 people 0.799*** 0.824*** 
 (0.184) (0.193) 
(log patents approved per 10,000 people)2 -0.106*** -0.131***
 (0.0262) (0.0341) 
log population density 1.919** 1.500* 
 (0.657) (0.668) 
log GDP per capita -0.811* -0.686 
 (0.359) (0.384) 
log industrialization 0.802 0.811 
 (0.483) (0.502) 
log urbanization -0.519 -0.754 
 (0.484) (0.556) 
constant -0.852 0.995 
 (3.696) (3.746) 
   
province fixed effects Y Y 
year effects Y Y 
region*year effects N Y 
   
Number of observations 432 432 
Number of provinces 31 31 
   
First-stage F-statistics for:   
    log patents approved per 10,000 people 761.38 327.36 
    (log patents approved per 10,000 people)2 23.95 31.68 
    log population density 1.9e+05 81298.95 
    log GDP per capita 2764.39 1139.65 
    log industrialization 654.81 567.41 
    log urbanization 733.97 465.23 
   
p-value from under-identification test 0.000*** 0.000*** 
p-value from weak instrument-robust inference test 0.000*** 0.000*** 
   
Turning point level of number of patents approved per 10,000 people 43.33 23.22 
Notes: Standard errors in parentheses.  We use 3-year lagged values of the regressors as 
instruments for each respective regressor.  Significance codes: * p < 0.05, ** p < 0.01, *** p < 
0.001. 
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6.  Conclusion  

This paper examines the impact of innovation on income inequality in China.  Our 

results show that the innovation level has a significant effect on income inequality and 

moreover that the relationship between innovation level and income inequality in China is not 

linear, but U-shaped.  Because innovation can impact income inequality, it will be important 

for the Chinese government to pay attention to the relationship between innovation and 

income inequality in the long run. In particular, China should consider the effects of 

innovation on income inequality when distributing research investment efforts and funding 

among provinces and industries. 

Urbanization and industrialization create opportunities for labor mobility, so that 

labor can flow from the agricultural sector non-agricultural sectors, and from agriculture to 

manufacturing and service sectors, leading to changes in the employment shares of different 

sectors. However, urbanization and industrialization can increase income inequality because 

of China’s household registration system. Currently, most areas in China still practice a 

policy of hukou registration, making it difficult for workers from rural areas to enter the 

urban labor market and enjoy the benefits of urbanization, and therefore leading to higher 

income inequality (Au and Henderson, 2006).  

In addition to the ratio between urban and rural income, we also analyze the effects of 

innovation on another possible measure of inequality: the skill composition of the workforce.  

According to our results there is an inverse U-shaped relationship between innovation and 

human capital.  As innovation increases, human capital increases initially but then decreases 
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with innovation when innovation is high.  However, the turning point level of innovation 

after which human capital declines with innovation is high. 

Our research suggests several possible future avenues for research. In this paper, we 

use the number of patents approved per 10,000 people to represent the regional innovation 

level, without considering the "quality" of the patents approved and without disaggregating 

the patents by sector.  Because data on patents from specific sectors such as agriculture, 

high technology, biotechnology are not available, we were unable to analyze the effects of 

innovation from different industries on income inequality.  In future work we hope to find 

and use measures of the quality of patents approved and also measures of the innovation 

levels of different sectors. 
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